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1 Introduction 
Nowadays, processor performance cannot be achieved by simply increasing clock frequency. In 

addition, the single core chip architecture is scaled well due to various design challenges. 

Multicore systems with a large number of cores have been proposed to take advantage of 

micro-electronics development. Multicore systems are emerging as solutions for high 

performance embedded and general purpose computing. 

However, although important works have been achieved in the design and implementation of 

such systems, the issue of synchronization mechanisms and memory arbitration has not been 

properly investigated yet. 

Queue computing was earlier proposed in our laboratory. A queue processor has several 

promising advantages over register-based machines. First, queue programs have higher 

instruction level parallelism because they are constructed with a breadth-first algorithm. 

Second, queue based instructions are shorter because they don’t need to specify operands 

explicitly. That is, data is implicitly taken from the head of operand queue and the result is 

implicitly written at the tail of the operand queue. This characteristic makes instruction lengths 

shorter and independent from the actual number of physical queue words. Finally, Queue based 

instructions are free from false dependencies. This characteristic eliminates the need for register 

renaming. 

In this thesis, we propose architecture and design of a multicore system based on a simple 

Queue core and a new bus arbitration mechanism. All cores in the system are connected via a 

shared bus and communicate using shared memory. 

In this thesis, we first discuss the communication and arbitration problems issue. In the second 

part, a new bus arbitration mechanism (BAM) is proposed, evaluated and discussed in detail. 

The remaining part of the thesis discusses the architecture and evaluation results of a multicore 

system, named Multi-Queue core System on a Chip (MQSoC). 

2 Shared Bus Problem 
Efficient communication between the cores is a key design issue in any systems. In previous 

studies, there has been a heavy focus on either hardware or software to provide facilities for this 

communication. In the multicore systems on Field Programmable Gate Array (FPGA), the focus 

on higher-level layer, or the communication arbitration, has given rise to more flexible systems 

that provide good speed-up and low cost. 

2.1  Mechanism of Shared Bus Problem 

The shared bus problem occurs in multi-core system. We show the mechanism of this 

problem in Figure 1. The accesses conflict to the shared bus if two or more processors try to 

access the bus. One processor core can only access the shared bus per one clock cycle when 
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shared memory has single port. 

 

 

Figure 1: Mechanism of Shared Bus Problem 

 

 

2.2  Solution of Shared Bus Problem 

We add the bus arbitration to solute this problem. This bus arbitration is that the method 

to decide which a processor core is given access to the shared bus and this is essential to 

extend from a single-core system to a multi-core system. We show the action of bus 

arbitration in Figure2. When a core0 and a core2 try to access the shared bus, the core0 can 

access the bus if the core0 get the grant for an access from bus arbitration. 

A programing model is similar to multi-threading on single-core system (but threads run 

on different processors). A number of processor cores looks like one processor core from 

shared memory and I/O peripherals to add this bus arbitration. 
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Figure 2: Solution of Shared Bus Problem 
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3 MQSoC System Architecture 
The MQSoC System is a multi-core system that extend queue processor core from one processor 

core to four processor cores and add the bus arbitration. The bus arbitration includes the 

wait_core block. We call some processor cores, wait_core, and bus arbitration the Core System. 

This wait_core block and bus arbitration is important area in this system. Each core has each 

instruction memory. A divided program is written on each instruction memory. One processor 

core can only access this memory because the shared data memory has single port. The I/O 

peripherals are mapping by memory mapped I/O. We show block diagram of MQSoC system 

architecture in Figure3. We discuss the Core_System in next parts. 

 

Figure 3: MQSoC system architecture 

 

3.1  Bus Arbitration Mechanism (BAM) 

The bus arbitration and wait_core block control accesses for the shared bus from many 

processor cores. Many processor cores looks like one processor core from shared memory and 

I/O peripherals because one processor core can only access the bus per one cycle by adding 

these two blocks. We don’t need to change other architecture. 
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3.1.1 Organization 
We show creating the bus arbitration module (Core System) that in Figure 4. The 

wait_core block exists at each processor core. The bus arbitration module has 3 inputs 

by each processor core. These inputs are Address, Data, Control (Enable signal). The 

main outputs of this module are Address, Data, Control (Enable signal). These outputs 

are similar to single-queue core system. Nothing is changed about how memory is 

accessed and connected the bus arbitration to processor cores is straightforward. The 

additional outputs are used to make decisions used in wait_core block. We discuss 

details of bus arbitration mechanism. 

 

Figure 4: Block diagram of core system 
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3.1.2 Algorithm of Bus Arbitration 
The bus arbitration can takes “Control” (read and write enable) as accessing signal 

from each processor core if a processor core try to access the shared memory. These are 

two important cases to handle. First case is that either zero or one processor core tries 

to access the shared memory. Second case is that two or more processor cores try to 

access the shared memory. In first case, the bus arbitration correctly sends the address, 

data, and control signal to the shared bus. In second case, the bus arbitration sends 

“two_or_more=1” signal to wait_core block. The bus arbitration decide accessible 

processor core by “two_or_more”, “counter_value”, and “wr[3:0]” that write and read 

enable signal for all processor cores. The information of selected processor core is sent to 

wait_core block. The address, data, and control signal are sent to the shared bus in last 

state of this bus arbitration. We show the block diagram of bus arbitration in Figure5. 

 

 

Figure 5: Block Diagram of Bus Arbitration 
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3.1.3 Algorithm of wait_core 
The wait_core block receives three information signals from bus arbitration. This block 

sends “wait_to_core=1” signal to the processor core when these three signal condition is 

true. The PC of processor core that receives the “wait_to_core=1” from wait_core block 

doesn’t update. Condition is that “cpu_select = cpu_num”, “two_or_more=1”, and 

“Control=1”. We show the block diagram of wait_core in Figure 6. 

 

 

Figure 6: Block Diagram of wait_core 

3.1.4 Scheduling and Fairness 
We select the Round Robin for scheduling because a system needs to be implemented 

such that all processor cores have the same priority. The Bus arbitration rotates 

through processor cores on every clock tick by counter. We show the example of 

scheduling in Figure 7. 

Counter Accessible core 

00 Core0 

01 Core1 

10 Core2 

11 Core3 

Figure 7: Example of Scheduling 

3.1.5 Timing chart of Bus Arbitration 
 We show a timing chart of Bus Arbitration in Figure 8. In a case of this timing chart, 

processor core3 is selected in first. The processor core that receives the “wait_to_core=1” 

from wait_core block doesn’t update PC of it. 
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Figure 8: Timing Chart of Bus Arbitration 

3.1.6 Correctness 
We show the waveform of scheduling in Figure 9. The core3 is selected by bus 

arbitration when the “cpu_select” signal is 3. Then, the “wait_to_core” signals of other 

processor core are high (1) and the processor core3 can access the shared bus. The core0 

is selected by bus arbitration in next clock edge because the “cpu_select” signal is 0. The 

“wait_to_core” signals of core1 and core2 are high (1) and the processor core0 can access 

the shared bus in same way. Nothing processor core are selected when the “cpu_select” 

signal is 7 (3’b111). 

We also see the waveform of bus arbitration in Figure 10. The instruction that 5000 is 

add instruction and 4400 is load instruction. The “wait_to_core” signals of not selected 

processor are high (1) when four processor cores try to access the shared bus by load 

instruction. In this time, the “wait_to_core0”, “wait_to_core1”, and “wait_to_core2” 

signals are high (1) and the not selected processor core don’t update the PC of it. This 

bus arbitration is correctness because this waveform in simulation is same that the 

timing charts of Figure 8. 
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Figure 9: Waveform of Scheduling 

 

 

Figure 10: Waveform of Bus Arbitration 
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3.2 Memory Space 

 This MQSoC System has next memory space. 

3.2.1 Data Memory 
 Capacity: 32bits * 2048words = 8KB 

 Address space: 0x00000000~0x000007FF 

3.2.2 7-segment LED 
 Address: 0x80000000 

3.2.3 Instruction Memory 
 Capacity: 16bits * 1024words = 4KB 

 Address space: 0x00000000~0x000003FF 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



MQSoC, Report 2010  14 

 

4 Evaluation of MQSoC System 

4.1  Synthesis Results 

We show the hardware results in Figure 11. The complexity of each system is given as the 

number of the Logic Elements (LEs). The speed indicates the maximum frequency that each 

system correct runs. The power indicates the thermal power dissipation. Number of the LE 

in dual core system is 1.94 times it in single core system. This result indicates that the LE in 

dual core system is not twice it in single core system if we double the number of processor 

and add the bus arbitration. Each multi-core system correct runs when the frequency is less 

than 24MHz. The thermal power dissipation grows by being proportional to the number of 

LEs. 

 Single core Dual core Quad core 

LEs 4,879 9,460 18,554 

Speed (MHz) 29.17 24.05 27.25 

Power (mW) 127.66 130.75 139.83 

Figure 11: Hardware Results 

4.2  Benchmark Programs 

We evaluate the MQSoC System by three benchmark programs. We divide the one 

benchmark program into four programs for each processor core in assembly language level. 

We use a level-order traversal because this system uses queue processor. We show the 

example of assembly program in queue computing in Figure12. 
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Figure 12: Assembly program 

4.2.1 Benchmark1 (


100

0i




100

0

*
j

ji
) 

This benchmark calculate product of from 0 to 100 and from 0 to 100. This program is 

divided for each processor core. First, sum of from 0 to 25 is calculated in the core0. Sum 
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of from 26 to 50 is calculated in the core1 and also other value is calculated in same way. 

Each processor core stores the flag to the shared memory after each calculation. Second, 

product of from 0 to 100 and previous results (core0: 0+1+…+24+25, core1: 

26+27+…+49+50, core2: 51+52+…+74+75, core3: 76+77+…+99+100) is calculated in 

each processor core. Finally, the core0 calculate last result from each result on the 

shared memory after that the core0 check flags of other processor core on the shared 

memory. 

4.2.2 Benchmark2-1 (


100

0i

i
) 

This benchmark calculate sum of from 0 to100. We show the data flow graph in Figure 

13. This program is divided for each processor core. Sum of from 0 to 25 is calculated in 

the core0. Sum of from 26 to 50 is calculated in the core1 and also other value is 

calculated in same way. Each processor core stores the flag to the shared memory after 

each calculation. Finally, the core0 calculate last result from each result on the shared 

memory after that the core0 check flags of other processor core on the shared memory. 

4.2.3 Benchmark2-2 (


100

0i

i
) 

This benchmark calculate sum of from 0 to100. But, this benchmark program does not 

use level-order traversal to decrease the number of the memory accesses in the same 

cycle. We show the data flow graph in Figure 14. This program is divided for each 

processor core. Sum of from 0 to 25 is calculated to use SPR (Special Purpose Register) 

in the core0. The SPR is used for index register of a loop. Sum of from 26 to 50 is 

calculated to use it in the core1 and also other value is calculated in same way. Each 

processor core stores the flag to the shared memory after each calculation. Finally, the 

core0 calculate last result from each result on the shared memory after that the core0 

check flags of other processor core on the shared memory. In this benchmark2-2, the 

number of the memory accesses is less than it in benchmark2-1. 

 

4.2.4 Benchmark3 (Factorial Calculation: N! (N=3)) 

This benchmark calculates the factorial calculation and four times same calculation on 

a program. In single core system, four times calculation are calculated on one processor 

core. In dual core system, twice calculation is calculated on each processor core. In quad 

core system, one calculation is calculated on each processor core. Finally, all processing 

will finish after that the core0 check flags of other processor core on the shared memory. 

In this benchmark3, the number of memory accesses is fewer. 
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Figure 13: Data flow of Benchmark2-1 

 

Figure 14: Data flow of Benchmark2-2 
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4.3  Assumption of each benchmark 

programs 

We show the assumption of each benchmark programs in Figure 15. All instructions are 

processed by two cycles on a FPGA. We indicate the code size and the number of memory 

accesses by the assumption. The percentage of memory accesses in the Benchmark1 

program is the most all of it benchmark programs. On the other hand, the percentage of it in 

the Benchmark3 program is the fewest all of it in benchmark programs. The number of 

memory accesses is very important in shared memory multi-core system. 

 
Code Size 

(Lines) 

Number of memory accesses Percentage of memory access in 

a program (Code size / memory 

accesses) 

Load Store 

Benchmark1 2391 940 39 41.4% 

Benchmark2-1 

(level-order 

traversal) 

459 108 11 26.0% 

Benchmark2-2 

(use index register) 

196 15 8 11.7% 

Benchmark3 182 7 7 7.7% 

Figure 15: Assumption of Benchmark programs 

4.4  Evaluation Results 

We show two evaluation results in Figure 16 and Figure 17. One evaluation results in 

Figure 16 indicate the standard evaluation results by processing cycles and waiting cycles. 

Another evaluation results in Figure 17 indicate the evaluation results on number of 

memory accesses by processing cycles and waiting cycles because the number of memory 

accesses is very important in the shared memory multi-core system. The waiting cycles 

indicate the cycles that other processor cores wait the memory access when two or more 

processor cores try to access the shared memory. 

 Single core Dual core Quad core 

Processing 

cycles 

Waiting 

cycles 

Processing 

cycles 

Waiting 

cycles 

Processing 

cycles 

Waiting 

cycles 

Benchmark1 1289 0 1615 940 2451 1,890 

Benchmark2-1 477 0 353 166 361 204 

Benchmark3 473 0 263 4 171 12 
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Figure 16: Evaluation Results 

 Percentage 

of memory 

accesses 

Single core Dual core Quad core 

Processing 

cycles 

Waiting 

cycles 

Processing 

cycles 

Waiting 

cycles 

Processing 

cycles 

Waiting 

cycles 

Benchmark2-1 

(level-order 

traversal) 

26.0% 477 0 353 166 361 204 

Benchmark2-2  

(use index register) 

11.7% 2477 0 1323 2 779 8 

Figure 17: Evaluation Results on number of memory accesses 

4.5  Discussion of Evaluation Results 

In the Benchmark1, the more the number of processor core increase, the more the 

processing cycle increase because the waiting processor cores increase by increasing the 

memory accesses. The waiting cycles indicate the basis for this discussion. Actually, the 

waiting cycle makes up 58.2% in the dual core system and 77.1% in the quad core system. In 

the Benchmark2-1, the number of the processing cycle in the dual core system is the fewest 

all of it. This result also indicate same basis of the discussion in the Benchmark1. The 

number of processing cycle in the quad core system is more than it in dual core system 

because the memory accesses make up 26% in this program. In the Benchmark3, the 

number of processing cycle in the quad core system is the fewest all of it. The number of 

processing cycle in the quad core system is 36.1% it in the single core system and 65% it in 

the dual core system because the number of the memory access is few. From these results, 

trying to decrease the number of the memory access (waiting cycle) affects improving 

performance in the shared memory multi-core system. 

 We also compared the Benchmark2-2 with Benchmark2-1 in Figure 17 because to discuss 

the change of the number of the processing cycle by the increasing and decreasing of the 

number of the memory access. In the Benchmark2-2, the number of the waiting cycle 

drastically decreases by decreasing the number of the memory access. And the number of 

the processing cycle in the quad core system is the fewest all of it. However, all of the 

number of the processing cycle in the Benchmark2-2 is more than it in the Benchmark2-1. 

As a result, the data flow of queue computing (level-order traversal) is better than trying to 

decrease the memory accesses. 
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5 Conclusion 
In order to control the memory accesses from some processor cores, which is important in the 

shared memory multi-core system, the BAM was implemented in this study. It was found that 

the memory accesses needed to be optimized in the software program (Benchmark program).  

The performance in multi-core system worsens when the memory accesses from some processor 

cores are too much in the same cycle. On the other hand, the performance in multi-core system 

improves as the number of the processor core increases when the memory accesses are optimized 

in the software program (Benchmark program). In summary, to control the memory accesses 

that the BAM in the hardware and to optimize the memory accesses in the software are the two 

main issues in a shared memory multi-core system. 

 

6 Future work 
To optimize the memory accesses was one of the main issues in our system. Adding a cache is 

one solution to this issue. It will be able to decrease the memory accesses by reading the data 

from the cache. Also a compiler and a parallel programing are very important issues to improve 

the performance in the multi-core system. To optimize the software (application) for the 

multi-core system also improves the performance. 
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7 Structure of Modules 
MQSoC_System_Quad (MQSoC_System_Quad.v) 

- Core_System (Core_System.v) 

 Bus_Arbitration (Bus_Arbitration.v) 

 calculate_two_or_more (calculate_two_or_more.v) 

 core_select (core_select.v) 

 counter (counter.v) 

 send_bus_core (send_bus_core.v) 

 core0 (QP_CPU.v) 

 fu0 (QP_FU.v) 

 du0 (QP_DU.v) 

 qcu0 (QCU.v) 

 iu0 (QP_IU.v) 

 eu0 (QP_EU.v) 

 mu0 (QP_MU.v) 

 wbu0 (QP_WBU.v) 

 qp_c0 (QP_CONTROLLER.v) 

 wait_core0 (wait_core.v) 

 compare_num (compare_num.v) 

 core1 (QP_CPU.v) 

 wait_core1 (wait_core.v) 

 core2 (QP_CPU.v) 

 wait_core2 (wait_core.v) 

 core3 (QP_CPU.v) 

 wait_core3 (wait_core.v) 

- Instruction_Memory_core0 (imem0.v) 

- Instruction_Memory_core1 (imem1.v) 

- Instruction_Memory_core2 (imem2.v) 

- Instruction_Memory_core3 (imem3.v) 

- LED_controller (LED_controller.v) 

 LED_chip_selector0 (LED_chip_selector.v) 

 LED_interface0 (LED_interface.v) 

 LED_dec0 (LED_decoder.v) 

 LED_dec1 (LED_decoder.v) 

 LED_dec2 (LED_decoder.v) 

 LED_dec3 (LED_decoder.v) 

 LED_dec4 (LED_decoder.v) 
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 LED_dec5 (LED_decoder.v) 

 LED_dec6 (LED_decoder.v) 

 LED_dec7 (LED_decoder.v) 

- PERI_KEY (PERI_KEY.v) 

- PERI_SW (PERI_SW.v) 

- PERI_MEM (PERI_MEM.v) 

 data_memory (dmem.v) 

- chattering (chattering.v) 

- frq (frq.v) 

- stop_clock_SW (stop_clock_SW.v) 
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Appendix 

8.1  Assembler (qasm_for_MQ.pl) 

 We must write divided programs for four processor cores in assembly language by 

ourselves. We must write “.data” in assembly file when we want to insert data to data 

memory. We must write “.core0” or “.core1” in assembly file when we want to write 

instruction in instruction memory of core0 or core1. We show the example of assembly 

language program in Figure 12. 

 We can convert the assembly language program to machine language program by the 

assembler (qasm_for_MQ.pl). 
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Figure 18: Example of Assembly Language 

8.2  Converting file (bin_to_hex.c) 

This file is to convert the machine language program to “.hex” format program. We can load 

this “.hex” format program in In System Memory Content Editor. 

8.3  In System Memory Content Editor 

We can use In System Memory Content Editor. We can reload the data and instruction in 

the real time when we use this tool. The memory of Altera Megafunction is needed to use 

this tool. The data of this memory is outputted after one cycle because this memory has a 

register. We must modify top module (MQSoC_System_Quad.v) in this system to solute this 
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problem. We must assert the signal (Use_In_System_Memory) in top module if we want to 

use In System Memory Content Editor. We show the block diagram of the memory in Figure 

13. 

 

Figure 19: Block Diagram of Altera Mega-function Memory 

8.4  Source Files (Benchmark Programs) 

8.4.1 Benchmark1 (


100

0i

i *


100

0j

j ) 

.data 

base_data0: 

    .word 0 

    .word 1 

    .word 2 

     

~~~Skip~~~ 

.core0 

init: 

    seta0 exit              // infinity loop 

    setd0 base_data0        // load address of base_data0 

    setd1 j_sigma_Result0   // load address of j_sigma_Result 

    setd2 Result0           // load address of Result0 

// sigma j calculation (0+1+....+24+25) 

// First     

Load_level0: 

    ldw0 0 

    ldw0 1 

    ldw0 2 

    ldw0 3 
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    ldw0 4 

    ldw0 5 

    ldw0 6 

    ldw0 7 

    ldw0 8 

    ldw0 9 

    ldw0 10 

    ldw0 11 

    ldw0 12 

    ldw0 13 

    ldw0 14 

    ldw0 15 

    ldw0 16 

    ldw0 17 

    ldw0 18 

    ldw0 19 

    ldw0 20 

    ldw0 21 

    ldw0 22 

    ldw0 23 

    ldw0 24 

    ldw0 25 

Calculation_level1: 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

Calculation_level2: 

    add  0 
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    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

Calculation_level3: 

    add  0 

    add  0 

    add  0 

Calculation_level4: 

    add  0 

    add  0 

Calculation_level5: 

    add  0 

Store: 

    stw1 0           // store the result  to j_sigma_Result0 

 

// i calculation (0*j_sigma_Result0 + 1*j_sigma_Result0 +...+ 99*j_sigma_Result0 + 

100*j_sigma_Result0) 

// First 

Load_level0: 

    ldw0 0 

    ldw1 0 

    ldw0 1 

    ldw1 0 

    ldw0 2 

    ldw1 0 

    ldw0 3 

    ldw1 0 

    ldw0 4 

    ldw1 0 

    ldw0 5 

    ldw1 0 

    ldw0 6 

    ldw1 0 

    ldw0 7 

    ldw1 0 

    ldw0 8 
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    ldw1 0 

    ldw0 9 

    ldw1 0 

    ldw0 10 

    ldw1 0 

    ldw0 11 

    ldw1 0 

    ldw0 12 

    ldw1 0 

    ldw0 13 

    ldw1 0 

    ldw0 14 

    ldw1 0 

    ldw0 15 

    ldw1 0 

Calculation_level1: 

    mult 0 

    mult 0 

    mult 0 

    mult 0 

    mult 0 

    mult 0 

    mult 0 

    mult 0 

    mult 0 

    mult 0 

    mult 0 

    mult 0 

    mult 0 

    mult 0 

    mult 0 

    mult 0 

Calculation_level2: 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 
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    add  0 

    add  0 

    add  0     

Calculation_level3: 

    add  0 

    add  0 

    add  0 

    add  0 

Calculation_level4: 

    add  0 

    add  0 

Calculation_level5: 

    add  0 

Store: 

    stw2            // store result to Result0 

~~~Continue to other processor cores calculation~~~ 

Calculation_level1: 

    mult 0 

    mult 0 

    mult 0 

    mult 0 

    mult 0 

Calculation_level2: 

    add  0 

    add  0 

Calculation_level3: 

    add  0 

Calculation_level4: 

    add  0 

Store: 

    ldw2 0      // load result from Result3 

    add  0 

    stw2 0      // store result to Result3 

 

set_flag: 

    ldil 1 

    stw3 0        // store 1 to Flag3 

exit: 
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    jump0 0 

 

8.4.2 Benchmark2-1 (


100

0i

i : level-order traversal) 

.data 

base_data0: 

    .word 0 

    .word 1 

    .word 2 

    .word 3 

    .word 4 

    .word 5 

    .word 6 

    .word 7 

    .word 8 

    .word 9 

    .word 10 

    .word 11 

    .word 12 

    .word 13 

    .word 14 

    .word 15 

    .word 16 

    .word 17 

    .word 18 

    .word 19 

    .word 20 

    .word 21 

    .word 22 

    .word 23 

    .word 24 

    .word 25 

base_data1: 

    .word 26 

    .word 27 

    .word 28 

    .word 29 
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    .word 30 

~~~Skip~~~ 

 

// instruction of core0 

.core0 

Init: 

    seta0 exit       // infinity loop 

    setd0 base_data0 // load address(0x000) 

    setd1 Result0    // load address for result of core0 

 

// First     

Load_level0: 

    ldw0 0 

    ldw0 1 

    ldw0 2 

    ldw0 3 

    ldw0 4 

    ldw0 5 

    ldw0 6 

    ldw0 7 

    ldw0 8 

    ldw0 9 

    ldw0 10 

    ldw0 11 

    ldw0 12 

    ldw0 13 

    ldw0 14 

    ldw0 15 

    ldw0 16 

    ldw0 17 

    ldw0 18 

    ldw0 19 

    ldw0 20 

    ldw0 21 

    ldw0 22 

    ldw0 23 

    ldw0 24 

    ldw0 25 
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Calculation_level1: 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

Calculation_level2: 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

Calculation_level3: 

    add  0 

    add  0 

    add  0 

Calculation_level4: 

    add  0 

    add  0 

Calculation_level5: 

    add  0 

Store: 

    stw1 0           // store the result to Result0 

 

// Finally 

    setd1 Flag1        // load address for flag of core1 

    setd2 Flag2        // load address for flag of core2 

    setd3 Flag3        // load address for flag of core3 

Check_flag1: 
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    ldw1  0            // load Flag1 of core1 

    compi 1            // condition code = Flag1 - 1 

    bne   Check_flag1  // if Flag1 != 1, branch Check_flag1 

Check_flag2: 

    ldw2  0        // load Flag2 of core2 

    compi 1        // condition code = Flag2 - 1 

    bne   Check_flag2  // if Flag2 != 1, branch Check_flag2 

Check_flag3: 

    ldw3  0            // load Flag3 of core3 

    compi 1            // condition code = Flag3 - 1 

    bne   Check_flag3  // if Flag3 != 1, branch Check_flag3 

 

Load_finally: 

    setd0 Result0 

    setd1 Result1 

    setd2 Result2 

    setd3 Result3 

    ldw0  0 

    ldw1  0 

    ldw2  0 

    ldw3  0 

Calculation_finally: 

    add  0 

    add  0 

    add  0 

 

Store: 

    setd0 Last_Result 

    stw0 0 

    halt 

 

    setd1 Flag1 

    setd2 Flag2 

    setd3 Flag3 

    ldil  0 

    ldil  0 

    ldil  0 

    stw1  0      // store 0 to Flag1 
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    stw2  0      // store 0 to Flag2 

    stw3  0          // store 0 to Flag3 

exit: 

    jump0 

 

// instruction of core1 

.core1 

~~~Continue to other processor cores calculation~~~ 

Calculation_level4: 

    add  0 

    add  0 

Calculation_level5: 

    add  0 

Store: 

    stw1 0           // store the result to Result3 

 

set_flag: 

    ldil 1 

    stw2 0        // store 1 to Flag3 

exit: 

    jump0 0 

8.4.3 Benchmark2-2 (


100

0i

i : use index register) 

.data 

N0: 

    .word 25 

N1: 

    .word 50 

N2: 

    .word 75 

N3: 

    .word 100 

Result0:  

    .word 0 

Result1:  

    .word 0 

Result2: 
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    .word 0 

Result3: 

    .word 0 

Last_Result:  

    .word 0 

Flag1: 

    .word 0 

Flag2: 

    .word 0 

Flag3: 

    .word 0 

 

// instruction of core0 

.core0 

Init: 

    setd0 N0 

    setd1 Result0 

    seta0 exit 

    seta1 loop 

    ldil  0 

    ldw1  0 

    mvr  r0 // i = 0 

    mvr  r1 // Result0 = 0 

 

loop: 

    mvq  r0 // QT <= i 

    ldw0  0 // load N0 

    comp  0 // condition code = i - N0 

    bgt  store 

Calculation: 

    mvq  r0 

    mvq  r1 

    add   0 

    mvr  r1 // Result0 = Result0 + i 

    mvq  r0 // QT = i 

    addi  1 // i++ 

    mvr  r0 // r0 = i++ 

    jump1 0 // branch to loop 
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store: 

    mvq  r1 // QT = Result0 

    stw1  0 // memory <= Result0 

Check_Flag1: 

    setd1 Flag1 

    ldw1  0 // load Flag1 

    compi 1 // condition code = Flag1 - 1 

    bne   Check_Flag1 

Check_Flag2: 

    setd2 Flag2 

    ldw2  0 // load Flag2 

    compi 1 // condition code = Flag2 - 1 

    bne   Check_Flag2 

Check_Flag3: 

    setd3 Flag3 

    ldw3  0 // load Flag3 

    compi 1 // condition code = Flag3 - 1 

    bne   Check_Flag3 

Last_calculation: 

    setd0 Result0 

    setd1 Result1 

    setd2 Result2 

    setd3 Result3 

    ldw0  0 

    ldw1  0 

    ldw2  0 

    ldw3  0 

    add   0 

    add   0 

    add   0 

Last_store: 

    setd0 Last_Result 

    stw0  0   

    halt    // inform end of instruction to processor 

exit: 

    jump0 0 

 

// instruction of core1 
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.core1 

Init: 

    setd0 N1 

    setd1 Result1 

    setd2 Flag1 

    seta0 exit 

    seta1 loop 

    ldil  26 

    ldw1  0 

    mvr  r0 // i = 26 

    mvr  r1 // Result1 = 0 

 

loop: 

    mvq  r0 // QT <= i 

    ldw0  0 // load N1 

    comp  0 // condition code = i - N1 

    bgt  store 

Calculation: 

    mvq  r0 

    mvq  r1 

    add   0 

    mvr  r1 // Result1 = Result1 + i 

    mvq  r0 // QT = i 

    addi  1 // i++ 

    mvr  r0 // r0 = i++ 

    jump1 0 // branch to loop 

store: 

    mvq  r1 // QT = Result1 

    stw1  0 // memory <= Result1 

set_flag: 

    ldil  1 

    stw2  0 // Flag1 = 1 

exit: 

    jump0 0 

 

// instruction of core2 

.core2 

Init: 
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    setd0 N2 

    setd1 Result2 

    setd2 Flag2 

    seta0 exit 

    seta1 loop 

    ldil  51 

    ldw1  0 

    mvr  r0 // i = 51 

    mvr  r1 // Result1 = 0 

 

loop: 

    mvq  r0 // QT <= i 

    ldw0  0 // load N2 

    comp  0 // condition code = i - N2 

    bgt  store 

Calculation: 

    mvq  r0 

    mvq  r1 

    add   0 

    mvr  r1 // Result2 = Result2 + i 

    mvq  r0 // QT = i 

    addi  1 // i++ 

    mvr  r0 // r0 = i++ 

    jump1 0 // branch to loop 

store: 

    mvq  r1 // QT = Result2 

    stw1  0 // memory <= Result2 

set_flag: 

    ldil  1 

    stw2  0 // Flag2 = 1 

exit: 

    jump0 0 

 

// instruction of core3 

.core3 

Init: 

    setd0 N3 

    setd1 Result3 
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    setd2 Flag3 

    seta0 exit 

    seta1 loop 

    ldil  76 

    ldw1  0 

    mvr  r0 // i = 76 

    mvr  r1 // Result3 = 0 

 

loop: 

    mvq  r0 // QT <= i 

    ldw0  0 // load N3 

    comp  0 // condition code = i - N3 

    bgt  store 

Calculation: 

    mvq  r0 

    mvq  r1 

    add   0 

    mvr  r1 // Result3 = Result3 + i 

    mvq  r0 // QT = i 

    addi  1 // i++ 

    mvr  r0 // r0 = i++ 

    jump1 0 // branch to loop 

store: 

    mvq  r1 // QT = Result3 

    stw1  0 // memory <= Result3 

set_flag: 

    ldil  1 

    stw2  0 // Flag3 = 1 

exit: 

    jump0 0 

8.4.4 Benchmark3 (Factorial Calculation: N! (N=3)) 
.data 

N: 

 .word 3 

a: 

 .word 0 

b: 

 .word 0 
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c: 

 .word 0 

d: 

 .word 0 

Flag1: 

    .word 0 

Flag2: 

    .word 0 

Flag3: 

    .word 0 

 

.core0 

//First 

init: 

 seta0 loop 

    seta1 Last_exit 

 setd0 N 

 setd1 a 

    ldil  1  // index i = 1 

 ldil  1  // a = 1 

 mvr   r0 

 mvr   r1 

 

loop: 

 mvq   r0 // QT <= i 

 ldw0  0  // QT <= N 

 comp  0  // condition code = i-N 

 bgt   exit // if i>N, branch exit 

 

calculate: 

 mvq   r0 

 mvq   r1 

 mult  0  // a*i 

 mvr   r1 // a = a*i 

 mvq   r0 // QT <= i 

 addi  1  // i++ 

 mvr   r0 // r0 <= i++ 

 jump0 0  // branch to loop 



MQSoC, Report 2010  42 

 

 

exit: 

 mvq   r1 // QT <= a*i 

 stw1  0  // memory <= a*i 

Load_flag: 

    setd1 Flag1 

    setd2 Flag2 

    setd3 Flag3 

Check_flag1: 

    ldw1  0     // load Flag1 of core1 

    compi 1     // condition code = Flag1 - 1 

    bne   Check_flag1   // if Flag1 != 1, branch Check_flag1 

Check_flag2: 

    ldw2  0     // load Flag2 of core2 

    compi 1     // condition code = Flag2 - 1 

    bne   Check_flag2   // if Flag2 != 1, branch Check_flag2 

Check_flag3: 

    ldw3  0     // load Flag3 of core3 

    compi 1     // condition code = Flag3 - 1 

    bne   Check_flag3   // if Flag3 != 1, branch Check_flag3 

    halt 

Last_exit: 

    jump1 0 

 

.core1 

//First 

init: 

 seta0 loop 

    seta1 Last_exit 

 setd0 N 

 setd1 b 

    setd2 Flag1 

    ldil  1  // index i = 1 

 ldil  1  // b = 1 

 mvr   r0 

 mvr   r1 

 

loop: 
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 mvq   r0 // QT <= i 

 ldw0  0  // QT <= N 

 comp  0  // condition code = i-N 

 bgt   exit // if i>N, branch exit 

 

calculate: 

 mvq   r0 

 mvq   r1 

 mult  0  // b*i 

 mvr   r1 // b = b*i 

 mvq   r0 // QT <= i 

 addi  1  // i++ 

 mvr   r0 // r0 <= i++ 

 jump0 0  // branch to loop 

     

exit: 

 mvq   r1 // QT <= b*i 

 stw1  0  // memory <= b*i 

set_flag: 

    ldil  1 

    stw2  0     // Flag1 = 1 

Last_exit: 

    jump1 0 

     

.core2 

//First 

init: 

 seta0 loop 

    seta1 Last_exit 

 setd0 N 

 setd1 c 

    setd2 Flag2 

    ldil  1  // index i = 1 

 ldil  1  // c = 1 

 mvr   r0 

 mvr   r1 

 

loop: 
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 mvq   r0 // QT <= i 

 ldw0  0  // QT <= N 

 comp  0  // condition code = i-N 

 bgt   exit // if i>N, branch exit 

 

calculate: 

 mvq   r0 

 mvq   r1 

 mult  0  // c*i 

 mvr   r1 // c = c*i 

 mvq   r0 // QT <= i 

 addi  1  // i++ 

 mvr   r0 // r0 <= i++ 

 jump0 0  // branch to loop 

     

exit: 

 mvq   r1 // QT <= c*i 

 stw1  0  // memory <= c*i 

set_flag: 

    ldil  1 

    stw2  0     // Flag2 = 1 

Last_exit: 

    jump1 0 

 

.core3 

//First 

init: 

 seta0 loop 

    seta1 Last_exit 

 setd0 N 

 setd1 d 

    setd2 Flag3 

    ldil  1  // index i = 1 

 ldil  1  // d = 1 

 mvr   r0 

 mvr   r1 

 

loop: 
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 mvq   r0 // QT <= i 

 ldw0  0  // QT <= N 

 comp  0  // condition code = i-N 

 bgt   exit // if i>N, branch exit 

 

calculate: 

 mvq   r0 

 mvq   r1 

 mult  0  // d*i 

 mvr   r1 // d = d*i 

 mvq   r0 // QT <= i 

 addi  1  // i++ 

 mvr   r0 // r0 <= i++ 

 jump0 0  // branch to loop 

 

exit: 

 mvq   r1 // QT <= d*i 

 stw1  0  // memory <= d*i 

set_flag: 

    ldil  1 

    stw2  0     // Flag3 = 1 

Last_exit: 

    jump1 0 
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