
The Queue Computer Project

Qasm
Technical Report, Ref. TR12010

ASL-Ben Abdallah Group

The University of Aizu,

Adaptive Systems Laboratory, School of Computer Science and Engineering

1 Feb. 2010

Background (1)

• What is Queue
Computation?

– The intermediate data is
written into a circular queue
register (QREG)

– A given instruction implicitly
reads data from a head of the
queue register (QH)

– The executed result is written
into a tail of the queue
register (QT).

2

QREG

QH

QT

Background (2)

• Queue computation features

– High instruction parallelism

– Small program size

– No false data dependency

3

Background (3)

• In our lab, there are two types of
Queue processors

– Queue Core (QC) model

– Dual Execution Processor (DEP) model

• Increase the these Queue processors
usage by to develop Queue
Assembler(Qasm)

4

Qasm features

• Development of Queue
Assembler(Qasm)

– User friendly

– Support two computing models
• QC and DEP model

– Support Queue compiler output
• With preprocessor

5

Assembler structure

6

Syntax analysis

Generation

Preprocessor Converting compiler output file into

Intermediate file

Parsing Intermediate file

Converting Intermediate file into

Machine language file

Compiler output

Intermediate
file

Machine
language

Qasm

Assembler development
-Preprocessor-

7

sub iws, qt, qh, qh+1

sub iws, qt, qh, qh+1

sub qh+1

sub 1

1. Read in one line

2. Divide into tokens

3. Clean not needed tokens

5. Combine tokens

Not needed

sub 1

4. Clean not need characters

Syntax analysis

Generation

Preprocessor

Compiler output

Intermediate
file

Machine
language

Assembler development
-Syntax analysis-

1. Syntax parsing Intermediate file

 and divide into tokens

 main: add 1 # hoge

2. Divided tokens into category and
substitute to structure

 main: add 1 #hoge

Label Mnemonic Operand Coment

8

Syntax analysis

Generation

Preprocessor

Compiler output

Intermediate
file

Machine
language

Assembler development
-Generation(1)-

1. Replace mnemonic code by
opcode

main: add 1 #hoge

2. Convert integer into
hexadecimal on operand

main: 0x30 1 #hoge

0x30

MD file

01

9

Syntax analysis

Generation

Preprocessor

Compiler output

Intermediate
file

Machine
language

Assembler development
-Generation(2)-

10

Syntax analysis

Generation

Preprocessor

Compiler output

Intermediate
file

Machine
language

3. Paste address into label

Assembler development
-Generation(2)-

11

Syntax analysis

Generation

Preprocessor

Compiler output

Intermediate
file

Machine
language

3. Paste address into label

Find a Label

Assembler development
-Generation(2)-

12

Syntax analysis

Generation

Preprocessor

Compiler output

Intermediate
file

Machine
language

3. Paste address into label

Search for jump address

address = 0x0c

Assembler development
-Generation(2)-

13

Syntax analysis

Generation

Preprocessor

Compiler output

Intermediate
file

Machine
language

3. Paste address into label

address = 0x0c

Change the label to address

Design result(1)

14

Syntax analysis

Generation

Preprocessor

Qasm

•qasm.c , qasm.h, target.h

•preprocessor.c , preprocessor.pl

•parser.y, scanner.l

•pqp_codegen.c

•QC.h DEP.h

•conversion.c

•symtab.c , backpatch.c

•codegen.c

MD file

Design result(2)

15

File Number of lines

qasm.c 400

qasm.h 148

target.h 37

preprocessor.c 62

preprocessor.pl 99

parser.y 226

scanner.l 348

File Number of lines

pqp_codegen.c 579

QC.h 420

DEP.h 205

conversion.c 86

symtab.c 332

backpatch.c 105

codegen.c 171

Total number of lines: 3218

Evaluation results(1)

• Qasm executes

– Reading and
writing file
assignment

– Select using
compiler
output or
handmade
assembly

– Decide file
type of input
and output

– With user
interface

16

Evaluation results(2)

17

Assemble

Queue compiler generated code for (a*a)/{(b-a)-a}

Intermediate file Machine language

