Automata and Languages

Prof. Mohamed Hamada

Software Engineering Lab. The University of Aizu Japan

Mathematical Background

Sets

Relations

Functions

Graphs

Proof techniques

Functions

A function *f* is a binary relation (i.e. $f \subseteq A \times B$) written as $f : A \rightarrow B$ such that for $x \in A$ there exist at most one $y \in B$ for which $(x,y) \in f$, which we write as f(x)=y.

In other words: f is a function if
$$f(x) = y$$
, $f(x) = z$ implies $y=z$

Example: $f: N \rightarrow N$ where f(n) = n+1 is a function on natural numbers.

Functions. Example

Example: Let $f : \mathbb{Z} \to \mathbb{R}$ be given by $f(x) = x^2$

Q1: What are the domain and co-domain? (Z, R)

Q2: What's the image of -3? (9)

Q4: What is the range $f(\mathbf{Z})$? (set of perfect squares $f(\mathbf{Z}) = \{0, 1, 4, 9, 16, 25, ...\}$)

One-to-One, Onto, Bijection.

DEF: A function $f: A \rightarrow B$ is:

- one-to-one (or injective) if different elements of A always result in different images in B.
 i.e. for all a,b ∈ A, f(a)=f(b) implies a=b.
- onto (or surjective) if the range of f is B (f (A) = B).
 i.e. for all b ∈ B, there exist a∈A such that f(a)=b.
- a one-to-one correspondence (or a bijection) if *f* is both one-to-one as well as onto.
 i.e. for all *b* ∈ *B*, there exist a unique *a*∈ *A* such that *f*(*a*)=*b*.

Quiz

- Q: Which of the following are 1-to-1, onto, a bijection?
- 1. $f: \mathbb{Z} \rightarrow \mathbb{R}$ is given by $f(x) = x^2$
- 2. $f: \mathbf{Z} \rightarrow \mathbf{R}$ is given by f(x) = 2x
- 3. $f: \mathbf{R} \rightarrow \mathbf{R}$ is given by $f(x) = x^3$
- 4. $f: \mathbf{Z} \rightarrow \mathbf{N}$ is given by f(x) = |x|
- 5. $f: \{\text{people}\} \rightarrow \{\text{people}\} \text{ is given by}$ f(x) = the father of x.

Answer

1.
$$f: \mathbb{Z} \rightarrow \mathbb{R}$$
, $f(x) = x^2$: none
2. $f: \mathbb{Z} \rightarrow \mathbb{R}$, $f(x) = 2x : 1-1$
3. $f: \mathbb{R} \rightarrow \mathbb{R}$, $f(x) = x^3$: 1-1, onto, bijection
4. $f: \mathbb{Z} \rightarrow \mathbb{N}$, $f(x) = |x|$: onto
5. $f(x) =$ the father of x : none

(Total) Function

Domain

Co-domain (\supset Range)

One-One Function (injection)

Domain

Co-domain (\supset Range)

Onto Function (surjection)

Domain

Co-domain (= Range)

One to one correspondence Function (bijection) Domain (= Range)

Graphs

A *graph G* = (*V*,*E*) consists of a non-empty set *V* of *vertices* (or *nodes*) and a set *E* (possibly empty) of *edges* where each edge is a subset of *V* with cardinality 2 (an unordered pair).

A **Path** is a sequence of vertices $v_1, ..., v_k$, $k \ge 1$, such that there exist an edge (v_i, v_{i+1}) for all $1 \le i \le k$.

Note that:

- 1. The length of such path is k-1
- 2. If $v_1 = v_k$, the path is called a **cycle** path.

Digraphs

A *directed graph* (or *digraph*) is a pair

G = (V, E), where V is a non-empty set of

vertices (or nodes) and E is a set of

arcs (ordered pairs of vertices) with $E \subseteq V \times V$.

- An arc (a,b) is denoted by $a \rightarrow b$
- A **Path** is a sequence of vertices $v_1, ..., v_k, k \ge 1$, such that there exist an arc $v_i \rightarrow v_{i+1}$ for all $1 \le i \le k$.
- For an arc v→w, v is called predecessor of w and w is called successor of v

Example

Trees

A very important type of digraph in CS is called a *tree*:

Trees

Definition: A (ordered directed) tree is a digraph such that:

- 1. There exist one vertex called *root* with no predecessors and from which there exist a path to each other vertex
- 2. Each other vertex has exactly one predecessor
- 3. The successors of each vertex is ordered from left to right

Conventions:

- 1. We draw trees with the root at the top and all arcs are pointing downward
- 2. The successors of each vertex will be drawn in left-to-right order

Terminology:

- 1. A successor of a vertex is called *son*
- 2. The predecessor of a vertex is called a *father*
- 3. For a path $v_1 \rightarrow \dots \rightarrow v_n$, v_1 is called ancestor of v_n and v_n is called **descendent** of v_1
- 4. Any vertex is an ancestor and descendent of itself
- 5. A vertex with no sons is called *leaf*, other vertices are called interior

Trees

Example

If $V=\{a,b,c,e,f,+,*,-\}$ and E is defined by the expression (a+b)*(c*(e-f)), then We can draw the tree as follows:

Proof Techniques

Proofs by Mathematical Induction

Proofs by contradiction

Suppose we have a sequence of propositions which we would like to prove: $P(0), P(1), P(2), P(3), P(4), \dots P(n), \dots$

For Example: *P*(*n*):
$$\sum_{i=1}^{n} (2i-1) = n^2$$

(The sum of the first *n* positive odd numbers is the *n*th perfect square)

We can picture each proposition as a domino:

When the domino falls (to right), the corresponding proposition P(i) is considered true:

When the domino falls (to right), the corresponding proposition P(i) is considered true:

Suppose that the dominos satisfy two conditions.

1) Well-positioned: If any domino falls (to right), next domino (to right) must fall also.

Suppose that the dominos satisfy two conditions.

1) Well-positioned: If any domino falls (to right), next domino (to right) must fall also.

Suppose that the dominos satisfy two conditions.

1) Well-positioned: If any domino falls (to right), next domino (to right) must fall also.

2) First domino has fallen to right

Principle of Mathematical Induction:

lf:

1. [induction basis] P(0) is true 2. [induction hypothesis & step] $\forall n \ P(n) \rightarrow P(n+1)$ is true

This formalizes what occurred to dominos.

In other words, what we need to do is:

- 1. **[induction basis**] Show that the statement P(n) holds for n = 0 (or whatever the smallest case is).
- 2. [*induction hypothesis*] Assume that P(n) is true
- 3. **[Induction** *step*] Show that *P*(*n*+1) is true

We then conclude that $\forall n \ P(n)$ is true

Prove that $\forall n \ge 0$ P(n) is true where $P(n): \sum_{i=1}^{n} (2i-1) = n^2$

(The sum of the first *n* positive odd numbers is the *n*th perfect square)

We give two proofs:

- 1. Geometrical proof
- 2. Mathematical induction proof

1. Geometrical proof

Geometric interpretation.

To get next square, need to add next odd number:

The sum of the first *n* positive odd numbers

the *n*th perfect square

Geometric interpretation. To get next square, need to add next odd number: the *n*th The sum of 1 $=1 = 1^{2}$ perfect the first *n* positive square $=4 = 2^2$ + 3 odd numbers $=9 = 3^2$ + 5

Geometric interpretation. To get next square, need to add next odd number: the *n*th The sum of 1 $=1 = 1^{2}$ perfect the first *n* positive square $=4 = 2^2$ + 3 odd numbers $=9 = 3^2$ + 5 **=16 = 4**² + 7 $=25 = 5^2$ + 9

Geometric interpretation. To get next square, need to add next odd number: the *n*th The sum of 1 $=1 = 1^{2}$ perfect the first *n* positive square $=4 = 2^2$ + 3 odd numbers $=9 = 3^2$ + 5 **=16 = 4**² + 7 $=25 = 5^2$ + 9 $=36 = 6^2$ + 11

Geometric interpretation.

To get next square, need to add next odd number:

2. Mathematical induction proof

$$\sum_{i=1}^{0} (2i-1) = 0^2$$

This is obvious to see

2. Hypothesis: assume that P(n) is true, i.e. $\sum_{i=1}^{n} (2i-1) = n^{2}$

3. Step: show that P(n+1) is true $\sum_{i=1}^{n+1} (2i-1) = \sum_{i=1}^{n} (2i-1) + [2(n+1)-1]$ $= n^2 + [2n+1]$ $= (n+1)^2$

Proof by Contradiction

To prove that some statement P is true we do:

- 1. Assume that P is false
- 2. Continue in the proof based on the nature of P
- 3. If we reach a wrong conclusion (contradiction) we conclude that P is true

Mathematical interpretation of Proof by ContradictionFor any k assume: $P(k) \land \neg Q(k)$ and derive: $\neg P(k) \lor Q(k)$ Uses the logical equivalence: $P \rightarrow Q \Leftrightarrow \neg P \lor Q \Leftrightarrow \neg P \lor Q \lor \neg P \lor Q$ $\Leftrightarrow (\neg P \lor Q) \lor (\neg P \lor Q) \Leftrightarrow \neg (P \land \neg Q) \lor (\neg P \lor Q)$ $\Leftrightarrow (P \land \neg Q) \rightarrow (\neg P \lor Q)$

Intuitively: Assume claim is false (so *P* must be true and *Q* false). Show that assumption was absurd (so *P* false or *Q* true) so claim true!

Example

PROVE: The square of an even number *k* is even.

- 1. Assume that k^2 is not even.
- 2. So k^2 is odd.
- 3. $\exists n \ k^2 = 2n + 1$
- 4. $\exists n \ k^2 1 = 2n$
- 5. $\exists n \ (k-1)(k+1) = 2n$
- 6. Since 2n is even then: (k 1) is even Or (k + 1) is even
- 7. $\exists a \text{ such that } k 1 = 2a \text{ Or } \exists b \text{ such that } k + 1 = 2b$
- 8. $\exists a \text{ such that } k = 2a + 1 \text{ Or } \exists b \text{ such that } k = 2b 1$
- 9. In both cases *k* is odd
- 10. Contradiction (with the fact that the given *k* is an even number)
- 11. Our assumption (k^2 is not even) is wrong
- 12. Hence k^2 is even

The set of **rational** numbers

Q = { p/q | p,q are integers with no common factors and $q \neq 0$ }

Proof that the square root of 2 is NOT rational