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Functions 

A function f is a binary relation (i.e. f ⊆  A×B ) 
written as f : A àB such that for x ∈ A there exist at 
most one y ∈ B for which (x,y) ∈ f, which we write as  
f(x)=y.  

In other words: f is a function if 

f(x) = y, f(x)= z implies  y=z 

Example: f: N à N where f(n)= n+1 is a function on 
natural numbers. 



Functions.  Example 

 
Example:  Let f : Z à R be given by f (x ) = x 2 

 
Q1: What are the domain and co-domain?  
 
Q2: What’s the image of -3 ?  
 
Q4: What is the range f (Z) ?   

(Z, R) 

(9) 

(set of perfect squares   f (Z) ={0,1,4,9,16,25,…}) 



One-to-One,  Onto,  Bijection.   
DEF: A function f : A àB  is: 
 
•  one-to-one (or injective) if different elements of A 

always result in different images in B.   
    i.e. for all a,b ∈ A, f(a)=f(b) implies a=b. 
 
•  onto (or surjective) if the range of f is B (f (A ) = B). 
   i.e. for all b ∈ B, there exist a∈ A such that f(a)=b. 
 
•  a one-to-one correspondence (or a bijection)  
    if f  is both one-to-one as well as onto.   

 i.e. for all b ∈ B, there exist a unique a∈ A such that 
f(a)=b. 



Quiz 

Q: Which of the following are 1-to-1, onto, a 
bijection?  

1.  f : Z à R is given by f (x ) = x 2 

2.  f : Z à R is given by f (x ) = 2x 

3.   f : R à R is given by f (x ) = x 3 

4.   f : Z à N is given by f (x ) = |x | 

5.   f : {people} à {people} is given by              

      f (x ) = the father of x. 



Answer 

1.   f : Z à R, f (x ) = x 2: none 

2.   f : Z à R, f (x ) = 2x : 1-1 

3.   f : R à R, f (x ) = x 3: 1-1, onto, bijection 

4.    f : Z à N, f (x ) = |x |: onto 

5.   f (x ) = the father of x : none 
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One-One Function (injection)    
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Onto Function (surjection)    
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One to one correspondence Function 
(bijection)    
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Graphs 

A graph G = (V,E ) consists of a non-empty set V of vertices (or 
nodes) and a set E (possibly empty) of edges where each edge is a 
subset of V with cardinality 2 (an unordered pair). 

A Path is a sequence of vertices  v1,…,vk,  k    1,  such that there exist an edge  

(vi,vi+1) for all  1    i < k. 

 

Note that:  

1.  The length of such path is k-1 

2.  If v1=vk, the path is called a cycle path. 

≤

≥



Graphs  

4 

1 2 

3 

Example 

•  (1)----(2)----(4) is a path  
•  (1)----(3)----(4)----(1) is a cycle 



A directed graph (or digraph)  is a pair  
G = (V,E ), where  V is a non-empty set of  

vertices (or nodes) and E is a set of  

arcs (ordered pairs of vertices) with E ⊆V ×V. 

- An arc (a,b) is denoted by a àb 

-  A Path is a sequence of vertices  v1,…,vk,k    1,  such 
that there exist an arc viàvi+1  for all  1    i < k. 

-  For an arc vàw, v is called predecessor of w and w is 
called successor of v 

≤

Digraphs 
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Digraphs 
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Trees 

A very important type of digraph in CS is called a tree: 

Real  Tree Graph: Tree Transformation 

Root 

Leafs 



Trees 
Definition:  A  (ordered directed) tree is a digraph such that: 

1. There exist one vertex called root with no predecessors and from which there 
exist a path to each other vertex  

2.   Each other vertex has exactly one predecessor 

3. The successors of each vertex is ordered from left to right 

Conventions: 
1.  We draw trees with the root at the top and all arcs are pointing downward 
2.  The successors of each vertex will be drawn in left-to-right order 

Terminology: 
1.  A successor of a vertex is called son 
2.  The predecessor of a vertex is called a father 
3.  For a path v1à…àvn, v1 is called ancestor of vn and vn is called descendent of v1 

4.  Any vertex is an ancestor and descendent of itself 
5.  A vertex with no sons is called leaf, other vertices are called interior 



Trees 
Example 

If V={a,b,c,e,f,+,*,-) and E is defined by the expression (a+b)*(c*(e-f)), then 
We can draw the tree as follows: 

* 

+ 
* 

f 
e 

- 
c b a 



Proof Techniques 

• Proofs by Mathematical Induction 

•  Proofs by contradiction 



Mathematical Induction 
Suppose we have a sequence of propositions which we would like to prove: 
                   P (0), P (1), P (2), P (3), P (4), … P (n), … 
 
For Example: P (n):   
   
(The sum of the first n positive odd numbers is the nth perfect square) 

P (n) 
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We can picture each proposition as a domino: 

P (0) P (1) P (2) 

… 

P (n+1) 

… 



When the domino falls (to right), the 
corresponding proposition P(i) is 
considered true: 

Mathematical Induction 

P (i) 



When the domino falls (to right), the 
corresponding proposition P(i) is 
considered true: 

P (i) 
true 

Mathematical Induction 



1) Well-positioned:  If any domino falls (to right), next 
domino (to right) must fall also. 

P (n+1) P (n) 

Mathematical Induction 
Suppose that the dominos satisfy two conditions. 



1) Well-positioned:  If any domino falls (to right), next 
domino (to right) must fall also. 

P (n+1) 

Mathematical Induction 
Suppose that the dominos satisfy two conditions. 

P (n) 



1) Well-positioned:  If any domino falls (to right), next 
domino (to right) must fall also. 

Mathematical Induction 
Suppose that the dominos satisfy two conditions. 

P (n) 
true 

P (n+1) 
true 

P (0) 
true 

2)  First domino has fallen to right 



Then can conclude that all the dominos fall! 

P (n+1) P (n) P (2) P (1) P (0) 

Mathematical Induction 

… 



P (0) 

Mathematical Induction 

Then can conclude that all the dominos fall! 

P (n+1) P (n) P (2) P (1) … 



P (0) 
true 

P (1) 

Mathematical Induction 

Then can conclude that all the dominos fall! 

P (n+1) P (n) P (2) … 



P (0) 
true 

P (1) 
true 

P (2) 

Mathematical Induction 

Then can conclude that all the dominos fall! 

P (n+1) P (n) … 



P (2) 
true 

P (0) 
true 

P (1) 
true 

Mathematical Induction 

Then can conclude that all the dominos fall! 

… P (n+1) P (n) 



P (2) 
true 

… P (0) 
true 

P (1) 
true 

P (n) 

Mathematical Induction 

Then can conclude that all the dominos fall! 

P (n+1) 



P (2) 
true 

… P (0) 
true 

P (1) 
true 

P (n) 
true 

P (n+1) 

Mathematical Induction 

Then can conclude that all the dominos fall! 



P (2) 
true 

… P (0) 
true 

P (1) 
true 

P (n) 
true 

P (n+1) 
true 

Mathematical Induction 

Then can conclude that all the dominos fall! 



Mathematical Induction 
Principle of Mathematical Induction:   

If: 
 

1. [induction basis]  P (0) is true 
2. [induction hypothesis & step] ∀n  P(n)àP(n+1) is true 

Then: 
 

∀n P(n)   is true 
 

This formalizes what occurred to dominos. 

P (2) 
true 

… P (0) 
true 

P (1) 
true 

P (n) 
true 

P (n+1) 
true 



Mathematical Induction 

In other words, what we need to do is:   

1.   [induction basis] Show that the statement P(n) holds for n = 0  
                                  (or whatever the smallest case is).  
 
2. [induction hypothesis]  Assume that P(n) is true 

3. [Induction step] Show that P(n+1) is true 
 

We then conclude that ∀n  P(n)  is true 



Mathematical Induction: Example 

Prove that     ∀n ≥ 0   P(n)  is true    where  
 
P (n):   
   
(The sum of the first n positive odd numbers is the nth perfect square) 
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We give two proofs: 

1.  Geometrical proof 

2.  Mathematical induction proof 



Geometric interpretation.   
 
To get next square, need to add next odd number: 

  

Mathematical Induction: Example 

1.  Geometrical proof 

The sum of 
the first n 
positive 
odd 
numbers  

the nth 
perfect 
square 



Mathematical Induction: Example 

Geometric interpretation.   
 
To get next square, need to add next odd number: 

  

 1 =1 = 12 The sum of 
the first n 
positive 
odd 
numbers  

the nth 
perfect 
square 



Mathematical Induction: Example 

Geometric interpretation.   
 
To get next square, need to add next odd number: 

  

 1 

+ 3 

=1 = 12 

=4 = 22 

The sum of 
the first n 
positive 
odd 
numbers  

the nth 
perfect 
square 



Mathematical Induction: Example 

Geometric interpretation.   
 
To get next square, need to add next odd number: 

  

 1 

+ 3 

+ 5 

=1 = 12 

=4 = 22 

=9 = 32 

The sum of 
the first n 
positive 
odd 
numbers  

the nth 
perfect 
square 



Mathematical Induction: Example 

Geometric interpretation.   
 
To get next square, need to add next odd number: 

  

 1 

+ 3 

+ 5 

+ 7 

=1 = 12 

=4 = 22 

=9 = 32 

=16 = 42 

The sum of 
the first n 
positive 
odd 
numbers  

the nth 
perfect 
square 



Mathematical Induction: Example 

Geometric interpretation.   
 
To get next square, need to add next odd number: 

  

 1 

+ 3 

+ 5 

+ 7 

+ 9 

=1 = 12 

=4 = 22 

=9 = 32 

=16 = 42 

=25 = 52 

The sum of 
the first n 
positive 
odd 
numbers  

the nth 
perfect 
square 



Mathematical Induction: Example 

Geometric interpretation.   
 
To get next square, need to add next odd number: 

  

 1 

+ 3 

+ 5 

+ 7 

+ 9 

+ 11 

=1 = 12 

=4 = 22 

=9 = 32 

=16 = 42 

=25 = 52 

=36 = 62 

The sum of 
the first n 
positive 
odd 
numbers  

the nth 
perfect 
square 



Mathematical Induction: Example 

Geometric interpretation.   
 
To get next square, need to add next odd number: 

  

 1 

+ 3 

+ 5 

+ 7 

+ 9 

+ 11 

+ 13 =49 = 72 

=1 = 12 

=4 = 22 

=9 = 32 

=16 = 42 

=25 = 52 

=36 = 62 

The sum of 
the first n 
positive 
odd 
numbers  

the nth 
perfect 
square 



2.  Hypothesis:  assume  that P(n) is true, i.e. 

 

1.  Basis:  we would like to show that: 

This is obvious to see 
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Mathematical Induction: Example 

3.  Step:  show  that P(n+1) is true 
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2. Mathematical induction proof 



Proof by Contradiction 

Mathematical interpretation of Proof by Contradiction  
  For any k  assume: P(k) ∧ ¬Q(k) 
  and derive: ¬P(k) ∨ Q(k) 

Uses the logical equivalence:  
 P àQ  ⇔ ¬P ∨ Q  ⇔ ¬P ∨ Q ∨ ¬P ∨ Q  

⇔ (¬P ∨ Q ) ∨ (¬P ∨ Q ) ⇔ ¬(P ∧ ¬Q ) ∨ (¬P ∨ Q ) 
⇔  (P ∧ ¬Q ) à (¬P ∨ Q ) 

Intuitively:  Assume claim is false (so P must be true and Q  false).  Show that 
assumption was absurd (so P false or Q true) so claim true! 

To prove that some statement P is true we do: 

1.  Assume that P is false 

2.  Continue in the proof based on the nature of P 

3.  If we reach a wrong conclusion (contradiction) we conclude that P is true  



Example 
PROVE:  The square of an even number k is even.   
 
1.  Assume that k 2 is not even. 
2.  So k 2 is odd. 
3.  ∃n  k 2 = 2n + 1 
4.  ∃n  k 2 - 1 = 2n 
5.  ∃n  (k - 1)(k + 1) = 2n 
6.  Since 2n is even then:  (k - 1) is even  Or (k + 1) is even  
7.  ∃a  such that k - 1  = 2a  Or   ∃b  such that  k+1  = 2b 
8.  ∃a such that k = 2a + 1 Or   ∃b such that  k  = 2b – 1 
9.  In both cases k  is odd 
10.  Contradiction (with the fact that the given k is an even number) 
11.  Our assumption (k 2 is not even) is wrong 
12.  Hence k 2 is  even 



Exercise 

The set of rational numbers  
Q = { p/q  |  p,q are integers with no common factors and q ≠ 0 } 
 

Proof that the square root of 2 is NOT rational 


