







Nondeterministic Finite Automata (NFA)

Definition

A nondeterministic finite automaton (NFA) M is defined by a 5-tuple  $M=(Q,S,d,q_0,F)$ , with  $\bigcirc Q$ : finite set of states  $\bigcirc S$ : finite input alphabet  $\bigcirc d$ : transition function  $d:Q\times S \rightarrow P(Q)$   $\bigcirc q_0 \in Q$ : start state  $\bigcirc F \subseteq Q$ : set of final states

Nondeterministic Finite Automata (NFA)

Definition

A string w is accepted by an NFA M if and only if  $there\ exists$  a path starting at  $q_0$  which is labeled by w and ends in a final state.

The  $language\ accepted\ by\ an\ NFA\ M$  is the set of all strings which are accepted by M and is denoted by  $L\ (M\ )$ .  $L\ (M)=\{w:\ d(q_0,w)\cap F?\ F\}$ 





















































Nondeterministic Finite Automata with empty moves (?-NFA)

Definition

A nondeterministic finite automaton with empty moves (?-NFA) M is defined by a 5-tuple  $M=(Q,S,d,q_0,F)$ , with

Q: finite set of states
S: finite input alphabet
d: transition function  $d:Q\times(S\ U\ \{?\})\to P(Q)$   $q_0\in Q$ : start state  $F\subseteq Q$ : set of final states





Nondeterministic Finite Automata with empty moves (?-NFA)

Nondeterminism → Parallelism

For any string w, the nondeterministic automaton can be in a subset ⊆ Q of several possible states.

If the final set contains a final state, then the automaton accepts the string.

"The automaton processes the input in a parallel fashion; its computational path is no longer a line, but more like a tree".































## ?-NFA → NFA \*Theorem: For every language L that is accepted by a ?-NFA, there is an NFA that accepts L as well. \*\*?-NFA and NFA are equivalent computational models.



























