
Introduction To Network

Simulation With OMNET++

A case of PhoenixSim
Tutorial

© Adaptive Systems Laboratory

Division of Computer Engineering

School of Computer Science and Engineering

University of Aizu

Contact: [d8151102, benab] @ u-aizu.ac.jp

Edition: June 1, 2015

http://aslweb.u-aizu.ac.jp/wiki/index.php?

Outline

 What Is OMNeT++?

 Programming model in OMNET++

 PhoenixSim:

o PhoenixSim folder hierarchy

o Install OMNET++

o Build PhoenixSim

o Configuration file

o Run PhoenixSim

 PhoenixSim’s Electronic Router

 RouterInport simple module C++ implementation

May 31, 2015
Introduction To Simulation With OMNET++

A case of PHOENIXSIM
3

 OMNeT++ is an extensible, modular, component-based C++

simulation library and framework, primarily for building network

simulators.

 "Network" is meant in a broader sense that includes wired and wireless

communication networks, on-chip networks, queueing networks. Etc.

 OMNET ++ framework includes:

 Simulation kernel library

 NED topology description language

 OMNET++ IDE based on eclipse platform

 GUI for simulation execution (Tkenv)

 Command-line user interface for simulation execution (Cmdenv)

 OMNeT++ runs on Windows, Linux, Mac OS X, and other Unix-like systems.

 The OMNeT++ IDE requires Windows, Linux, or Mac OS X.

What Is OMNeT++?

May 31, 2015
Introduction To Simulation With OMNET++

A case of PHOENIXSIM
4

 Programming model

Figure: Simple and compound modules

 An OMNeT++ model consists of modules that communicate with message

passing.

 The active modules are termed simple modules; they are written in C++,

using the simulation class library.

 The whole model, called network in OMNeT++, is itself a compound

module. Messages can be sent either via connections that span modules or

directly to other modules.

May 31, 2015
Introduction To Simulation With OMNET++

A case of PHOENIXSIM
5

 Programming model
The behavior of all simple

modules should be

described in C++

All messages/ packets should be

defined in the file messages.msg

Simulation kernel handle different

events created by the C++

description of your simple module

packet ElectronicMessage

{

 int Id;

 long SrcId;

 long DstId;

 int virtualChannel;

…….

}

OMNET++ opp_msgc to generate

C++ class: _m.h and _m.cc

class ElectronicMessage : public ::cPacket

{

 protected:

 int Id_var;

 long SrcId_var;

 long DstId_var;

 int virtualChannel_var;

 private:

 void copy(const ElectronicMessage& other);

 protected:

 bool operator==(const ElectronicMessage&);

…….

 };

NED files define how all simple modules and

compound modules are connected to each other.

Define the network to

simulate in addition to the

parameters needed in the

simulation. Example, buffer

size, packet length….

myNetwork.exe

C++

Source

MSG Files

Opp_msgc

*_m.cc/h files Simulation Kernel

Compiling

and linking

Simulation Program NED Files
Configuration

File .ini

Running

Result Files

May 31, 2015
Introduction To Simulation With OMNET++

A case of PHOENIXSIM
6

PhoenixSim 1.0

 PhoenixSim (Photonic and Electronic Network Integration and

eXecution Simulator) was originally designed to allow the investigation

of silicon nanophotonic NoCs taking into account component’s

physical layer characteristics.

 Because photonics often requires electronic components around it for

control and processing, models of some typical electronic network

components are incorporated.

We ended up with a simulation environment that is suited to

investigate both electronic and photonic NoCs.

May 31, 2015
Introduction To Simulation With OMNET++

A case of PHOENIXSIM
7

PhoenixSim folder hierarchy

 The components you will find in the PhoenixSim code are organized into various

folders depending on their function. The following enumerates and describes the

contents of these folders:

• chipComponents - contains definitions of some useful components used in NoCs

• electronicComponents - contains the components used in electronic routers,

including the ORION power model . Also contains all Arbiters, which are used to

define new routing functions.

• ioComponents - contains components used in the IO PLANE, which is currently

limited to DRAM

• parameters - contains default parameter values for all components

• photonic - contains all the models of the photonic devices including with

PhoenixSim

• processingPlane - contains components necessary for modeling traffic generation

• simCore - contains core functions, such as message definitions and statistics

• topologies - contains the network topologies that come with PhoenixSim

May 31, 2015
Introduction To Simulation With OMNET++

A case of PHOENIXSIM
8

Install OMNET++

 Download the last version of OMNeT++ for windows from this link:

OMNeT++ 4.6 win32 (source + IDE + MinGW, zip)

 Extract the zip folder into a directory that doesn’t have space in its name,

Otherwise you'll have problems with the makefiles.

 Go to the folder where you unzipped the sources and Start mingwenv.cmd as

administrator. It will bring up a console with the MSYS bash shell, where the path

is already set to include the omnetpp-4.6/bin directory.

https://omnetpp.org/omnetpp/summary/30-omnet-releases/2291-omnet-4-6-win32-source-ide-mingw-zip

May 31, 2015
Introduction To Simulation With OMNET++

A case of PHOENIXSIM
9

Install OMNET++

 First check your gcc and g++ versions

 Then enter ./configure OMNET++ will check your system configuration

May 31, 2015
Introduction To Simulation With OMNET++

A case of PHOENIXSIM
10

Install OMNET++

 Then enter make . The build process will create both debug and release binaries.

 Now You should be able to start the IDE by typing: omnetpp

May 31, 2015
Introduction To Simulation With OMNET++

A case of PHOENIXSIM
11

Install OMNET++

1- Choose your workspace directory

May 31, 2015
Introduction To Simulation With OMNET++

A case of PHOENIXSIM
12

Install OMNET++

Welcome screen in OMNET++ 4.6

May 31, 2015
Introduction To Simulation With OMNET++

A case of PHOENIXSIM
13

Build PhoenixSim

2- You need to create an empty project through File/New/OMNET++ Project

May 31, 2015
Introduction To Simulation With OMNET++

A case of PHOENIXSIM
14

Build PhoenixSim

3- Name your project

4- Chose empty project and click Finish

May 31, 2015
Introduction To Simulation With OMNET++

A case of PHOENIXSIM
15

Build PhoenixSim

5- Do not forget to delete package.ned,

otherwise you will get errors when you

import PhoenixSim project

6- Right click on your project and

choose Import

May 31, 2015
Introduction To Simulation With OMNET++

A case of PHOENIXSIM
16

Build PhoenixSim
7- Choose General / Archive File 8- Go to where you saved PhoenixSim .zip

file and select it (When you download

PheonixSim DO NOT unzip it)

May 31, 2015
Introduction To Simulation With OMNET++

A case of PHOENIXSIM
17

Build PhoenixSim
9- Now, your project is ready to be

build
10- Right click on your project and

click Build Project

May 31, 2015
Introduction To Simulation With OMNET++

A case of PHOENIXSIM
18

Build PhoenixSim

11- If everything goes fine you will be able to see this message

May 31, 2015
Introduction To Simulation With OMNET++

A case of PHOENIXSIM
19

Configuration file

 To run PhoenixSim you need a

configuration file where you define all

needed parameters for the simulation

 PhoenixSim has multiple networks and

topologies. You may find many

configurations in

<myProject>/parameters/Hendry-Thesis

 In this example the configuration file contains:

1. Applications to run: “random”, “neighbor”..

2. InjectionRate: 1E-3, 1E-4… (seconds)

3. MessageSize: 512, 1024.. (bits)

4. NetworkSize: X=8, Y=X

5. ElectronicPara: Processor frequency= 2.5GHZ

May 31, 2015
Introduction To Simulation With OMNET++

A case of PHOENIXSIM
20

Run PhoenixSim

1- go to Run/Run Configurations

May 31, 2015
Introduction To Simulation With OMNET++

A case of PHOENIXSIM
21

Run PhoenixSim

2- Create new configuration click

on OMNET++ Simulation

May 31, 2015
Introduction To Simulation With OMNET++

A case of PHOENIXSIM
22

Run PhoenixSim

1

2

3
4

6
5

7

1- Name your configuration.

2- Select the folder containing

configuration files.

3- Select the configuration to run.

4- Select the network to simulate

(you configuration file may have

many networks).

5- Your configuration may have

multiple iterations, you can run all

of them by typing (*).

6- Select how many process run

in parallel (depends on your

processor).

7- choose default for GUI based

simulation or Command line if you

want to see the output on the

console.

8- When you are ready click Run

8

May 31, 2015
Introduction To Simulation With OMNET++

A case of PHOENIXSIM
23

Run PhoenixSim
When the simulation finish you will see on your console this output.

 In this example, only run number 0 is executed

May 31, 2015
Introduction To Simulation With OMNET++

A case of PHOENIXSIM
24

Run PhoenixSim

 The obtained result file is located in

<myProject>/results

 The result file contains different statistics:

 Electronic energy.

 Photonic energy.

 Performance including throughput

 and latency.

 Physical Layer statistics including

 Crosstalk and Insertion Loss.

 For some configurations you will have

hundreds of files. To speed up gathering

statistics from these files, you need to write

your own script to parse all files at once.

May 31, 2015
Introduction To Simulation With OMNET++

A case of PHOENIXSIM
25

Run PhoenixSim
 Result file sample

Electronic

Energy

distribution

Photonic

Energy

distribution

Total

component

count in your

network

Throughput

Latency

Latency

breakdown

Physical

layer stat

(SNR)

Insertion

Loss

distribution

May 31, 2015
Introduction To Simulation With OMNET++

A case of PHOENIXSIM
26

PhoenixSim’s Electronic Router

 As we mentioned at the beginning of this tutorial, simple modules are

the active components in the model. Simple modules are programmed

in C++, using the OMNeT++ class library.

 In addition to the C++ implementation, simple module like all other

modules in your network, needs to be defined with topology

description language (NED).

 In the .ned file, the connections to other modules are defined. In

addition, you can add all parameters that you need.

 In the following slides, and example of the electronic router and the

input port in PhoenixSim is provided.

May 31, 2015
Introduction To Simulation With OMNET++

A case of PHOENIXSIM
27

 The figure shows the .ned definition of the electronic

router in PhoenixSim. You can find this file in

<myProject>/electronicComponents/ElectronicRoute

r.ned

 ElectronicRouter.ned is a compound module having

multiple simple modules connected with each other.

 The typical simple modules in the electronic router

are: Input ports (in), Arbiter(arb), Crossbar (xbar).

 ackMux module is used to multiplex the ack from

input and the data from the crossbar to be sent to

the output port.

 Stat module is used for simulation purpose to

gather statistics from the different modules.

PhoenixSim’s Electronic Router

May 31, 2015
Introduction To Simulation With OMNET++

A case of PHOENIXSIM
28

RouterInport

Simple module

Crossbar and Arbiter

Simple modules

Electronic Router

Component module

Connection between

all modules

Simple module needs C++

implementation:

RouterInport.h

RouterInport.cc

PhoenixSim’s Electronic Router

May 31, 2015
Introduction To Simulation With OMNET++

A case of PHOENIXSIM
29

RouterInport.cc

Example of sendRequest()

method. This method

implements how the input

buffer prepares a request and

sends it to the arbiter module

through the predefined gate

(reqportOut)

RouterInport.h

Defines different methods.

In addition, it contains the gates definitions.

RouterInport C++ implementation

RouterInport.cc

Each simple has initialize() method,

where all gates are defined

according to their first definition in

the .ned file.

In addition, you can initialize the

parameters used in this simple

module.

