Regular Expressions (RE)

Empty set E A RE denotes the empty set

Empty String ’) A RE denotes the set {7}

Symbol a ARE denotes the set {a}

Alternation | M + N | s e e

i If Mis a RE for the set M and N is a RE for the
Concatenation M b N setN, then M.N is a RE for the setM . N

If Mis a RE for the set M , then M* is a RE for

Kleene-* M* the setM

Regular Expressions (RE)

Alternation L(r)EL(r)
Concatenation -, L(r)-L(r) | (rd(r)
Kleene-* r L(r)* (r)*
Kleene-+ r+ L(r)* (r)+
Exponentiation rn L(r)n (r){n}

Regular Expressions (RE)

A—
Example

| For the alphabet S={0, 1} |

| 0+1is a RE denote the set {0} U {1} |
| 0* is a RE denote the set {0}*={?,0,00,...} |

0.1* is a RE denote the set
{01.{2,1,11,...}={0, 01, 011, ...}

Regular Expressions (RE)

A——
Notes

ForaRE T, ri=r.r....ri-times

Operations precedence: *>.> +

So we can omit many parentheses, for example: the
RE ((0(1%))+0) can be written as 01*+0

We me abbreviate rr* to r*

The corresponding set (language) denoted by a RE r
will be expressed as L(r)

Nondeterministic Finite Automata
[QUSY)

y 4

Definition

A nondeterministic finite automaton (NFA) M is
defined by a 5-tuple M=(Q,S,d,qy,F), with

Q: finite set of states

S: finite input alphabet

d: transition function d:Q” S® P(Q)
gol Q: start state

Fi Q: set of final states

A

Definition

A string w is accepted by an NFA M if and
only if there exists a path starting at q,
which is labeled by w and ends in a final
state.

The language accepted by an NFA M is the set of all
strings which are accepted by M and is denoted by L (M ).

L(M)={w: d(@Ow) C F? F}




Definition

A nondeterministic finite automaton
has transition rules like:

. @
/
@®—¢@

Nondeterministic transition

Nondeterministic Finite Automata
[QUSAY)

Nondeterministic Finite Automata
[QUAY)

We can write the NFA in two ways

1. State digraph
a b

|
b b

2. Table

d a b

q0 {a0} {q0,q1}
ql f {02}
q2 f f

Nondeterministic Finite Automata
[QUSAY)

Nondeterminism ~ Parallelism

For any string w, the nondeterministic automaton can be
in a subset | Q of several possible states.

If the final set contains a final state,
then the automaton accepts the string.

“The automaton processes the input in a parallel fashion;

its computational path is no longer a line, but more
like a tree”.

Nondeterministic Finite Automata
[QUSY)

Nondeterministic Finite Automata
[QUSY)
A—

Quiz
Check the input abb?

a b
" (@)

) g2 is a final state hence
Input: a mm the input abb is accepted

b

Example 1
| - = - -
(s (aEb)bD
@ ®
Q={q0,q1,q2

S={ab}
(o

Example 2

Nondeterministic Finite Automata
[QUSY)

Write an NFA for the language, over S={a,b}
= * -
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Example 3

Write an NFA for the language, over S={a,b}
L=(a U b)* (aaUbb) (a U b)*

Nondeterministic Finite Automata
[QUSAY)

Nondeterministic Finite Automata
[QUSAY)

y
Example 4

a

A

Y
b

|What language is accepted by this NFA? |

y 4
Example 5

For example, consider the following NFA
which reads the input 11000.
0

Nondeterministic Finite Automata
[QUAY)

1[1]ofofo] |

+

Accepted!

NFA = DFA
Proof

Let L be the language recognized by the NFA N =
f)Q,S,d,qO,F). Define the DFA M = (Q’,S,d",q'y,F’)
y

LQ=PQ )
2. d(R,a)={ql Q|ql d(r,a)foranrl R}

3. gp= {QQ}
4. F' ={RI Q'| R contains a ‘final state’ of N}

It is easy to see that the previously
described deterministic finite automaton M
accepts the same language as N.

NFA = DFA

Theorem: For every language L that is accepted by a
nondeterministic finite automaton, there is a
(deterministic) finite automaton that accepts L as well.

FA and NFA are equivalent computational models.

Proof idea: When keeping track of a nondeterministic
computation of an NFA N we use many ‘fingers’ to point
at the subset | Q of states of N that can be reached on a
given input string.

We can simulate this computation with a deterministic
automaton M with state space P(Q).

NFA = DFA
’H into a DFA?

0,1

Given NFA Constructed DFA
Q={dp, a;} ==» Q=P(Q)={F, {qo}, {a}. {00, a:}}
do = g, ={a}
F={a,} = F={{o,}. {9, .}

A
Example 1

Convert the NFA:

For d’ see the next slide




Example 1 1
1
Convert the NFA: H into a DFA?

0,1
Constructed DFA
Given NFA 7 5 1

d@0=0a) = d(adO=owat [F__|[F|F
dol=a) = dabd=a) [ e [

dROF = d(ap0=F {0 _F__{{a)
A, =00} = ({0, )=(0002

{90,093 1 {909} | {90}

d'({00,0,$,0)=0d(0,0) U d(a,,0) ={do.as}

d'({d0.0:}1)=d(d,1) U d(ay,1) ={dods}

NFA = DFA
y

Example 2

Start with the NFA:

Q1: What's the accepted language?

Q2: How many states does the subset
construction create in this case?

NFA = DFA
A

Example 2

Al: L= {xi {a,b}* | 3 bit of x from right is a}

A2: 16 = 24states.

That's a lot of states. Would be nice if only had to
construct useful states, 1.e. those that can be
reached from start state.

PR \FA > DFA

Example 2
Start with {1}:

O

PR \FA > DFA

Example 2

Branch out. Notice that d(1,a) = {1,2}.

PR \FA > DFA

Example 2

Branch out. Notice that d'({1,2},a) = {1,2,3}.




PEEEEEENN A D DFA

Example 2

Branch out. Note that d'({1,2,3},a) = {1,2,3,4}

Example 2

PR \FA > DFA

Example 2

PR \FA > DFA

Example 2

PR \FA > DFA

Example 2

— NFA = DFA

Example 2




PEEEEEENN A D DFA

Example 2

Summarizing:

Therefore, we saved 50% effort by not
constructing all possible states unthinkingly.

Nondeterministic Finite Automata with empty moves

(?-NFA)

A—
Definition

A nondeterministic finite automaton with empty
moves (?-NFA) M is defined by a 5-tuple
M=(Q,S,d,qy,F), with

Q: finite set of states

S: finite input alphabet

d: transition function d:Q" (S U {?}) ® P(Q)
gol Q: start state

Fi Q: set of final states

NFA = DFA

Convert the following NFA into an equivalent DFA?

Exercise

Nondeterministic Finite Automata with empty moves

(?-NFA)
A—
Definition

A string w is accepted by a ?-NFA M if and
only if there exists a path starting at q,

which is labeled by w and ends in a final
state.

The language accepted by a ?-NFA M is the set of all
strings which are accepted by M and is denoted by L (M ).

L(M)={w: d(gow) CF? F}

Nondeterministic Finite Automata with empty moves

(?-NFA)
A—

Nondeterministic Finite Automata with empty moves

Notes

d:Q" (SE{I})® P(Q)

A | -transition causes the machine to
change its state non-deterministically,
without consuming any input.

@ @

A—
Notes

A ?-NFA has transition rules/possibilities like:

Empty string transition Nondeterministic transition




Nondeterministic Finite Automata with empty moves

Nondeterministic Finite Automata with empty moves

(?-NFA)

Nondeterminism ~ Parallelism

For any string w, the nondeterministic automaton can be
in a subset | Q of several possible states.

If the final set contains a final state,
then the automaton accepts the string.

“The automaton processes the input in a parallel fashion;
its computational path is no longer a line, but more
like a tree”.

Nondeterministic Finite Automata with empty moves

(?-NFA)

We can write the NFA in two ways

1. State digraph |

a b
@@
2. Table |
d a b 2
[d:Q" (SE{IH)® P@Q)] 9 | {90} |{a0al}| f
q1 f f {42}
92 f f f

Nondeterministic Finite Automata with empty moves

(?-NFA)

A—
Example

0,1 01

e

This automaton accepts “0110”, because there is
a possible path that leads to a final state,
namely:q, ® 9, ® ¢, ® ¢, ® q,® q,

(note thatq, ® g, ® g, ® g, ® q, is not accepting)

utomata with empty moves
FA)

Example

A ?-transition is taken without consuming any character from
the input.

What does the NFA above accepts?

aa*+bb*

(?-NFA)
A——
Example

0,1 01

e

The string 1 gets rejected: on “1” the
automaton can only reach: {q,,d,,05}.

Automata with empty moves
(?-NFA)

What are d(q,,0), d(gy,1), d(qy, ?) in each of M;, M,, M,
and in M,.?




Nondeterministic Finite Automata with empty moves
(?-NFA)

A
Answer

Ml:\‘ M2: N\ M3:

ML: d(d0,0) = d(d,1) = d(dp, ?) = A
M2: Same

M3: d(d,,0) = d(do,1) =4, d(dp, ?) ={0;,0}
M4 d(do,0)={0;,0s}, d(do,1)={0,, 0}, d(do, =AE

Nondeterministic Finite Automata with empty moves

(?-NFA)

Quiz

Which of the following strings is
accepted?

Nondeterministic Finite Automata with empty moves

(?-NFA)

Answer

is rejected. No path labeled by empty string from start state
to an accept state.
is accepted. EG the path
is accepted. EG the path
is accepted. There is only one accepted path:

Nondeterministic Finite Automata with empty moves
(?-NFA)

A
Definition

Given a ?-NFA state s, the ?-closure(s) is the
set of states that are reachable through ?-transiton
from s.
?-closure(s)={q: there is a path from s to q
labeled ?}

Given a set of ?-NFA states T, the ?-closure(T) is the
set of states that are reachable through ?-transiton
from R
any state s | T.

?-closure(T)=Ug 1 ?-closure(s)

Nondeterministic Finite Automata with empty moves
(?-NFA)

Nondeterministic Finite Automata with empty moves

Example 1:
_?Q ’ v . 2@
_.Q_.

[ 2-closure(dy) = {90.0,. 9.} |

|?—Closure(q1) ={0,, 9,} |

| ?-closure(q,) = {q,} |

A
Example 2:

| What states can be reached from state 1

without consuming a character?




Nondeterministic Finite Automata with empty moves

What states can be reached from state 1

?
without consuming a character? |

| {1,4,9,14} form the ?-closure of state 1|

Nondeterministic Finite Automata with empty moves
(?-NFA)

A
Definition: Extension of d

U *
dQ @UnNerQ —» d:Q 4 ®PQ

&J is defined as follows:
1. c?(q,?)z?—closure(q)

2. g(q,wa)=?—c|osure(T) where

T={p: pi d(r,a) and ri aj(q,w)}, al s, wl s

?-NFA = NFA

Theorem: For every language L that is accepted
by a ?-NFA, there is an NFA that accepts L as well.

?-NFA and NFA are equivalent computational
models.

Nondeterministic Finite Automata with empty moves

| What are all the state closures in this NFA?l ?

closure(1) = {1,4,9,14}
closure(5) = {5,6,8}
closure(8) = {6,8}
closure(7) = {7,8}

closure(10) = {10,11,13}
closure(13) = {11,13}
closure(12) = {12,13}

Nondeterministic Finite Automata with empty moves

(?-NFA)

Example: Extension of d

9-6-8

[d (g 01) = {a;, a3}

?-NFA = NFA
Proof:

Let M=(Q,S,d,q,,F) be a ?-NFA, an equivalent
NFA, M'=(Q,S,d’,qq,F’) can be constructed as
follows:

FU{go} If ?-closure(q,) G F? F
L Fr={f @

Otherwise

2. d'(q,a) :cf(q,a)




?-NFA = NFA
Example:
- 0-60
For the ?-NFA: - —> Construct the equivalent NFA?
A

Answer:

Given ?-NFA Constructed NFA

Q={do01.0,} and S={0,1} —>

Q={g,9,,9; and S={0,1}
?-closure(d))={do G102t C F2F —

F' ={doa}
d"(Cp.0) =d(G,0) = {0lol1,0} 0

d'(Cp.d) =d(Cpd) = a0} _.Q%

d'(Cp,2) =d (00.2) = {a} 1.2

?-NFA = NFA
Example:
- 000
For the ?-NFA: - —> Construct the equivalent NFA?
A

Answer:

Given ?-NFA Constructed NFA

Q={qo9,,0; and S={0,1} = Q={dpa.a; and S={0,1}
?-closure(dp)={dpd1d2t G FPF —p

F' ={doa}
d'(q,0)=d(a, 0 = F

- AN
d'(¢,)=d(g,,) =F _’QQ L2,

d'(6.2) =d (,.2) = {a .1,2

?-NFA 2 NFA

Example:

0 1 2
?
For the ?-NFA: —;@—»@%@ Construct the equivalent NFA?
A

Answer:

Given ?-NFA Constructed NFA

Q={do0.0,} and S={0,1} —>

Q={g09,,9; and S={0,1}
?-closure(d))={do G142t C F2F —

F' ={doa}
d'(q,0) =d(q.0) = F

d'(q.) =d(a.) ={a,a
d'(e,2) =d(q,.2) ={az} 1.2

RE = ?-NFA

Theorem: Let r be RE, there exist a
?-NFA that accepts L(r).

?-NFA 2 NFA

Example:

0 , 1 )
For the ?-NFA: : —_

Construct the equivalent NFA?

Answer:

0L 1\ 24N

0,1 1,2
e o ¢
~Q,1,2

RE = ?-NFA

A
Proof:

The proof works bY induction, using the recursive
definition of regular expressions.

RE ?-NFA

F

f«

10



RS0

L7

S L(M)*

ri+r2= L(M1) U L(M2)

rLr2 = L(M1) L(M2)

RE = 7-NFA

Example 1

For the regular expression r=if we build the ?-NFA as follows:l

The ?-NFA for a symbol i is: &@i_@
The ?-NFA for a symbol f is: &@f_@

The ?-NFA for the regular expression fif is:

%M

IF

RE = ?-NFA
Example 2

For the regular expression r=0+1* build the equivalent ?-NFA ? |

The ?-NFA for a symbol 0 is: —QO—Q
The ?-NFA for a symbol 1 is: —Ol—©

The ?-NFA for a symbol 1* is:

The ?-NFA for the regular expression 0+1* is:

RE = ?-NFA
Example 2

For the regular expression r=0+1* build the equivalent ?-NFA ?

The ?-NFA for the regular expression 0+1* is:
? i

RE = ?-NFA
y
Example 3
Q: Find an NFA for the regular expression

(OE 1)*(0000000E 111(0E 1)*111)(0E 1)*

RE = ?-NFA
Example 3

(OE 1)*(0000000E 111(0E 1)*111)(0E 1)*

Note that: in this example e=7?

11



RE = ?-NFA

Exercise

Construct a ?-NFA for the regular expression:
010*1+(1+0)*+101*




