Automata and Languages

Prof. Mohamed Hamada

Software Engineering Lab.
The University of Aizu
Japan

FINITE STATE MACHINES (AUTOMATA)

Switch Example 1

Think about the On/Off button

Switch Example 1

The corresponding Automaton

Input: Push Push Push

Vending Machine Example 2

♦ Vending machine dispenses Cola for \$0.45

Vending Machine Example 2

The machine accepts a string if the process ends in a *final state*

Example 3

An *alphabet* Σ is a finite set of symbols (in Ex3, $\Sigma = \{0,1\}$)

A string over Σ is a finite sequence of elements of Σ (e.g. 0111)

For a string s, |s| is the *length* of s

The unique string of length 0 will be denoted by λ and will be called the **empty** string

The **reversal** of a string u is denoted by u^R . Example: $(banana)^R = ananab$

The **concatenation** of two strings is the string resulting from putting them together from left to right. Given strings u and v, denote the concatenation by u.v, or just uv.

Example:

Q1: What's the Java equivalent of concatenation?

The + operator on strings

Q2: Find a formula for $|u| \cdot v|$?

|u.v| = |u| + |v|

If Σ is an alphabet,

Σ * denotes the set of all strings over **Σ**.

A language over Σ is a subset of Σ *

i.e. a set of strings *each* consisting of sequences of symbols in Σ.

Examples

Example1: in our vending machine we have

```
\begin{split} \Sigma &= \{ \text{ D, Q } \} \\ \Sigma^* &= \{ \lambda, \\ & \text{ D, Q, } \\ & \text{ DD, DQ, QD, QQ, } \\ & \text{ DDD, DDQ, DQD, DQQ, QDD, QQD, QQQ, } \\ & \text{ DDDD, DDDQ, } \ldots \, \} \\ L &= \{ \textit{ u} \!\!\in\!\! \Sigma^* \! \mid \textit{ u } \text{ successfully vends } \} \end{split}
```


Example 2: in our switch example we have

```
\begin{split} \Sigma &= \{ \text{ Push} \} \\ \Sigma^* &= \{ \lambda, \\ &\quad \text{Push}, \\ &\quad \text{Push Push}, \\ &\quad \text{Push Push Push,} \\ &\quad \text{Push Push Push Push,} \dots \} \\ \textit{L} &= \{ \text{ Push}^n \mid \text{n is odd } \} \end{split}
```


A finite automaton is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

- **Q** is the set of states
- Σ is the alphabet
- **b** is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final states
- L(M) = the language of machine M = set of all strings machine M accepts

State Diagram and **Table**

$Q = \{q_0, q_1, q_2\}$
$\Sigma = \{a, b\}$
$F = \{q_2\}$

δ	а	b
q_0	q_0	q_1
q_1	q_0	q_2
q_2	q_2	q_2

FINITE STATE MACHINES (AUTOMATA)

Deterministic Finite Automata (DFA)

Non-Deterministic Finite Automata with empty move (λ-NFA)

Non-Deterministic Finite Automata (NFA)

Deterministic & Nondeterministic

Deterministic & Nondeterministic

From ONE state machine can go to another ONE state on one input

One choice

Non-Deterministic

From ONE state machine can go to MANY states on one input

Multi choice

Deterministic Computation

accept or reject

Non-Deterministic Computation

DETERMINISTIC FINITE AUTOMATA (DFA)

A DFA is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

Q is the set of states

Σ is the alphabet

 $\delta: \mathbb{Q} \times \Sigma \to \mathbb{Q}$ is the transition function

 $q_0 \in Q$ is the start state

 $F \subseteq Q$ is the set of accept states

L(M) = the language of machine M = set of all strings machine M accepts

Deterministic Finite Automata (DFA)

Deterministic Finite Automata (DFA)

Example 1

Q: What kinds of bit-strings are accepted?

A: Bit-strings that represent binary even numbers.

Deterministic Finite Automata (DFA)

L(M) = { w | w has an even number of 1s}

Build an automaton that accepts all and only those strings that contain 001

Strings over {a,b} containing even number of a's and odd number of b's.

Strings over {a,b,c} that has the form (ab)*c

Design with a friend a machine that tells us when a *base-*10 number is divisible by 3.

What should your alphabet be?

How can you tell when a number is divisible by 3?

Answer

Answer

```
Q = \{ 0 \bmod 3, 1 \bmod 3, 2 \bmod 3 \}  (rename: \{q_0, q_1, q_2\}) \Sigma = \{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 \} q_0 = 0 \bmod 3 F = \{ 0 \bmod 3 \}
```

$$\delta: Q \times \Sigma \to Q$$

$$\delta(q_0, 2) = q_2, \ \delta(q_0, 9) = q_0, \delta(q_1, 2) = q_0,$$

$$\delta(q_1, 7) = q_2, \ \delta(q_2, 3) = q_2, \delta(q_2, 5) = q_1.$$

Question : $\delta(q_i, j) = ?$

$$\delta(q_i, j) = q_{(i+j) \bmod 3}$$