The Queue Computer Project

Instruction Set Architecture

© Abderazek Ben Abdallah Graduate School of Information Systems The University of Electro-communications, Tokyo January 2003

COVOP

covop

15	7				0
covop 000001	00	addr1			
Mnemonic	Action		QH	QT	Binary
covop addr1	Convey an address		0	0	00000100

Instruction format

Description:

Convey an 8-bit address to a load or store instruction to extend the addressing bits from 8 to 16 bits.

Here, QH = 0 & QT = 0

Load & Store

Instruction Format

Load byte

15		9 7				0
ldb 010000	ldb d addr0 010000		r0			
Format		Action			QT	Binary
ldb addr0(d)	$qtw \leftarrow m((d)+addr1.addr0)$		0	1	010000	

Description:

Load byte to the operand queue pointed by the QT from memory address ((d)+ addr0) or from ((d) + addr1.addr1) if the load instruction follows a convey instruction. Here, QH = 0 & QT = 1

Load byte unsigned

ldbu

ldb

15		9	7			0
ldb 010001		d	addr	addr0		
Format		Action			QT	Binary
ldbu addr0(d)	$qtw \leftarrow m((d)+addr1.addr0)$			0	1	010001

Load byte unsigned to the operand queue pointed by the QT from memory address ((d)+ addr0) or from ((d) + addr1.addr1) if the load instruction follows a convey instruction.

Here, QH = 0 & QT = 1

Load string

lds

Description:

Load string to the operand queue pointed by the QT from memory address ((d)+ addr0) or from ((d) + addr1.addr1) if the load instruction follows a convey instruction. Here, QH = 0 & QT = 1

Load string unsigned

ldsu

Load string unsigned to the operand queue pointed by the QT from memory address ((d)+ addr0) or from ((d) + addr1.addr1) if the load instruction follows a convey instruction.

Here, QH = 0 & QT = 1

Load word

ldw

Description:

Load word to the operand queue pointed by the QT from memory address ((d)+ addr0) or from ((d) + addr1.addr1) if the load instruction follows a convey instruction. Here, QH = 0 & QT = 1

Store byte

 \mathbf{stb}

15 9 7				0		
stb 010110		d	ad	addr0		
Format	Action			QH	QT	Binary
stb addr(d)	qhw→m	$qhw \rightarrow m((d)+addr1.addr0)$		1	0	010110

Description:

Store byte to the operand queue pointed by the memory address ((d)+ addr0) or ((d) + addr0.addr1) from QH if the store instruction follows a convey instruction. So, here QH = 1 & QT = 0

Store byte unsigned

15

Format

stbu addr(d)

stbu

001110

Deer	· · · ·	- * * ~	
Desc	:r10	0 L L C	n۰

Store byte unsigned to the operand queue pointed by the memory address ((d)+ addr0) or ((d) + addr0.addr1) from QH if the store instruction follows a convey instruction.

9

Action

 $qhw \rightarrow m((d)+addr1.addr0)$

d

 $\overline{7}$

addr0

QH

1

QT

0

So, here QH = 1 & QT = 0

15

Store string

sts

010111

Description:

9

addr0

 $\overline{7}$

Format	Action	QH	QT	Binary
	1 //1\. 11 4 11 640\	-	~	010111

d

stbu

0

Binary

001110

0

sts

Store string unsigned

Description:

Store string unsigned to the operand queue pointed by the memory address ((d)+ addr0) or ((d) + addr0.addr1) from QH if the store instruction follows a convey instruction.

So, here QH = 1 & QT = 0

Store word

stw

15		9	7			0
stw 011000		d	add	r0		
Format		Action			QT	Binary
stw addr(d)	$qhw \rightarrow m((d)+addr1.addr0*4)$			1	0	011000

Description:

Store word to the operand queue pointed by the memory address ((d)+ addr0) or ((d) + addr0.addr1) from QH if the store instruction follows a convey instruction. So, here QH = 1 & QT = 0

Immediate

Instruction Format:

8 8

Load immediate value

ldil

	15		7			0
ldil 00100010			value			
	Format		Action			Binary
	ldil value	qtw(0-	qtw(0-7bit)←value)			00100010

Description:

Load immediate value to the operand queue pointed by the QT from memory address ((d)+ addr0) or from ((d) + addr0.addr1) if the load instruction follows a convey instruction.

Here, QH = 0 & QT = 1

Load immediate address

lda

15	7	0
lda 001000	011	value

Format		Action			PQPcfo	PQPcf+	QH	QT	Binary
ldia value	qtw← instructio	address on+value	of	this	Yes	Yes	0	1	00100011

Load immediate address to the operand queue pointed by the QT from memory address ((d)+ addr0) or from ((d) + addr0.addr1) if the load instruction follows a convey instruction.

Here, QH = 0 & QT = 1

Control

Instruction Format

Interrupt, Barrier

Queue Control

8	8

Branch target

15					
b 0000010	1	t			
Format		Action			Binary
b t	fc←(pc	$fc \leftarrow (pc)+2(addr1.t)$			00000101

This instruction to the operand queue pointed by the program counter ((pc)+ t) or ((pc) + addr1.t) to FC if the branch instruction follows a convey instruction. Here QH = 0 & QT = 0

Branch equal

beq t

15		7			0		
b 0000	eq 0110	t					
Format		Action	Qİ	Ŧ	QT	Binary	
beq t	$fc \leftarrow (pc)+2(addr1.t), if cc=eq$		0		0	00000110	

Description:

This instruction to the operand queue pointed by the program counter ((pc)+ t) or ((pc) + addr1.t) to FC if the branch instruction follows a convey instruction. Here QH = 0 & QT = 0, '**CC**' means conditional code.

Branch not equal

bne

15		7		0			
bne 00000111		t					
Format		Action	QH	QT	Binary		
bne t	fc←(pc)+2(addr1.t),if cc=ne	0	0	00000111		

Branch not equal to target the operand queue pointed by the program counter ((pc)+t) or ((pc) + addr1.t) to FC if the branch instruction follows a convey instruction.

Here QH = 0 & QT = 0 (**CC**) means conditional code

Branch less than

blt t

15		7		0		
bl 0000	lt 1000	t	t			
Format		Action			Binary	
blt t	fc←(pc)+2	(addr1.t),if cc=lt	0	0	00001000	

Description:

This instruction to target the operand queue pointed by the program counter ((pc)+t) or ((pc) + addr1.t) to FC if the branch instruction follows a convey instruction.

Here QH = 0 & QT = 0 'CC' means conditional code

Branch less than or equal

ble t

15		7	7 0		
ble 0000100	1	t	QH QT Binary		
Format		Action		QT	Binary
ble t	fc←(pc)+2(addr1.t),if cc=lte	0	0	00001001

This instruction to target the operand queue pointed by the program counter ((pc)+t) or ((pc) + addr1.t) to FC if the branch instruction follows a convey instruction.

Here QH = 0 & QT = 0 'CC' means conditional code

Branch greater than

bgt t

15		7			0
b a 0000	gt 1010	t			
Format		Action			Binary
bgt t	fc←(pc)+2(addr1.t),if cc=gt	0	0	00001010

Description:

This instruction to target the operand queue pointed by the program counter ((pc)+t) or ((pc) + addr1.t) to FC if the branch instruction follows a convey instruction.

Here QH = 0 & QT = 0 (**CC**) means conditional code

Branch greater than or equal

bge t

15		7	0		
bge 0000101	1	t	0 QH QT Binar 0 0 0000101		
Format		Action			Binary
bge t	fc←(pc)+2(addr1.t),if cc=gt	0	0	00001011

This instruction to target the operand queue pointed by the program counter ((pc)+t) or ((pc) + addr1.t) to FC if the branch instruction follows a convey instruction.

Here QH = 0 & QT = 0 'CC' means conditional code

Stop QH move

stpqh n

	15		7			0
ſ	stpqh 01011100		n			
Ī	Format	1	Action	QH	QT	Binary
Ī	stpqh n	Stop QH	moving	9	0	01011100

Description:

Stop QH move to target the operand queue pointed that the QH stop to move from $n^{\rm th}$ position.

Here QH = 9 & QT = 0

Stop LQH move

stplqh n

15		7		0		
stplqh 0000010	1	n				
Format		Action		QT	Binary	
stplqh n	Stop L	Stop LQH moving			00000101	

Stop LQH move to target the operand queue pointed that the LQH stop to move from n^{th} position.

Here QH = 0 & QT = 0

Fixed QH automatically

autqh n

15		7			0		
autqh 01011101		n					
Format		Action		$I \mid Q'$	r	Binary	
autqh n	Fixed QH automatically		0	0		01011101	

Description:

This instruction to target the operand queue pointed that the QH will be fixed in the current $n^{\rm th}$ position.

Here QH = 9 & QT = 0

Fixed LQH automatically

autlqh n

15		7		0	
autlqh 0000011	0	n			
Format		Action	QH	QT	Binary
autlqh n	Fixed I	Fixed LQH automatically			00000110

This instruction to target the operand queue pointed that the LQH will be fixed in the current n^{th} position.

Here QH = 9 & QT = 0

Jump

jump t(a)

15		9		7			0
jump 00001100		a		t			
Format		Action			QH	QT	Binary
jump t(a)	fc←(a)-	$fc \leftarrow (a) + 2(addr1.t)$				0	00001100

Description:

This instruction to target the operand queue pointed by the memory address ((a)+ t) or ((a) + addr1.t) to FC if the jump instruction follows a convey instruction. Here QH = 0 & QT = 0 (a) means the content of address register 'a'

Call

call t(a)

15		9	7	0			
ca	l 101	а	t				
Format	Ŀ.		QH	QT	Bi	inary	
call t(a)	fc←(a)+2(addr1.t)		0	0	000	01101

This instruction to target the operand queue pointed by the memory address ((a)+ t) or ((a) + addr1.t) to FC if the call instruction follows a convey instruction. Here QH = 0 & QT = 0 (a)' means the content of address register 'a'

Return from call

Description:

This instruction to target the operand queue pointed by the current return address to FC.

Here QH = 0 & QT = 0

Return from interrupt

rfi

rfc

15	

01010	001							
Format	F	Action	PQPcfo		PQPcf+	QH	QT	Binary
rfi	fc←(ira),\$	Set	Yes	Yes		0	0	01010001

7

0

Description:

This instruction to target the operand queue pointed by the interrupt return address (ira) to FC .

Here QH = 0 & QT = 0

rfi

No operation

	15		7			0		
nop 000000)00							
Format	4	Action	PQPcfo		PQPcf+	QH	QT	Binary
nop			Yes	Yes		0	0	00000000

Description:

nop is a dummy instruction that has no effect. It can be useful as an explicit 'do nothing' instruction.

Halt (stop)

Stop

halt

nop

15	7	,		0	
hlt 0000001)				
Format	Action		QH	\overline{QT}	Binary
hlt	Stop fetch,decode		0	0	00000010

This barrier instruction to target the operand queue pointed to stop fetching, to stop decoding.

Here QH = 0 & QT = 0

Barrier

bar

15	7			0
bar 011000	000			
Format	Action	QH	QT	Binary
bar		0	0	01100000

Description:

This barrier instruction to target the operand queue pointed that 'wait' until all the previous instructions are executed.

Here QH = 0 & QT = 0

Serial on/off

 sonf

sonf 0110000	1	on/off			
Format	Action		QH	QT	Binary
sonf	Serial On/Off Begin & end serial execution		0	0	01100001

 $\overline{7}$

0

Description:

This barrier instruction to target the operand queue pointed to execute serially on for serial on and multiple out of order for serial off.

Here QH = 0 & QT = 0

Switch (Program mode selctor)

15

type mode

15		7	0
test	t 001	mode	
Format	F	Action	Binary
type mode	type $0 \rightarrow$	Queue	00000001
	tvne $1 \rightarrow$	Stack	

Description:

Switch the execution mode by following the "mode" bit (0 indicates the Queue program and 1 indicates the Stack program).

ALU for Single Word

opcode offset (n)

8 8

Add

add n

15		7		0	
add 0011000	0	n			
Format	Action		QH	QT	Binary
add n	qtw0←qhw0+(qh+n)w Consumed instr. if c=0		1	1	00110000

Add two operands to the operand queue pointed by the QT from (qhw0+(qh+n)w). Here QH = 1 & QT = 1

Add Unsigned

addu n

15		7			0
ad 0011	du 0001	n			
Format	A	ction	QĤ	QT	Binary
addu n	qtw0←qhw	v0+(qh+n)w	1	1	00110001

Description:

Add two unsigned operands to the operand queue pointed by the QT from (qhw0+(qh+n)w).

Here QH = 1 & QT = 1

Sub

sub n

15		7		0	
sub 0011001	0	n			
Format	Action		QH	QT	Binary
sub n	qtw0←	qhw0-(qh+n)w	1	1	00110010

Subtract two operands to the operand queue pointed by the QT from (qhw0-(qh+n)w). Here QH = 1 & QT = 1

Sub unsigned

subu n

15		7			0
su 0011	bu 0011	n			
Format	A	ction	QH	QT	Binary
subu n	qtw0←qhv	v0-(qh+n)w	1	1	00110011

Description:

Subtract two unsigned operands to the operand queue pointed by the QT from (qhw0-(qh+n)w).

Here QH = 1 & QT = 1

Sub by order

subo n

15		7		0	
subo 0011010	0	n			
Format	Action		QH	QT	Binary
subo n	qtw0←	(qh+n)w-qhw0	1	1	00110100

This instruction operands to the operand queue pointed by the QT subtract ((qh+n)-qhw0)w.

Here QH = 1 & QT = 1

Sub unsigned by order

subuo n

15	7			0
sub u 00110	10 n 101			
Format	Action	QH	QT	Binary
subuo n	qtw0←(qh+n)w - qhw0	1	1	00110101

Description:

This instruction operands to the operand queue pointed by the QT subtract from ((qh+n)-qhw0)w.

Here QH = 1 & QT = 1

Multiply

mul n

15

7

0

Format	A	ction	QH	QT	Binary
mul n	qtw0←qhw	1	1	00111011	
m	ul	n			
0011	1011				
.					

Multiply two operands to the operand queue pointed by the QT from (qhw0*(qh+n)w).

Multiply unsigned

mulu n

15		7			0
mu 0011	ılu 1100	n			
Format	A	ction	QH	QT	Binary
mulu n	qtw0←qhw	$v_0+(qh+n)_W$	1	1	00111100

Description:

Multiply two unsigned operands to the operand queue pointed by the QT from (qhw0*(qh+n)w.

Here QH = 1 & QT = 1

Divide

div n

15		7		0	
div 0011110	1	n			
Format	Action		QH	QT	Binary
div n	qtw0←	qhw0/(qh+n)w	1	1	00111101

Divide two operands to the operand queue pointed by the QT from (qhw0/(qh+n)w). Here QH = 1 & QT = 1

Divide unsigned

divu n

15		7			0
di 0011	vu 1110	n			
Format	A	ction	QH	QT	Binary
divu n	qtw0←qhv	v0/(qh+n)w	1	1	00111110

Description:

Divide two unsigned operands to the operand queue pointed by the QT from (qhw0/(qh+n)w).

Here QH = 1 & QT = 1

Divide by order

15		7		0	
divo 0011111	1	n			
Format	Action		QH	QT	Binary
divo n	qtw0←	(qh+n)w / qhw0	1	1	00111111

This instruction to the operand queue pointed by the QT that divide qhw1 by qhw0 for consumed order instruction or ((qh+n)w/qhw0).

Here QH = 1 & QT = 1

Divide unsigned by order

divuo n

15		7			0
div 0100	'uo 0000	n			
Format	A	lction	QH	QT	Binary
divuo n	qtw0←(qh	+n)w/qhw0	1	1	01000000

Description:

This instruction to the operand queue pointed by the QT that divide (qh+n)w by qhw0.

Here QH = 1 & QT = 1

Modular

 $mod \ n$

15		7		0	
mod 0100000	1	n			
Format		Action	QH	QT	Binary
mod n	rem(qh	w0/(qh+n)w)	1	1	01000001

This instruction operands to the operand queue pointed that reminder of two operands to the QT from (qhw0/(qh+n)w).

Here QH = 1 & QT = 1

Modular by order

modo n

15		7			0
mod 0100	lo n 0011	n			
Format	A	ction	QH		Binary
modo n	rem((qh+n)w/qhw0)	1	1	01000011

Description:

This instruction operands to the operand queue pointed that reminder of two operands to the QT ((qh+n)w/qhw0).

Here QH = 1 & QT = 1

Modular unsigned

modu n

15		7		0	
modu 0100001	0	n			
Format	Action		QH	QT	Binary
modu p,n	rem(qh	w0/(qh+n)w)	1	1	01000010

This instruction operands to the operand queue pointed that reminder of two unsigned operands to the QT from (qhw0/(qh+n)w).

Here QH = 1 & QT = 1

Modular unsigned by order

moduo n

15		7			0
mod 01000	luo)010	n			
Format	Æ	Action	QH	QT	Binary
moduo n	rem((qh+r	n)w/qhw0)	1	1	01000010
				•	•

Description:

This instruction operands to the operand queue pointed that reminder of two unsigned operands to the QT from ((qh+n)w/qhw0).

Here QH = 1 & QT = 1

And

and n

15		7		0	
and 0011011	1	n			
Format	Action		QE	I QT	Binary
and n	$qtw0 \leftarrow qhw0 \text{ and } (qh+n)w$		2	1	00110111

And two operands to the operand queue pointed by the QT from (qhw0 and (qh+n)w. Here QH = 2 & QT = 1

Or							or n
	15		7		0		
	or 0011100	0	n				
	Format		Action	QH		Binary	
	or n	qtw0←	qhw0 or (qh+n)w	1	1	00111000]

Description:

Or two operands to the operand queue pointed by the QT from (qhw0 or (qh+n)w . Here QH = 1 & QT = 1

Negative

15		7			0	
neg 00110110		n				
Format		Action		QH	QT	Binary
neg n	qtw0←-(qh+n)w			1	1	00110110

This instruction to the operand queue pointed by the QT from (qhw0 \leftarrow -(qh+n)w). Here QH = 1 & QT = 1

Xor

xor n

15		7		0	
xor 0011100	1	n			
Format		Action		QT	Binary
xor n	qtw0←qhw0 xor (qh+n)w		1	1	00111001

Description:

Xor two operands to the operand queue pointed by the QT from (qhw0 xor (qh+n)w). Here QH = 1 & QT = 1

not \mathbf{n}

15		7			0	
not 00111010		n				
Format	Action			QH	QT	Binary
not n	$qtw0 \leftarrow not((qh+n)_W)$			1	1	00111010

This instruction to the operand queue pointed by the QT from $(qhw0 \leftarrow not((qh+n)w))$. Here QH = 1 & QT = 1

Shift and rotate Instruction

Shift Instruction Format:

Rotate Instruction Format:

Right Shift

sru s,n

15	7	3			0	
sru 0100101	s		n			
Format		Action		QH	QT	Binary
sru p,s,n	qtw0← shift(q	-logical h+n)w	right	1	1	01001011

This instruction to the operand queue pointed by the QT that logically right shift $(qhw0\leftarrow (qh+n)w.$

Here QH = 1 & QT = 1

Left Shift

slu s,n

15		7		3		0
slu 01001100		s	n			
Format		Action		QH	QT	Binary
slu s,n	qtw0←lo	gical	right	1	1	01001100

Description:

This instruction to the operand queue pointed by the QT that logically left shift from $(qhw0 \leftarrow (qh+n)w.$

Here QH = 1 & QT = 1

Right Shift (Arithmetically)

sr n

15		7				0
sr 01001101		n				
Format	Action			QH	QT	Binary
sr n	qtw0←Arithmetic shift(qh+n)w		right	1	1	01001101

This instruction to the operand queue pointed by the QT that arithmetically from $(qhw0\leftarrow(qh+n)w.$

Here QH = 1 & QT = 1

Rotate left

rol n

15		7		0	
rol 0100111	1	n			
Format	Action		QH	QT	Binary
rot n	Rotate	left	1	1	01001111

Description:

This instruction to the operand queue pointed by the QT that rotates left. Here QH = 1 & QT = 1

Rotate Right

ror n

15		7		0	
ror 0100111	0	n			
Format		Action		QT	Binary
ror p,s,n	Rotate	right	1	1	01001110

This instruction to the operand queue pointed by the QT that rotates right. Here QH = 1 & QT = 1

Duplicate

dup n

1	5	7			0	
dup 00100111		n				
Format		Action		QH	QT	Binary
dup n	qtv	w0,,,,qtw(2c-1)←q(d	qh+n)	1	1	00100111

Description:

This instruction to the operand queue pointed by the QT that rotate & duplicate from $(qhw0,,,,qtw(2c-1) \leftarrow q(qh+n))$.

Here QH = 1 & QT = 1

Move

mov n

15

			-				
mov		n					
00101000							
Format		Action		QH	QT	Binary	
dup n	qtv	w0,,,,qtw(2c-1)←q(d	qh+n)	1	1	00101000	

 $\overline{7}$

0

Description:

This instruction to the operand queue pointed by the QT that move from ((qh+n)w) for produced order instruction.

Here QH = 1 & QT = 1

ALU for Double Word

opcode	offset (n)
8	8

Add double

addd n

15		7		0	
addd n 1110000	0	n			
Format		Action	QH	QT	Binary
addd n	qtd0←	qhd0+(qh+n)d	2	2	11100000

Add two double operands to the operand queue pointed by the QT from (qhd0+(qh+n)d).

Here QH = 2 & QT = 2

Add double Unsigned

adddu n

15		7		0	
adddu 1110000	1	n			
Format	Action		QH	QT	Binary
adddu n	qtd0←qhd0+(qh+n)d		2	2	11100001

Description:

Add two double unsigned operands to the operand queue pointed by the QT from (qhd0+(qh+n)d).

Here QH = 2 & QT = 2

Sub double

subd n

15		7		0	
subd		n			
11100010)				
Format		Action	QH	QT	Binary
subd n	qtd0←	qhd0-(qh+n)d	2	2	11100010

Subtract two double operands to the operand queue pointed by the QT from (qhd0-(qh+n)d).

Here QH = 2 & QT = 2

Sub double unsigned

subdu n

15		7			
0	n				
	Action		QH	QT	Binary
qtd0⊷	qtd0←qhd0-(qh+n)d		2	2	11100000
	0 qtd0←	$\begin{array}{c c} & & & \\ & & & \\ \hline 0 & & & \\ 0 & & & \\ \hline 0 & & & \\ 0 & & & \\ \hline 0 & & & \\ 0 & & & \\ \hline 0 & & & \\ 0 & & & \\ 0 & & & \\ 0 & & \\ 0 & & & \\ 0 & & & \\ 0 & & \\$	$\begin{array}{c c} & & & \\ & & & \\ \hline 0 & & & \\ 0 & & & \\ \hline 0 & & & \\ 0 & & & \\ \hline 0 & & & \\ 0 & & & \\ \hline 0 & & & \\ 0 & & & \\ 0 & & & \\ 0 &$	$\begin{array}{c c} & & & & \\ & & & & \\ \hline 0 & & & & \\ \hline 0 & & & & \\ \hline Action & & QH \\ \hline qtd0 \leftarrow qhd0 \cdot (qh+n)d & & 2 \\ \hline \end{array}$	$\begin{array}{c c} & 7 & 0 \\ & n \\ \hline 0 & & \\ \hline \\ \hline 0 & & \\ 0 & & \\ \hline 0 & & \\ \hline 0 & & \\ 0 & & \\ \hline 0 & & \\ 0 & & \\ \hline 0 & & \\ 0 & & \\ \hline 0 & & \\ 0 & & \\ \hline 0 & & \\ 0 & & \\ \hline 0 & & \\ 0 & & \\ \hline 0 & & \\$

Description:

Subtract two unsigned operands to the operand queue pointed by the QT (qhd0-(qh+n)d).

Here QH = 2 & QT = 2

Sub double by order

subdo n

15		7			0	
subdo 1110010	0	n				
Format		Action		QH	QT	Binary
subdo n	qtd0←	(qh+n)d - qhd0		2	2	11100100

This instruction operands to the operand queue pointed by the QT subtract from (qh+n)d- qhd0).

Here QH = 2 & QT = 2

Sub unsigned double by order

subduo n

15		7 0				
subduo 1110010	1	n				
Format	Action			QH	QT	Binary
subduo n	qtd0←(qh+n)d-qhd0			2	2	11100101

Description:

This instruction operands to the operand queue pointed by the QT subtract from ((qh+n)d- qhd0).

Here QH = 2 & QT = 2

Multiply double

muld n

15		7		0	
muld		n			
11100110)				
Format		Action	QH	QT	Binary
muld n	qtd0←	qhd0+(qh+n)d	2	2	11100110

Multiply two operands to the operand queue pointed by the QT from (qhd0*(qh+n)d) for produced order instruction.

Here QH = 2 & QT = 2

Multiply unsigned double

muldu n

15		7		0		
muldu 11100111	1	n				
Format	Action			QH	QT	Binary
muldu n	qtd0←qhd0+(qh+n)d			2	2	11100111

Description:

Multiply two unsigned double operands to the operand queue pointed by the QT from (qhd0*(qh+n)d).

Here QH = 2 & QT = 2

Divide double

divd n

15		7		0	
divd p,n 1110100	L O				
Format		Action	QH	QT	Binary
divd n	qtd0←	qhd0/(qh+n)d	2	2	11101000

Divide two operands to the operand queue pointed by the QT from (qhd0/(qh+n)d).

Here QH = 2 & QT = 2

Divide double unsigned

divdu n

15	15				0	
divu 1110000	0	n				
Format		Action		QH	QT	Binary
divdu n	qtd0←	qhd0/(qh+n)d		2	2	11100000

Description:

Divide two unsigned double operands to the operand queue pointed by the QT from (qhd0/qhd1) for consumed order instruction or (qhd0/(qh+n)d) for produced order instruction.

Here QH = 2 & QT = 2

Divide double by order

divdo n

15		7		0	
divdo 1110101	0	n			
Format		Action	QH	QT	Binary
divdo n	qtd0←	(qh+n)d/ qhd0	2	2	11101010

This instruction to the operand queue pointed by the QT that divide (qh+n)d by qhd0.

Here QH = 2 & QT = 2

Divide unsigned double by order

divduo n

15		7		0	
divduo 1110101	1	n			
Format	Action		QH	QT	Binary
divduo n	qtd0←	(qh+n)d/qhd0	2	2	11101011

Description:

This instruction to the operand queue pointed by the QT that divide (qh+n)d by qhd0.

Here QH = 2 & QT = 2

Modular double

modd n

15		7 0				
modd 11101100	0	n				
Format		Action		QH	QT	Binary
modd n	rem(qh	d0/(qh+n)d)		2	2	11101100

This instruction operands to the operand queue pointed that reminder of two operands to the QT from (qhd0/(qh+n)d).

Here QH = 2 & QT = 2

Modular double by order

moddo n

15		7		0	
moddo 11101110)	n			
Format	Action		QH	QT	Binary
moddo n	rem((qh+n)d/qhd0)		2	2	11101110

Description:

This instruction operands to the operand queue pointed that reminder of two operands to the QT from ((qh+n)d/qhd0).

Here QH = 4 & QT = 2

Modular double unsigned

moddu n

15		7		0	
moddu 1110110	1	n			
Format		Action	QH	QT	Binary
moddu n	rem(qh	d0/(qh+n)d)	2	2	11101101

This instruction operands to the operand queue pointed that reminder of two unsigned operands to the QT from (qhd0/(qh+n)d).

Here QH = 2 & QT = 2

Modular unsigned double by order

modduo n

15	7				
modduo 11101111	1	n			
Format		Action	QH	QT	Binary
modduo n	rem((q	h+n)d/qhd0)	2	2	11101111

Description:

This instruction operands to the operand queue pointed that reminder of two unsigned operands to the QT from ((qh+n)d/ qhd0).

Here QH = 4 & QT = 2

And double

andd n

15		7			0	
andd 1111000	0	n				
Format		Action		QH	QT	Binary
andd n	qtd0←	qtd0←qhd0 and (qh+n)d		2	2	11110000

And two double operands to the operand queue pointed by the QT from (qhd0 and (qh+n)d.

Here QH = 2 & QT = 2

Or double

ord n

15		7	0			
ord 11110001	1	n				
Format	Action			QH	QT	Binary
ord n	qtd0⊷	qhd0 or (qh+n)d		2	2	11110001

Description:

Or two double operands to the operand queue pointed by the QT from (qh+n)d. Here QH = 2 & QT = 2

Negative double

negd n

15		7		0	
negd 1011000	0	n			
Format		Action	QH	QT	Binary
negd n	qtd0←	-(qh+n)d	2	2	10110000

This instruction to the operand queue pointed by the QT from $(qhd0 \leftarrow -(qh+n)d)$.

Here QH = 2 & QT = 2

Xor double

xord n

15		7		0	
xord 11110010	0	n			
Format		Action		QT	Binary
xord n	qtd0←qhd0 xor (qh+n)d		2	2	11110010

Description:

Xor two double operands to the operand queue pointed by the QT from (qhw0 xor $(qh{+}n)_{\rm W}$).

Here QH = 2 & QT = 2

Not double

notd n

15		7		0	
notd 1011000	1	n			
Format		Action	QH	QT	Binary
notd n	qtd0←	not((qh+n)d)	2	2	10110001

This instruction to the operand queue pointed by the QT from $(qhw0 \leftarrow not((qh+n)w))$. Here QH = 2 & QT = 2

Shift Instruction

Instruction Format:

8	4	4

Right Shift for double

srdu s,n

15		7	3		0
	srdu 10110010	s		n	
Format	Action		QH	QT	Binary
srdu s,n	qtd0←logical shift(qh+n)d	right	2	2	10110010

This instruction to the operand queue pointed by the QT that logically right shift from $(qhd0 \leftarrow (qh+n)d$.

Here QH = 2 & QT = 2

Right Shift (Arithmetically) for double

srd s,n

15		7	7 3			0
srd 10110100		s	n			
Format		Action		QH	QT	Binary
srd s,n	qtd0- shift	←Arithmeti (qh+n)d	ic right	2	2	10110100

Description:

This instruction to the operand queue pointed by the QT that arithmetically from $(qhd0 \leftarrow (qh+n)d)$.

Here QH = 2 & QT = 2

Rotate left for double

rold n

15		7		0	
rold 10110101		n			
Format		Action	QH	QT	Binary
rold n	Rota	te left	2	2	10110101

This instruction to the operand queue pointed by the QT that rotate left. Here QH = 2 & QT = 2

Rotate Right for double

rord n

15		7	7			
rord 10111010		n				
Format		Action		QH	QT	Binary
rord n	Rotate right		2	2	10111010	

Description:

This instruction to the operand queue pointed by the QT that rotate right. Here QH = 2 & QT = 2

Rotate & duplicate for double

dupd n

15

0

dup 01011001		n				
Format		Action		QH	QT	Binary
dupd n	qtd	$10,,qtd(2c-1) \leftarrow q(q)$	hd+n)	2	2	01011001

7

Description:

This instruction to the operand queue pointed by the QT that rotate & duplicate from $(qhd0,...,qtd(2c-1) \leftarrow q(qh+n))$.

Here QH = 2 & QT = 2