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Functions Functions. Example

A function fis a binary relation (i.e. fC AxB)
written as f: A B such that for x € A there exist at
most one y € B for which (x,y) €f, which we write as
f(x)=y.

In other words: f is a function if

f(x) =y, f(x)= z implies y=z

Example: f: N 2 N where f(n)= n+1 is a function on
natural numbers.

Example: Letf:Z > Rbe given by f(x)=x?2
Q1: What are the domain and co-domain? (z,R)
Q2: What’ s the image of -3 ? (9)

Q4: What is the range f (Z) ? (set of perfect squares £(2) =(0,1,4,9,16,25,..)




One-to-One, Onto, Bijection.

DEF: A functionf: A >B is:

« one-to-one (or injective) if different elements of A
always result in different images in B.

i.e. for all a,b €A, f(a)=f(b) implies a=b.

onto (or surjective) if the range of fis B (f (A ) = B).
i.e. for all b € B, there exist ac A such that f(a)=b.

a one-to-one correspondence (or a bijection)
if f is both one-to-one as well as onto.

i.e. for all b € B, there exist a unique a€ A such that
f(a)=b.

Quiz

o

: Which of the following are 1-to-1, onto, a
bijection?

f:Z->Risgivenby f(x)=x2
f:Z > Risgiven by f(x)=2x
f:R>Risgivenby f(x)=x3
f:Z-> Nisgivenby f(x)=|x]|

f: {people} > {people} is given by
f(x ) = the father of x.

Answer
1. f:Z>R,f(x)=x2 none
2. f:Z>R,f(x)=2x:1-1
3. f:R> R, f(x)=x23 1-1, onto, bijection
4. f:Z->N,f(x)=|x]|:onto
5. f(x) = the father of x : none
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Graphs

A graph G = (V,E ) consists of a non-empty set V of vertices (or
nodes) and a set E (possibly empty) of edges where each edge is a
subset of V with cardinality 2 (an unordered pair).

A Path is a sequence of vertices v,,...,v,, k=1, such that there exist an edge
(VVisq) forall 1=<i<k.

Note that:
1. The length of such path is k-1
2. If vi=v,, the path is called a cycle path.




e (1)--(2)----(4) is a path
e (1)----(3)----(4)----(1) is a cycle

Digraphs

A directed graph (or digraph) is a pair

G = (V,E), where V is a non-empty set of

vertices (or nodes) and E is a set of

arcs (ordered pairs of vertices) with E CV xV.

- An arc (a,b) is denoted by a >b

- APath is a sequence of vertices v,,...,v,,k =1, such
that there exist an arc v,2v,,, forall 1 <i<k.

- For an arc v2w, vis called predecessor of w and w is
called successor of v

Trees

A very important type of digraph in CS is called a tree:

Real Tree Transformation




Trees

Definition: A (ordered directed) tree is a digraph such that:

1. There exist one vertex called root with no predecessors and from which there
exist a path to each other vertex

2. Each other vertex has exactly one predecessor

3. The successors of each vertex is ordered from left to right

Conventions:
1. We draw trees with the root at the top and all arcs are pointing downward
2. The successors of each vertex will be drawn in left-to-right order

Terminology:

o wN =

A successor of a vertex is called son

The predecessor of a vertex is called a father

For a path v;2...2v,, v, is called ancestor of v, and v, is called descendent of v,
Any vertex is an ancestor and descendent of itself

A vertex with no sons is called /eaf, other vertices are called interior

Trees
Example

If V={a,b,c,e,f,+,*-) and E is defined by the expression (a+b)*(c*(e-f)), then
We can draw the tree as follows:

Proof Techniques

*Proofs by Mathematical Induction

* Proofs by contradiction

Mathematical Induction

Suppose we have a sequence of propositions which we would like to prove:
P(0), P(1),P(2),P(3), P(4),... P(n), ...

For Example: P (n): S(Zi—l)=nz

(The sum of the first n positive odd numbers is the n'" perfect square)

‘ We can picture each proposition as a domino:

P (0) P(1) P(2) P(n) (n+1)




Mathematical Induction

When the domino falls (to right), the
corresponding proposition P(i) is
considered true:

P (i)

Mathematical Induction

When the domino falls (to right), the
corresponding proposition P(i) is
considered true:
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Mathematical Induction

| Suppose that the dominos satisfy two conditions.

1) Well-positioned: If any domino falls (to right), next
domino (to right) must fall also.

P(n) P (n+1)

Mathematical Induction

| Suppose that the dominos satisfy two conditions.

1) Well-positioned: If any domino falls (to right), next
domino (to right) must fall also.

p(n)/

/P (n+1)




Mathematical Induction

|Suppose that the dominos satisfy two conditions.

Mathematical Induction

1) Well-positioned: If any domino falls (to right), next
domino (to right) must fall also.

|2) First domino has fallen to right

0
=

Then can conclude that all the dominos fall!

P(0) P(1) P(2) P(n) P(n+1)

Mathematical Induction

Then can conclude that all the dominos fall!

Mathematical Induction

PO P PQ) P(n)  P(m+1)

Then can conclude that all the dominos fall!
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Mathematical Induction

Then can conclude that all the dominos fall!

Mathematical Induction

'/P(zi/f’ P(n) P(n+1)
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Then can conclude that all the dominos fall!

] e P(n+1)

Mathematical Induction

Then can conclude that all the dominos fall!

Mathematical Induction

")J(n)\f’ P(n+i)
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Then can conclude that all the dominos fall!
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Mathematical Induction

Then can conclude that all the dominos fall!
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Mathematical Induction

| Principle of Mathematical Induction: |

If: 1. [induction basis] P (0) is true
2. [induction hypothesis & step] Yn P(n)->P(n+1) is true

Vn P(n) is true

Then: ‘

| This formalizes what occurred to dominos. |

PoR
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Mathematical Induction

| In other words, what we need to do is: |

1. [induction basis] Show that the statement P(n) holds for n = 0
(or whatever the smallest case is).

2. [induction hypothesis] Assume that P(n) is true

3. [Induction step] Show that P(n+1) is true

|We then conclude that Vn P(n) is true |

Mathematical Induction: Example

Prove that VYn=0 P(n) istrue where

2(2i—1)=n2

(The sum of the first n positive odd numbers is the nth perfect square)

We give two proofs:
1. Geometrical proof

2. Mathematical induction proof




Mathematical Induction: Example

1. Geometrical proof

Geometric interpretation.

To get next square, need to add next odd number:

The sum of
the first n
positive
odd
numbers

Mathematical Induction: Example

Geometric interpretation.

To get next square, need to add next odd number:

the nt
perfect
square
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odd
numbers
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Mathematical Induction: Example

Geometric interpretation.

To get next square, need to add next odd number:

The sum of
the first n
positive
odd
numbers

+3

Mathematical Induction: Example

Geometric interpretation.

To get next square, need to add next odd number:

The sum of
the first n
positive
odd
numbers

+3

+5
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Mathematical Induction: Example

Geometric interpretation.

To get next square, need to add next odd number:

The sum of 1

the first n

positive

odd *+3

numbers +5
+7

Mathematical Induction: Example

Geometric interpretation.

To get next square, need to add next odd number:

the nt
perfect
square

The sum of 1

the first n

positive

odd *3

numbers +5
+7
+9

the nt
perfect
square

Mathematical Induction: Example

Geometric interpretation.

To get next square, need to add next odd number:

The sum of 1

the first n

positive

odd *3

numbers +5
+7
+9
+11

=1=12
[e=2z]

i

=16 = 42

=36 = 62

:

Mathematical Induction: Example

Geometric interpretation.

To get next square, need to add next odd number:

=1=12

=16=42

The sum of 1

the first n

positive

odd 3

numbers +5
+7
+9
+11
+13
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Mathematical Induction: Example

2. Mathematical induction proof |

Proof by Contradiction

To prove that some statement P is true we do:
1. Assume that P is false
2. Continue in the proof based on the nature of P

3. If we reach a wrong conclusion (contradiction) we conclude that P is true

1. Basis: we would like to show that: (2i—1) =02
This is obvious to see
2. Hypothesis: assume that P(n)is true,i.e.

Qi-)=n

3. Step: show that P(n+1)is true ., N
2(21‘—1) =2(2i—1)+[2(n+1)—1]
=n*+[2n+1]

=(n+1)?

interp ion of Proof by Ci
For any k assume: P(k) A = Q(k)
and derive: -=P(k) v Q(k)
Uses the logical equivalence:
P>Q <« -PvQ «-PvQv-PvQ
<« (-PvQ)v(-PvQ)«-(PA-Q)v(-PvQ)
< (Pr-Q)>(-PvQ)

Intuitively: Assume claim is false (so P must be true and Q false). Show that
assumption was absurd (so P false or Q true) so claim true!

Example

PROVE: The square of an even number k is even.

Assume that k 2 is not even.

So k2is odd.

In k2=2n+1

an k2-1=2n

an (k-1)k+1)=2n

Since 2nis even then: (k- 1)is even Or (k+ 1)is even
da suchthatk-1 =2a Or 3b suchthat k+1 =2b
Jdasuch that k=2a+10r 3bsuchthat k =2b-1

9. In both cases k is odd

10. Contradiction (with the fact that the given k is an even number)
11. Our assumption (k 2 is not even) is wrong

12. Hence k2is even
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Exercise

The set of rational numbers
Q={p/q | p.qare integers with no common factors and q = 0 }

Proof that the square root of 2 is NOT rational
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