Automata and Languages

Prof. Mohamed Hamada

Software Engineering Lab. The University of Aizu Japan

Mathematical Background

Mathematical Background

Sets

Relations

Functions

Graphs

Proof techniques

\in -Notation & \subseteq -Notation

- The Greek letter "∈" (epsilon) is used to denote that an object is an *element* of a set. When crossed out "∉" denotes that the object is *not an element*."
- Ex.: $3 \in S$ reads:

"3 is an element of the set S".

A set S is said to be a *subset* of the set *T* iff every element of S is also an element of *T*. This situation is denoted by

 $S \subset T$

Specifying Sets

Examples

The Empty Set

The *empty set* is the set containing no elements. This set is also called the *null set* and is denoted by:

- {}
- Ø

Quiz

1. $\varnothing \subseteq \varnothing$?(yes)2. $\varnothing \subset \varnothing$?(No)

Cardinality

- The *cardinality* of a set is the number of distinct elements in the set. |S| denotes the cardinality of S.
- Q: Compute each cardinality.
 - 1. |{1, -13, 4, -13, 1}| ? (3)
 - **2.** |{3, {1,2,3,4}, ∅}| **?** (3)
 - 3. |{}| ? (0)
 - 4. |{ {}, {{}}, {{}}} ? (3)

Set Theoretic Operations

Set theoretic operations allow us to build new sets out of old.

Given sets A and B, the set theoretic operators are:

- Union (\cup)
- Intersection (\cap)
- Difference (-)
- Complement ("—")
- Cartesian Product: A×B
- Power set: P(A)

give us new sets $A \cup B$, $A \cap B$, A - B, A, AxB, and P(A).

Union

Elements in at least one of the two sets:

$$A \cup B = \{ x \mid x \in A \lor x \in B \}$$

Intersection

Elements in exactly one of the two sets:

$$A \cap B = \{ x \mid x \in A \land x \in B \}$$

Disjoint Sets

DEF: If *A* and *B* have no common elements, they are said to be *disjoint*, i.e. $A \cap B = \emptyset$.

Set Difference

Elements in first set but not second:

$$A - B = \{ x \mid x \in A \land x \notin B \}$$

Complement

Elements not in the set (unary operator):

 $\bar{A} = \{ x \mid x \notin A \}$

Cartesian Product

The most famous example of 2-tuples are points in the Cartesian plane \mathbb{R}^2 . Here ordered pairs (*x*,*y*) of elements of \mathbb{R} describe the coordinates of each point. We can think of the first coordinate as the value on the *x*-axis and the second coordinate as the value on the *y*-axis.

- The **Cartesian product** of two sets A and B (denoted by $A \times B$) is the set of all ordered pairs (a, b) where $a \in A$ and $b \in B$.
- A×B = { (x,y) | x∈A and y∈B}

Q: What does $\varnothing \times S$ equal? (= \varnothing)

Some Examples

$$L_{<6} = \{ x \mid x \in N, x < 6 \}$$

$$L_{<6} \cap L_{prime} = \{2,3,5\}$$

$$\Sigma = \{0,1\}$$

$$\Sigma \times \Sigma = \{(0,0), (0,1), (1,0), (1,1)\}$$

Power Sets

```
Formal: P(A) = \{ S \mid S \subseteq A \}

Example: A = \{x,y\}

P(A) = \{ \{\}, \{x\}, \{y\}, \{x,y\} \}

Note the different sizes:

|P(A)| = 2^{|A|}

|A \times A| = |A|^2
```

Power Sets

The *power set* of S is the set of all subsets of S.

- Denote the power set by P(S) or by 2^s .
- The latter weird notation comes from the following lemma.

Lemma: $|2^{s}| = 2^{|s|}$

Power Sets: Example

To understand the previous fact consider

$$S = \{1, 2, 3\}$$

Enumerate all the subsets of S :

- 0-element sets: {} 1
- 1-element sets: {1}, {2}, {3} + 3
- 2-element sets: {1,2}, {1,3}, {2,3} + 3
- 3-element sets: {1,2,3} +1

Therefore:
$$|2^{s}| = 8 = 2^{3} = 2^{|s|}$$

Binary Relations

A binary relation R is a set of pairs of elements of sets A and B,

i.e. $\mathsf{R} \subseteq A \times B$

- A is called the domain of R
- B is called the range (or codomain) of R
- If A=B we say that R is a relation on A
- We may write aRb for $(a,b) \in R$

Properties of Binary Relations

Special properties for relation *on* a set *A*:

- *reflexive* : every element is self-related.
 i.e. *aRa* for all *a* ∈*A*
- symmetric : order is irrelevant. i.e. for all a,b ∈A aRb iff bRa
- transitive : when a is related to b and b is related to c, it follows that a is related to c.
 i.e. for all a,b,c ∈A aRb and bRc implies aRc

Properties of Binary Relations

 asymmetric : also not equivalent to "not symmetric". Meaning: it's never the case that both aRb and bRa hold.

irreflexive: *not* equivalent to "not reflexive".
 Meaning: it's never the case that *aRa* holds.
 i.e. *for all a, aRa*

Properties of Binary Relations

An *equivalence relation* R is a relation on a set A which is reflexive, symmetric and transitive.

- Generalizes the notion of "equals".
- R partitions A into disjoint nonempty equivalence classes,
 i.e., A=A₁ U A₂ U, such that
 - $A_i \cap A_j = \emptyset$, for all $i \neq j$
 - a, b∈A_i → aRb
 - $a \in A_i$, $b \in A_j$, $i \neq j \rightarrow a \not R b$
 - A_i's are called equivalence classes and their number may be

infinite

Examples

- Set of Natural numbers is partitioned by the relation
 R={(i, j): i = j "mod 5"} into five "equivalence classes":
 { {0,5,10,...}, {1,6,11,...}, {2,7,12,...}, {3,8,13,...}, {4,9,14,...} }
- "String length" can be used to partition the set of all bit strings.

{ {},**{**0,1**}**,**{**00,01,10,11**}**,**{**000,...,111**}**,... **}**

Closures of Relations

- If P is a set of properties of relations, the P-closure of a relation R is the smallest relation R' such that:
 1. R ⊆ R'
 - 2. aR' b \rightarrow P((a, b)) is true
 - 3. No more elements in R'
- Ex. The transitive-closure of a relation R, denoted by R⁺ is defined by:
 - 1. aRb → (a, b) ∈ R⁺
 - 2. (a, b) $\in \mathbb{R}^+$, (b, c) $\in \mathbb{R}^+ \rightarrow$ (a, c) $\in \mathbb{R}^+$
 - 3. Only elements in (1) and (2) are in R⁺
- Note that: the {reflexive, transitive}-closure of a relation R is denoted by R*

Examples

- For the relation R = {(1,2), (2,2), (2,3)} on the set {1,2,3},
- R⁺ and R^{*} are
- R⁺ ={(1,2), (2,2), (2,3), (1, 3)} R + Transitive
- R* ={(1,1), (1,2), (2,2), (2,3), (1, 3), (3,3)}
 R + Transitive + Reflexive