

 1

The University of Aizu

BANSMOM 2010

Technical Report

Yumiko Kimezawa

2011/02/11

Adapted Systems Laboratory

Ben Abdalla Group

 BANSMOM 2010

2

Contents

1 Introduction .. 4

1.1 BANSMOM .. 4

1.2 Our project goal .. 4

2 Related Works .. 4

2.1 The output of an ECG records ... 4

2.2 12-lead ECG ... 5

2.3 Holter monitor ... 5

3 Period-Peaks Detection (PPD) Algorithm .. 6

3.1.1 Reading data ... 6

3.1.2 Derivation .. 6

3.1.3 Autocorrelation.. 7

3.1.4 Finding interval .. 7

3.1.5 Extraction .. 7

3.1.6 Discrimination ... 7

3.1.7 Store results .. 8

3.2 Period detection flow .. 8

3.3 Peaks processing flow .. 9

4 System Architecture ... 10

4.1.1 Signal reading ... 10

4.1.2 Filtering ... 10

4.1.3 Analysis ... 10

4.1.4 Display ... 11

 BANSMOM 2010

3

5 Methods .. 11

6 Evaluation .. 12

7 Conclusion .. 13

8 Future Work ... 14

9 Appendix ... 14

9.1 Source code of PPD algorithm ... 14

9.1.1 Reading data function ... 14

9.1.2 Derivation function ... 15

9.1.3 Autocorrelation function ... 15

9.1.4 Find interval function ... 16

9.1.5 Peaks detection function ... 18

9.1.6 Store results function .. 23

10 References ... 24

 BANSMOM 2010

4

1 Introduction

1.1 BANSMOM

We are working on BANSMOM which is short for “smart Body Area Network

System for MObility Monitoring” project. Fig. 1 shows overall view of our project.

The objective of our project is to develop new telemedicine system using embedded

sensors and wireless network for the elderly or the disadvantaged. In this system,

they have some miniature sensors into their bodies and doctors and nurses check

their health. This system makes their life comfortable.

Fig. 1: Overall view of BANSMOM

1.2 Our project goal

2 Related Works

2.1 The output of an ECG records

Fig. 2 shows a typical ECG graph which is the output of an ECC recorder. The

ECG graph shows time represented on the x-axis and voltage represented on

the y-axis. A typical ECG tracing of the heart period consists of a P, Q, R, S, T

 BANSMOM 2010

5

and U wave. Each of these peaks is related to the heart activity that is essential for the

medical diagnosis. Especially, the wave peaks Q, R and S is known as the QRS complex which is

the most significant wave in the ECG graph. The QRS complex is used in many methods of the

ECG analysis.

Fig. 2: A typical ECG Graph

2.2 12-lead ECG

A 12-lead ECG, a simplified method, is that twelve different ECG signals are

recorded at approximately the same time from six sensors put on the patient

skin keeping the patient at rest. The time required to put leads on the patient

skin is only a few minutes. Therefore, it is simple and does not put pressure on

patients. However, as it outputs only waveforms, it is impossible to diagnose

whether the patient’s heart is normal or not. When the patient has problems

such as heart palpitation or shortness of breath, 12-lead ECG does not provide

data correctly.

2.3 Holter monitor

To overcome the shortcomings of 12-lead ECGs, Holter monitors are used

instead. In the examination using a Holter monitor, ECG signals are collected

from the patient over a day. With this examination, it is possible to detect

 BANSMOM 2010

6

temporary irregular heartbeat undiagnosed with 12-lead ECG.

3 Period-Peaks Detection (PPD) Algorithm

Period-Peaks Detection (PPD) algorithm was used to analyze ECG signals. Heart

period, typical peaks (P, Q, R, S, T and U) and time spans of inter-peak (R-R

interval) were calculated by using the algorithm. The algorithm is based on

Pan-Tompskins algorithm. Fig. 3 shows the processing flow of PPD algorithm. The

algorithm consists of two execution flows: First flow finds the heart period using the

autocorrelation function and second flow finds the number, amplitude and time

interval of time interval of the peaks. This algorithm detects the heart period first

and then looks for all typical peaks. ECG signals contain many irregular peaks.

This methodology prevents irregular peaks from being detected as typical peaks.

Fig. 4 shows finding intervals algorithm. Fig. 5 shows finding peaks algorithm.

These two algorithms are the backbone of our PPD algorithm.

3.1.1 Reading data

In this function, the filtered ECG data is readied for using PPD algorithm from the

buffer.

3.1.2 Derivation

In this function, the ECG signal is differentiated to increase signal peaks. The

derivative formula used by this algorithm is (1). This formula has only operation of

subtraction. Therefore this function won’t have to consume a lot of arithmetic

operations, which is multiplication that may tire the system in time and power and

a very helpful step for this algorithm.

With this derivative, when there is a peak it will be increased with relative to the

samples before it, and if the value of y[n] and y[n + 1] are near to each other (i.e. no

peaks) then the difference will look relatively smaller on the new derivative graph.

The advantage of taking the derivative, and thus adding some overhead to the code,

 BANSMOM 2010

7

is that the fluctuations taking place in the signal and especially those around the

peaks would be reduced to a near-zero-value. In addition, performance overhead

associated with derivative calculation of the ECG signal is negligible compared to

the rest of the algorithm.

3.1.3 Autocorrelation

In this function, periodicity of the ECG signal is found by using autocorrelation

function (ACF). The ACF shown in (2) is a statistical method used to measure the

degree of association between values in a single series separated by some lags. The

fixed length ACF is defined by (3).

Ry is the autocorrelation function, y[n] is the ECG filtered signal, and L is a positive

natural number related to the number of times needed for lags of the calculations to

get the period, same as the number of lags of the autocorrelation.

3.1.4 Finding interval

In this function, interval points in ECG signal based on results of previous function.

3.1.5 Extraction

In this function, significant peaks from calculated interval information flow are

extracted.

3.1.6 Discrimination

In this function, traditional six peak points, P, Q, R, S, T and U, from extracted

peaks.

 BANSMOM 2010

8

3.1.7 Store results

In this function, intervals and peaks of information calculated in each of the flows

are stored in buffer.

Fig. 3: The Processing Flow of PPD Algorithm

3.2 Period detection flow

Fig. 4 shows finding intervals algorithm. This algorithm contains 7 steps, finding

maximum value, reducing negative value, detecting peaks from ACF results,

finding basing points, sort of basing points, calculating the interval and renewing

next start index. First, in the finding maximum value step, a maximum value and

its location are found. By finding the maximum value, a threshold is determined

because it is based on the maximum value. Second, in the reducing negative value

step, when input value is negative, the value is replaced by 0. Third, in the

detecting peaks from ACF results step, all peaks are detected and counted and their

location are found. Forth, in the finding basing points step, high threshold and low

threshold are determined. Fifth, in the sort basing points, base points are arranged

in ascending order. Sixth, in the calculating intervals, intervals are found. Finally,

in the renewing next start index, start index is renewed.

 BANSMOM 2010

9

Fig. 4: The Processing Flow of Period Detection Process

3.3 Peaks processing flow

Fig. 5 shows finding peaks algorithm. First, in the finding positive peaks step, the

number of positive peaks is counted and their addresses are stored. Second, in the

finding negative peaks step, the number of negative peaks is counted and their

addressed are stored. It is easier to find each peak by dividing all peaks into two

groups positive and negative. Third, in the finding R peak step, the maximum value

is found from among positive peaks in an interval. The peak is identified as the R

peak. Fourth, in the finding P peak step, the maximum value is found from among

positive peaks from the start to maximum value index. The peak is identified as the

P peak. Fifth, in the T peak step, the maximum value is found from among positive

peaks from maximum value + 1 to end. The peak is identified as the T peak. Sixth,

in the finding Q peak step, the negative peak closest to the R peak is found from

among negative peaks from start to R peak point. The peak is identified as the Q

peak. Finally, in the finding S peak step, the negative peak closest to the R peak is

found from among negative peaks from R peak point to end.

 BANSMOM 2010

10

Fig. 5: The Processing Flow of Peaks Processing process

4 System Architecture

Fig. 6 shows the desired system architecture. This system consists of four phases,

Signal reading, Filtering, Analysis and Display.

4.1.1 Signal reading

10 tiny sensors will be used to sense ECG signals. The number of the read data from

the sensor is extensible 15 or more. The size of data is included in the read data as

well as data from the sensor.

4.1.2 Filtering

In this phase, the bandpass filter based on Finite Impulse Response (FIR) filter. The

bandpass filter is cascaded the low-pass and high-pass filters, is used. This filter

reduces the influence of muscle noise, 50 Hz interference, baseline wander and

T-wave interference.

4.1.3 Analysis

This phase read filtered data from the internal buffer. This data is analyzed by

using a PPD algorithm. Analyzed data is stored in the internal buffer.

 BANSMOM 2010

11

4.1.4 Display

External monitor outputs the results of analysis. The output data is peaks of each

typical wave (P, Q, R, S, T and U wave), heart rate and entire waveform. While

running the system, the external monitor outputs the results at real time.

Fig. 6: The Desired System Architecture

5 Methods

Fig. 7 shows the system block diagram of our prototype system. Altera Quartus II,

Altera SOPC Builder and AlteraMegaCore Function were used to design a

prototype system and Altera Nios II IDE was used to develop PPD algorithm that

runs on the prototype system. Our prototype system includes one Master module

and several PPD modules. The master module consists of Altera Nios II processor,

four on-chip memories that used for storing raw ECG data, processor memory,

shared memory and memory simulated as external memory, several FIR filters,

graphic LCD controller, LED controller and JTAG UART which is used for

connecting to a host PC. One PPD module consists of Altera Nios II processor,

on-chip memory and interrupt timer. Each of these components is connected by

Altera Avalon Bus. FIR filter is generated by Altera MegaCore Function.

Specifications of the filter are: filter steps are 51, a sample rate is 128 and a cutoff

frequency is from 5 Hz to 15 Hz. The sample data actually collected from the

patients are used for analysis of an algorithm. The sample data actually collected

from the patients are used for analysis of an algorithm from the database of

MIT-BIH Normal Sinus Rhythm. The length of the sample data is ten seconds. We

have made a minor change in a prototype system proposed before for parallel

 BANSMOM 2010

12

processing of ECG signals from several leads. I design some systems allow parallel

processing of ECG signals. As evaluation of systems, we prepare some sample data

from the database. We compare the execution time between each system.

Fig. 7: The System Block Diagram

Fig. 8: Stratix III DSP bord

6 Evaluation

Prototype systems, 2-lead and 3-lead were designed for this research. Table 1 shows

the results of logic synthesis of three systems. In the 1-lead system, logic utilization

was about 15%. Block memory bits made up about 22%of the total. The maximum

 BANSMOM 2010

13

operating frequency was 96.43MHz. Power was 621.53mW. In the 2-lead system,

logic utilization was about 27%. Block memory bits made up about 42% of the total.

The maximum operating frequency was 132.49MHz. Power was 627.23mW. In the

3-lead system, logic utilization was about 38%. Block memory bits made up about

52% of the total. The maximum operating frequency was 119.42MHz. Power was

632.41mW. From their results, the scale of systems seemed to be larger in the

number of leads because the number of modules was increased with an increase of

leads. Twelve sample data were used in evaluation of each system. In the 1-lead

system, one sample data was processed twelve times serially. In the 2-lead system,

two sample data were processed six times serially. In the 3-lead system, three

sample data were processed four times serially. Table 2 shows the individual

execution time of processing and total time to process twelve sample data of each

system. Record No. shows that which sample data was used from the database. In

the 1-lead system, it took 134.504 seconds to process twelve sample data. In the

2-lead system, it took 83.138 seconds and in the 3-lead system, it took 67.899

seconds. Comparing the total time spent on processing of twelve sample data by

using the 1-lead system, total time was decreased about 38% when the 2-lead

system was used and decreased about 50% when the 3-lead system was used.

7 Conclusion

The system designed before was able to process the ECG signals only at the same

time and it took longer to process the ECG signals from many leads. Therefore, the

system designed before had to be improved for parallel processing of the ECG

signals from some leads. Compared with the 1-lead system, execution time in the

2-lead system was decreased about 38% and execution in the 3-lead system was

decreased about 50%. In this research, parallel processing of the ECG signals from

several leads became possible and execution time to process the ECG signals from

several leads reduced about 50%. The problems of this research may be the large

scale of systems and accuracy of PPD algorithm as mentioned before. These

problems have to be solved. The system can process the ECG signals from twelve or

more leads had not developed yet. Although the system had been proposed in this

research, it was difficult to develop that system because one core needed per one

PPD module and area was too large. In the future,

 BANSMOM 2010

14

8 Future Work

PPD modules will be divided into some tasks and these tasks will be mapped to

many cores. PPD algorithm will be optimized by using OpenMP or MPI to

parallelize the C code and test it in the multicore system.

9 Appendix

9.1 Source code of PPD algorithm

9.1.1 Reading data function

int reading_data(__int64* _read_values, int* _current_start_index){

alt_mutex_dev *mutex_hdl;

int i;

int status;

int get_data;

int function_flag;

// get device handle

mutex_hdl = altera_avalon_mutex_open(ONCHIP_SHARED_BUFFER_MUTEX_NAME);

status = 0;

get_data = 0;

function_flag = FUNCTION_FAILURE;

// shared device try lock

if(altera_avalon_mutex_trylock(mutex_hdl, 1) == 0){

status = SHARED_MEM_STATUS_RD;

// data get from Shared Memory

if(status == PPD_READY){

// get filtered data

for(i = 0; i < DEV_STEP; i++){

_read_values[i] = SHARED_MEM_RD(SM_FILTERED_DATA_BASE+i);

}

// get current start index

*_current_start_index = SHARED_MEM_RD(SM_CURRENT_START_INDEX_BASE);

// status renew

SHARED_MEM_STATUS_WR((status&PPD_FINISH_MSK) | PPD_FLG_CLR);

 BANSMOM 2010

15

function_flag = FUNCTION_TRUE;

}

else{

function_flag = FUNCTION_FAILURE;

}

// shared `device unlock

altera_avalon_mutex_unlock(mutex_hdl);

return function_flag;

}

else{

return FUNCTION_FAILURE;

}

}

9.1.2 Derivation function

void derivation(const __int64* _input_values, __int64* _output_values){

 int i;

 for(i = 0; i < ACF_STEP; i++){

 _output_values[i] = _input_values[i+1] - _input_values[i];

 }

}

9.1.3 Autocorrelation function

void autocorrelation(const __int64* _input_values, __int64* _output_values){

 int i, j;

 __int64 result;

 /** initialize **/

 result = 0;

 /** running **/

 for(j = 0; j < ACF_STEP; j++){

 result = 0;

 // calculate

 for(i = 0; i < ACF_STEP; i++){

 BANSMOM 2010

16

 if(i+j < ACF_STEP){

 result = result + (_input_values[i] * _input_values[i+j]);

 }

 else{

 result = result + 0;

 }

 }

 // store result

 _output_values[j] = result;

}

}

9.1.4 Find interval function

// find maximum value

 max_value = _input_values[0];

 max_value_index = 0;

 for(i = 1; i < ACF_STEP; i++){

 if(_input_values[i] > max_value){

 max_value = _input_values[i];

 max_value_index = i;

 }

 }

 // reduce negative value

 for(i = 0; i < ACF_STEP; i++){

 reduced_negative_values[i] = (_input_values[i] < 0) ? 0 : _input_values[i];

 }

 reduced_negative_values[ACF_STEP] = 0;

 // peak detection from ACF result

 previous_sign = POSITIVE;

 current_sign = POSITIVE;

 peak_points[0] = 1;

 peak_points[peak_points[0]] = max_value_index;

 for(i = 0; i < ACF_STEP; i++){

 current_sign = (reduced_negative_values[i]-reduced_negative_values[i+1] < 0) ?

NEGATIVE : POSITIVE;

 BANSMOM 2010

17

 if((previous_sign == NEGATIVE) && (current_sign == POSITIVE) && (max_value_index !=

i)){

 peak_points[0] = peak_points[0] + 1;

 peak_points[peak_points[0]] = i;

 }

 previous_sign = current_sign;

 }

 // find basing points

 threshold_high = max_value * ACF_PEAK_DETECTION_THRESHOLD_RATE_HIGTH;

 threshold_low = max_value * ACF_PEAK_DETECTION_THRESHOLD_RATE_LOW;

 basing_points[0] = 0;

 for(i = 1; i <= peak_points[0]; i++){

 if(0 <= peak_points[i] && peak_points[i] < ACF_PEAK_DETECTION_THRESHOLD_AREA_HIGTH){

 if(_input_values[peak_points[i]] > threshold_high){

 basing_points[0] = basing_points[0] + 1;

 basing_points[basing_points[0]] = peak_points[i];

 }

 }

 else if(ACF_PEAK_DETECTION_THRESHOLD_AREA_HIGTH <= peak_points[i] && peak_points[i]

< ACF_PEAK_DETECTION_THRESHOLD_AREA_LOW){

 if(_input_values[peak_points[i]] > threshold_low){

 basing_points[0] = basing_points[0] + 1;

 basing_points[basing_points[0]] = peak_points[i];

 }

 }

 }

 // sort basing points

 for(i = 1; i < basing_points[0]; i++){

 for(j = i+1; j < basing_points[0]; j++){

 if(basing_points[i] > basing_points[j]){

 tmp_basing_point = basing_points[i];

 basing_points[i] = basing_points[j];

 basing_points[j] = tmp_basing_point;

 }

 }

 BANSMOM 2010

18

 }

 // calculate interval

 interval_sum = 0;

 *_interval_info_num = 0;

 if(basing_points[0] > 1){

 for(i = 1; i < basing_points[0]; i++){

 (_interval_info+*_interval_info_num)->start_index =

basing_points[i];//(_next_start_index-ACF_STEP) + basing_points[i];

 (_interval_info+*_interval_info_num)->end_index =

basing_points[i+1];//(_next_start_index-ACF_STEP) + basing_points[i+1];

 (_interval_info+*_interval_info_num)->interval = basing_points[i+1] -

basing_points[i];

 interval_sum = interval_sum + (_interval_info+*_interval_info_num)->interval;

 *_interval_info_num = *_interval_info_num + 1;

 }

 }

 // renew next start index

 if(interval_sum != 0){

 *_next_start_index = _current_start_index + (interval_sum + basing_points[1]);

 }

 else{

 *_next_start_index = _current_start_index + ACF_STEP;

 }

}

9.1.5 Peaks detection function

void peaks_detection(const __int64 *_input_data, const int _interval_num, const

interval_information *_interval_info, peaks_information *_peaks_info){

 int i, j;

 __int64 max_value;

 int max_value_index, p_wave_index, t_wave_index;

 char current_sign, previous_sign;

 int peak_points_positive[ECG_PEAK_DETECTION_MAX],

peak_points_negative[ECG_PEAK_DETECTION_MAX];

 peaks_information peak_point;

 BANSMOM 2010

19

 peaks_information_64 peak_value;

 #ifdef __DEBUG_MODE__

 time_information_us_int start_time, end_time, tmp_time;

 #endif

 for(i = 0; i < _interval_num; i++){

 #ifdef __DEBUG_MODE__

 start_time = g_exe_time.elapsed;

 #endif

 peak_point.p = PEAKS_DETECTION_FAILURE;

 peak_point.q = PEAKS_DETECTION_FAILURE;

 peak_point.r = PEAKS_DETECTION_FAILURE;

 peak_point.s = PEAKS_DETECTION_FAILURE;

 peak_point.t = PEAKS_DETECTION_FAILURE;

 peak_point.u = PEAKS_DETECTION_FAILURE;

 peak_value.p = 0;

 peak_value.q = 0;

 peak_value.r = 0;

 peak_value.s = 0;

 peak_value.t = 0;

 peak_value.u = 0;

 t_wave_index = 0;

 // find positive peaks

 current_sign = POSITIVE;

 previous_sign = POSITIVE;

 peak_points_positive[0] = 0;

 for(j = (_interval_info+i)->start_index; j < (_interval_info+i)->end_index; j++){

 current_sign = (_input_data[j]-_input_data[j+1] < 0) ? NEGATIVE : POSITIVE;

 if((previous_sign == NEGATIVE) && (current_sign == POSITIVE)){

 peak_points_positive[0] = peak_points_positive[0] + 1;

 peak_points_positive[peak_points_positive[0]] = j;

 }

 previous_sign = current_sign;

 }

 BANSMOM 2010

20

 // find negative peaks

 current_sign = NEGATIVE;

 previous_sign = NEGATIVE;

 peak_points_negative[0] = 0;

 for(j = (_interval_info+i)->start_index; j < (_interval_info+i)->end_index; j++){

 current_sign = (_input_data[j]-_input_data[j+1] < 0) ? NEGATIVE : POSITIVE;

 if((previous_sign == POSITIVE) && (current_sign == NEGATIVE)){

 peak_points_negative[0] = peak_points_negative[0] + 1;

 peak_points_negative[peak_points_negative[0]] = j;

 }

 previous_sign = current_sign;

 }

 if(peak_points_positive[0] == 0 || peak_points_negative[0] == 0){

 //peaks detection failure

 break;

 }

 #ifdef __DEBUG_MODE__

 end_time = g_exe_time.elapsed;

 tmp_time = get_execution_time(start_time, end_time);

 g_exe_time.extra = exe_time_add(g_exe_time.extra, tmp_time);

 start_time = g_exe_time.elapsed;

 #endif

 // find R peak

 max_value = _input_data[peak_points_positive[1]];

 max_value_index = 1;

 for(j = 2; j <= peak_points_positive[0]; j++){

 if(max_value < _input_data[peak_points_positive[j]]){

 max_value = _input_data[peak_points_positive[j]];

 max_value_index = j;

 }

 }

 peak_point.r = peak_points_positive[max_value_index];

 peak_value.r = max_value;

 BANSMOM 2010

21

 // find P peak

 peak_point.p = peak_points_positive[1];

 peak_value.p = _input_data[peak_point.p];

 p_wave_index = 1;

 for(j = 2; j < max_value_index; j++){

 if(peak_value.p < _input_data[peak_points_positive[j]]){

 peak_point.p = peak_points_positive[j];

 peak_value.p = _input_data[peak_point.p];

 p_wave_index = j;

 }

 }

 // find T peak

 if(max_value_index+1 <= peak_points_positive[0]){

 for(j = max_value_index+1; j <= peak_points_positive[0]; j++){

 if(peak_value.t < _input_data[peak_points_positive[j]]){

 peak_point.t = peak_points_positive[j];

 peak_value.t = _input_data[peak_point.t];

 t_wave_index = j;

 }

 }

 }

 // fine U peak

 if(t_wave_index+1 <= peak_points_positive[0]){

 for(j = t_wave_index+1; j <= peak_points_positive[0]; j++){

 if(peak_value.u < _input_data[peak_points_positive[j]]){

 peak_point.u = peak_points_positive[j];

 peak_value.u = _input_data[peak_point.u];

 }

 }

 }

 else if(1 < p_wave_index){

 for(j = 1; j < p_wave_index; j++){

 if(peak_value.u < _input_data[peak_points_positive[j]]){

 peak_point.u = peak_points_positive[j];

 peak_value.u = _input_data[peak_point.u];

 BANSMOM 2010

22

 }

 }

 }

 // find Q peak

 for(j = 1; j <= peak_points_negative[0]; j++){

 if(peak_points_negative[j] < peak_point.r){

 peak_point.q = peak_points_negative[j];

 peak_value.q = _input_data[peak_points_negative[j]];

 }

 }

 // find S peak

 for(j = 1; j <= peak_points_negative[0]; j++){

 if(peak_point.r < peak_points_negative[j]){

 peak_point.s = peak_points_negative[j];

 peak_value.s = _input_data[peak_points_negative[j]];

 break;

 }

 }

 // store results

 (_peaks_info+i)->p = peak_point.p;

 (_peaks_info+i)->q = peak_point.q;

 (_peaks_info+i)->r = peak_point.r;

 (_peaks_info+i)->s = peak_point.s;

 (_peaks_info+i)->t = peak_point.t;

 (_peaks_info+i)->u = peak_point.u;

 #ifdef __DEBUG_MODE__

 end_time = g_exe_time.elapsed;

 tmp_time = get_execution_time(start_time, end_time);

 g_exe_time.discrim = exe_time_add(g_exe_time.discrim, tmp_time);

 #endif

 }

}

 BANSMOM 2010

23

9.1.6 Store results function

void store_results(const int _next_start_index, const int _interval_info_num, const

interval_information* const _interval_info, const peaks_information* const _peaks_info){

 alt_mutex_dev *mutex_hdl;

 int i;

 int base_addr;

 int status;

 #ifdef __DEBUG_MODE__

 time_information_us_int start_time, end_time, tmp_time;

 start_time = g_exe_time.elapsed;

 #endif

 // get device handle

 mutex_hdl = altera_avalon_mutex_open(ONCHIP_SHARED_BUFFER_MUTEX_NAME);

 // shared device lock

 altera_avalon_mutex_lock(mutex_hdl, 1);

 /* store results to shared memory */

 // next start index

 SHARED_MEM_WR(SM_NEXT_START_INDEX_BASE, _next_start_index);

 // # of interval

 SHARED_MEM_WR(SM_NUM_OF_INTERVAL_BASE, _interval_info_num);

 // PPD results

 base_addr = SM_PPD_RESULT_BASE;

 for(i = 0; i < _interval_info_num; i++){

 SHARED_MEM_WR(base_addr+SM_PPD_RESULT_INTERVAL_START,

_interval_info[i].start_index);

 SHARED_MEM_WR(base_addr+SM_PPD_RESULT_INTERVAL_END, _interval_info[i].end_index);

 SHARED_MEM_WR(base_addr+SM_PPD_RESULT_INTERVAL_VAL, _interval_info[i].interval);

 SHARED_MEM_WR(base_addr+SM_PPD_RESULT_P_POINT, _peaks_info[i].p);

 SHARED_MEM_WR(base_addr+SM_PPD_RESULT_Q_POINT, _peaks_info[i].q);

 SHARED_MEM_WR(base_addr+SM_PPD_RESULT_R_POINT, _peaks_info[i].r);

 SHARED_MEM_WR(base_addr+SM_PPD_RESULT_S_POINT, _peaks_info[i].s);

 SHARED_MEM_WR(base_addr+SM_PPD_RESULT_T_POINT, _peaks_info[i].t);

 SHARED_MEM_WR(base_addr+SM_PPD_RESULT_U_POINT, _peaks_info[i].u);

 BANSMOM 2010

24

 base_addr = base_addr+SM_PPD_RESULT_OFFSET;

 }

 // status renew

 status = SHARED_MEM_STATUS_RD;

 SHARED_MEM_STATUS_WR((status&PPD_FINISH_MSK) | PPD_FINISH);

 #ifdef __DEBUG_MODE__

 end_time = g_exe_time.elapsed;

 tmp_time = get_execution_time(start_time, end_time);

 g_exe_time.store = exe_time_add(g_exe_time.store, tmp_time);

 SHARED_MEM_WR(EXE_TIME_COUNTERS_BASE+0x0, g_exe_time.reading.ms);

 SHARED_MEM_WR(EXE_TIME_COUNTERS_BASE+0x1, g_exe_time.reading.s);

 SHARED_MEM_WR(EXE_TIME_COUNTERS_BASE+0x2, g_exe_time.div.ms);

 SHARED_MEM_WR(EXE_TIME_COUNTERS_BASE+0x3, g_exe_time.div.s);

 SHARED_MEM_WR(EXE_TIME_COUNTERS_BASE+0x4, g_exe_time.acf.ms);

 SHARED_MEM_WR(EXE_TIME_COUNTERS_BASE+0x5, g_exe_time.acf.s);

 SHARED_MEM_WR(EXE_TIME_COUNTERS_BASE+0x6, g_exe_time.find.ms);

 SHARED_MEM_WR(EXE_TIME_COUNTERS_BASE+0x7, g_exe_time.find.s);

 SHARED_MEM_WR(EXE_TIME_COUNTERS_BASE+0x8, g_exe_time.extra.ms);

 SHARED_MEM_WR(EXE_TIME_COUNTERS_BASE+0x9, g_exe_time.extra.s);

 SHARED_MEM_WR(EXE_TIME_COUNTERS_BASE+0xa, g_exe_time.discrim.ms);

 SHARED_MEM_WR(EXE_TIME_COUNTERS_BASE+0xb, g_exe_time.discrim.s);

 SHARED_MEM_WR(EXE_TIME_COUNTERS_BASE+0xc, g_exe_time.store.ms);

 SHARED_MEM_WR(EXE_TIME_COUNTERS_BASE+0xd, g_exe_time.store.s);

 #endif

 // shared device unlock

 altera_avalon_mutex_unlock(mutex_hdl);

}

10 References

