
Technical Report, Queue Group, 2010

Technical Report, Queue Group, 2010 1

[UNIVERSITY OF AIZU]

Architecture and
Design of Shared

Memory Multi-Queue
Core Processor

Multi-Queue core System on a Chip (MQSoC)

Report

Shunichi Kato

2011/1/24

MQSoC, Report 2010 2

Contents

1 Introduction ... 4

2 Shared Bus Problem ... 4

2.1 Mechanism of Shared Bus Problem .. 4

2.2 Solution of Shared Bus Problem ... 5

3 MQSoC System Architecture.. 7

3.1 Bus Arbitration Mechanism (BAM) .. 7

3.1.1 Organization .. 8

3.1.2 Algorithm of Bus Arbitration ... 9

3.1.3 Algorithm of wait_core .. 10

3.1.4 Scheduling and Fairness .. 10

3.1.5 Timing chart of Bus Arbitration ... 10

3.1.6 Correctness .. 11

3.2 Memory Space .. 13

3.2.1 Data Memory ... 13

3.2.2 7-segment LED .. 13

3.2.3 Instruction Memory .. 13

4 Evaluation of MQSoC System .. 14

4.1 Synthesis Results ... 14

4.2 Benchmark Programs .. 14

4.2.1 Benchmark1 (


100

0i




100

0

*
j

ji
) ... 15

4.2.2 Benchmark2-1 (


100

0i

i
) ... 16

4.2.3 Benchmark2-2 (


100

0i

i
) ... 16

4.2.4 Benchmark3 (Factorial Calculation: N! (N=3)) ... 16

4.3 Assumption of each benchmark programs ... 18

4.4 Evaluation Results ... 18

4.5 Discussion of Evaluation Results .. 19

5 Conclusion ... 20

6 Future work ... 20

7 Structure of Modules .. 21

References.. 23

Appendix .. 24

Technical Report, Queue Group, 2010 3

8.1 Assembler (qasm_for_MQ.pl) .. 24

8.2 Converting file (bin_to_hex.c).. 25

8.3 In System Memory Content Editor ... 25

8.4 Source Files (Benchmark Programs) .. 26

8.4.1 Benchmark1 (


100

0i

i
*



100

0j

j
) .. 26

8.4.2 Benchmark2-1 (


100

0i

i
: level-order traversal) ... 31

8.4.3 Benchmark2-2 (


100

0i

i
: use index register) ... 35

8.4.4 Benchmark3 (Factorial Calculation: N! (N=3)) ... 40

Updated information .. 46

MQSoC, Report 2010 4

1 Introduction
Nowadays, processor performance cannot be achieved by simply increasing clock frequency. In

addition, the single core chip architecture is scaled well due to various design challenges.

Multicore systems with a large number of cores have been proposed to take advantage of

micro-electronics development. Multicore systems are emerging as solutions for high

performance embedded and general purpose computing.

However, although important works have been achieved in the design and implementation of

such systems, the issue of synchronization mechanisms and memory arbitration has not been

properly investigated yet.

Queue computing was earlier proposed in our laboratory. A queue processor has several

promising advantages over register-based machines. First, queue programs have higher

instruction level parallelism because they are constructed with a breadth-first algorithm.

Second, queue based instructions are shorter because they don’t need to specify operands

explicitly. That is, data is implicitly taken from the head of operand queue and the result is

implicitly written at the tail of the operand queue. This characteristic makes instruction lengths

shorter and independent from the actual number of physical queue words. Finally, Queue based

instructions are free from false dependencies. This characteristic eliminates the need for register

renaming.

In this thesis, we propose architecture and design of a multicore system based on a simple

Queue core and a new bus arbitration mechanism. All cores in the system are connected via a

shared bus and communicate using shared memory.

In this thesis, we first discuss the communication and arbitration problems issue. In the second

part, a new bus arbitration mechanism (BAM) is proposed, evaluated and discussed in detail.

The remaining part of the thesis discusses the architecture and evaluation results of a multicore

system, named Multi-Queue core System on a Chip (MQSoC).

2 Shared Bus Problem
Efficient communication between the cores is a key design issue in any systems. In previous

studies, there has been a heavy focus on either hardware or software to provide facilities for this

communication. In the multicore systems on Field Programmable Gate Array (FPGA), the focus

on higher-level layer, or the communication arbitration, has given rise to more flexible systems

that provide good speed-up and low cost.

2.1 Mechanism of Shared Bus Problem

The shared bus problem occurs in multi-core system. We show the mechanism of this

problem in Figure 1. The accesses conflict to the shared bus if two or more processors try to

access the bus. One processor core can only access the shared bus per one clock cycle when

Technical Report, Queue Group, 2010 5

shared memory has single port.

Figure 1: Mechanism of Shared Bus Problem

2.2 Solution of Shared Bus Problem

We add the bus arbitration to solute this problem. This bus arbitration is that the method

to decide which a processor core is given access to the shared bus and this is essential to

extend from a single-core system to a multi-core system. We show the action of bus

arbitration in Figure2. When a core0 and a core2 try to access the shared bus, the core0 can

access the bus if the core0 get the grant for an access from bus arbitration.

A programing model is similar to multi-threading on single-core system (but threads run

on different processors). A number of processor cores looks like one processor core from

shared memory and I/O peripherals to add this bus arbitration.

MQSoC, Report 2010 6

Figure 2: Solution of Shared Bus Problem

Technical Report, Queue Group, 2010 7

3 MQSoC System Architecture
The MQSoC System is a multi-core system that extend queue processor core from one processor

core to four processor cores and add the bus arbitration. The bus arbitration includes the

wait_core block. We call some processor cores, wait_core, and bus arbitration the Core System.

This wait_core block and bus arbitration is important area in this system. Each core has each

instruction memory. A divided program is written on each instruction memory. One processor

core can only access this memory because the shared data memory has single port. The I/O

peripherals are mapping by memory mapped I/O. We show block diagram of MQSoC system

architecture in Figure3. We discuss the Core_System in next parts.

Figure 3: MQSoC system architecture

3.1 Bus Arbitration Mechanism (BAM)

The bus arbitration and wait_core block control accesses for the shared bus from many

processor cores. Many processor cores looks like one processor core from shared memory and

I/O peripherals because one processor core can only access the bus per one cycle by adding

these two blocks. We don’t need to change other architecture.

MQSoC, Report 2010 8

3.1.1 Organization
We show creating the bus arbitration module (Core System) that in Figure 4. The

wait_core block exists at each processor core. The bus arbitration module has 3 inputs

by each processor core. These inputs are Address, Data, Control (Enable signal). The

main outputs of this module are Address, Data, Control (Enable signal). These outputs

are similar to single-queue core system. Nothing is changed about how memory is

accessed and connected the bus arbitration to processor cores is straightforward. The

additional outputs are used to make decisions used in wait_core block. We discuss

details of bus arbitration mechanism.

Figure 4: Block diagram of core system

Technical Report, Queue Group, 2010 9

3.1.2 Algorithm of Bus Arbitration
The bus arbitration can takes “Control” (read and write enable) as accessing signal

from each processor core if a processor core try to access the shared memory. These are

two important cases to handle. First case is that either zero or one processor core tries

to access the shared memory. Second case is that two or more processor cores try to

access the shared memory. In first case, the bus arbitration correctly sends the address,

data, and control signal to the shared bus. In second case, the bus arbitration sends

“two_or_more=1” signal to wait_core block. The bus arbitration decide accessible

processor core by “two_or_more”, “counter_value”, and “wr[3:0]” that write and read

enable signal for all processor cores. The information of selected processor core is sent to

wait_core block. The address, data, and control signal are sent to the shared bus in last

state of this bus arbitration. We show the block diagram of bus arbitration in Figure5.

Figure 5: Block Diagram of Bus Arbitration

MQSoC, Report 2010 10

3.1.3 Algorithm of wait_core
The wait_core block receives three information signals from bus arbitration. This block

sends “wait_to_core=1” signal to the processor core when these three signal condition is

true. The PC of processor core that receives the “wait_to_core=1” from wait_core block

doesn’t update. Condition is that “cpu_select = cpu_num”, “two_or_more=1”, and

“Control=1”. We show the block diagram of wait_core in Figure 6.

Figure 6: Block Diagram of wait_core

3.1.4 Scheduling and Fairness
We select the Round Robin for scheduling because a system needs to be implemented

such that all processor cores have the same priority. The Bus arbitration rotates

through processor cores on every clock tick by counter. We show the example of

scheduling in Figure 7.

Counter Accessible core

00 Core0

01 Core1

10 Core2

11 Core3

Figure 7: Example of Scheduling

3.1.5 Timing chart of Bus Arbitration
 We show a timing chart of Bus Arbitration in Figure 8. In a case of this timing chart,

processor core3 is selected in first. The processor core that receives the “wait_to_core=1”

from wait_core block doesn’t update PC of it.

Technical Report, Queue Group, 2010 11

Figure 8: Timing Chart of Bus Arbitration

3.1.6 Correctness
We show the waveform of scheduling in Figure 9. The core3 is selected by bus

arbitration when the “cpu_select” signal is 3. Then, the “wait_to_core” signals of other

processor core are high (1) and the processor core3 can access the shared bus. The core0

is selected by bus arbitration in next clock edge because the “cpu_select” signal is 0. The

“wait_to_core” signals of core1 and core2 are high (1) and the processor core0 can access

the shared bus in same way. Nothing processor core are selected when the “cpu_select”

signal is 7 (3’b111).

We also see the waveform of bus arbitration in Figure 10. The instruction that 5000 is

add instruction and 4400 is load instruction. The “wait_to_core” signals of not selected

processor are high (1) when four processor cores try to access the shared bus by load

instruction. In this time, the “wait_to_core0”, “wait_to_core1”, and “wait_to_core2”

signals are high (1) and the not selected processor core don’t update the PC of it. This

bus arbitration is correctness because this waveform in simulation is same that the

timing charts of Figure 8.

MQSoC, Report 2010 12

Figure 9: Waveform of Scheduling

Figure 10: Waveform of Bus Arbitration

Technical Report, Queue Group, 2010 13

3.2 Memory Space

 This MQSoC System has next memory space.

3.2.1 Data Memory
 Capacity: 32bits * 2048words = 8KB

 Address space: 0x00000000~0x000007FF

3.2.2 7-segment LED
 Address: 0x80000000

3.2.3 Instruction Memory
 Capacity: 16bits * 1024words = 4KB

 Address space: 0x00000000~0x000003FF

MQSoC, Report 2010 14

4 Evaluation of MQSoC System

4.1 Synthesis Results

We show the hardware results in Figure 11. The complexity of each system is given as the

number of the Logic Elements (LEs). The speed indicates the maximum frequency that each

system correct runs. The power indicates the thermal power dissipation. Number of the LE

in dual core system is 1.94 times it in single core system. This result indicates that the LE in

dual core system is not twice it in single core system if we double the number of processor

and add the bus arbitration. Each multi-core system correct runs when the frequency is less

than 24MHz. The thermal power dissipation grows by being proportional to the number of

LEs.

 Single core Dual core Quad core

LEs 4,879 9,460 18,554

Speed (MHz) 29.17 24.05 27.25

Power (mW) 127.66 130.75 139.83

Figure 11: Hardware Results

4.2 Benchmark Programs

We evaluate the MQSoC System by three benchmark programs. We divide the one

benchmark program into four programs for each processor core in assembly language level.

We use a level-order traversal because this system uses queue processor. We show the

example of assembly program in queue computing in Figure12.

Technical Report, Queue Group, 2010 15

Figure 12: Assembly program

4.2.1 Benchmark1 (


100

0i




100

0

*
j

ji
)

This benchmark calculate product of from 0 to 100 and from 0 to 100. This program is

divided for each processor core. First, sum of from 0 to 25 is calculated in the core0. Sum

MQSoC, Report 2010 16

of from 26 to 50 is calculated in the core1 and also other value is calculated in same way.

Each processor core stores the flag to the shared memory after each calculation. Second,

product of from 0 to 100 and previous results (core0: 0+1+…+24+25, core1:

26+27+…+49+50, core2: 51+52+…+74+75, core3: 76+77+…+99+100) is calculated in

each processor core. Finally, the core0 calculate last result from each result on the

shared memory after that the core0 check flags of other processor core on the shared

memory.

4.2.2 Benchmark2-1 (


100

0i

i
)

This benchmark calculate sum of from 0 to100. We show the data flow graph in Figure

13. This program is divided for each processor core. Sum of from 0 to 25 is calculated in

the core0. Sum of from 26 to 50 is calculated in the core1 and also other value is

calculated in same way. Each processor core stores the flag to the shared memory after

each calculation. Finally, the core0 calculate last result from each result on the shared

memory after that the core0 check flags of other processor core on the shared memory.

4.2.3 Benchmark2-2 (


100

0i

i
)

This benchmark calculate sum of from 0 to100. But, this benchmark program does not

use level-order traversal to decrease the number of the memory accesses in the same

cycle. We show the data flow graph in Figure 14. This program is divided for each

processor core. Sum of from 0 to 25 is calculated to use SPR (Special Purpose Register)

in the core0. The SPR is used for index register of a loop. Sum of from 26 to 50 is

calculated to use it in the core1 and also other value is calculated in same way. Each

processor core stores the flag to the shared memory after each calculation. Finally, the

core0 calculate last result from each result on the shared memory after that the core0

check flags of other processor core on the shared memory. In this benchmark2-2, the

number of the memory accesses is less than it in benchmark2-1.

4.2.4 Benchmark3 (Factorial Calculation: N! (N=3))

This benchmark calculates the factorial calculation and four times same calculation on

a program. In single core system, four times calculation are calculated on one processor

core. In dual core system, twice calculation is calculated on each processor core. In quad

core system, one calculation is calculated on each processor core. Finally, all processing

will finish after that the core0 check flags of other processor core on the shared memory.

In this benchmark3, the number of memory accesses is fewer.

Technical Report, Queue Group, 2010 17

Figure 13: Data flow of Benchmark2-1

Figure 14: Data flow of Benchmark2-2

MQSoC, Report 2010 18

4.3 Assumption of each benchmark

programs

We show the assumption of each benchmark programs in Figure 15. All instructions are

processed by two cycles on a FPGA. We indicate the code size and the number of memory

accesses by the assumption. The percentage of memory accesses in the Benchmark1

program is the most all of it benchmark programs. On the other hand, the percentage of it in

the Benchmark3 program is the fewest all of it in benchmark programs. The number of

memory accesses is very important in shared memory multi-core system.

Code Size

(Lines)

Number of memory accesses Percentage of memory access in

a program (Code size / memory

accesses)

Load Store

Benchmark1 2391 940 39 41.4%

Benchmark2-1

(level-order

traversal)

459 108 11 26.0%

Benchmark2-2

(use index register)

196 15 8 11.7%

Benchmark3 182 7 7 7.7%

Figure 15: Assumption of Benchmark programs

4.4 Evaluation Results

We show two evaluation results in Figure 16 and Figure 17. One evaluation results in

Figure 16 indicate the standard evaluation results by processing cycles and waiting cycles.

Another evaluation results in Figure 17 indicate the evaluation results on number of

memory accesses by processing cycles and waiting cycles because the number of memory

accesses is very important in the shared memory multi-core system. The waiting cycles

indicate the cycles that other processor cores wait the memory access when two or more

processor cores try to access the shared memory.

 Single core Dual core Quad core

Processing

cycles

Waiting

cycles

Processing

cycles

Waiting

cycles

Processing

cycles

Waiting

cycles

Benchmark1 1289 0 1615 940 2451 1,890

Benchmark2-1 477 0 353 166 361 204

Benchmark3 473 0 263 4 171 12

Technical Report, Queue Group, 2010 19

Figure 16: Evaluation Results

 Percentage

of memory

accesses

Single core Dual core Quad core

Processing

cycles

Waiting

cycles

Processing

cycles

Waiting

cycles

Processing

cycles

Waiting

cycles

Benchmark2-1

(level-order

traversal)

26.0% 477 0 353 166 361 204

Benchmark2-2

(use index register)

11.7% 2477 0 1323 2 779 8

Figure 17: Evaluation Results on number of memory accesses

4.5 Discussion of Evaluation Results

In the Benchmark1, the more the number of processor core increase, the more the

processing cycle increase because the waiting processor cores increase by increasing the

memory accesses. The waiting cycles indicate the basis for this discussion. Actually, the

waiting cycle makes up 58.2% in the dual core system and 77.1% in the quad core system. In

the Benchmark2-1, the number of the processing cycle in the dual core system is the fewest

all of it. This result also indicate same basis of the discussion in the Benchmark1. The

number of processing cycle in the quad core system is more than it in dual core system

because the memory accesses make up 26% in this program. In the Benchmark3, the

number of processing cycle in the quad core system is the fewest all of it. The number of

processing cycle in the quad core system is 36.1% it in the single core system and 65% it in

the dual core system because the number of the memory access is few. From these results,

trying to decrease the number of the memory access (waiting cycle) affects improving

performance in the shared memory multi-core system.

 We also compared the Benchmark2-2 with Benchmark2-1 in Figure 17 because to discuss

the change of the number of the processing cycle by the increasing and decreasing of the

number of the memory access. In the Benchmark2-2, the number of the waiting cycle

drastically decreases by decreasing the number of the memory access. And the number of

the processing cycle in the quad core system is the fewest all of it. However, all of the

number of the processing cycle in the Benchmark2-2 is more than it in the Benchmark2-1.

As a result, the data flow of queue computing (level-order traversal) is better than trying to

decrease the memory accesses.

MQSoC, Report 2010 20

5 Conclusion
In order to control the memory accesses from some processor cores, which is important in the

shared memory multi-core system, the BAM was implemented in this study. It was found that

the memory accesses needed to be optimized in the software program (Benchmark program).

The performance in multi-core system worsens when the memory accesses from some processor

cores are too much in the same cycle. On the other hand, the performance in multi-core system

improves as the number of the processor core increases when the memory accesses are optimized

in the software program (Benchmark program). In summary, to control the memory accesses

that the BAM in the hardware and to optimize the memory accesses in the software are the two

main issues in a shared memory multi-core system.

6 Future work
To optimize the memory accesses was one of the main issues in our system. Adding a cache is

one solution to this issue. It will be able to decrease the memory accesses by reading the data

from the cache. Also a compiler and a parallel programing are very important issues to improve

the performance in the multi-core system. To optimize the software (application) for the

multi-core system also improves the performance.

Technical Report, Queue Group, 2010 21

7 Structure of Modules
MQSoC_System_Quad (MQSoC_System_Quad.v)

- Core_System (Core_System.v)

 Bus_Arbitration (Bus_Arbitration.v)

 calculate_two_or_more (calculate_two_or_more.v)

 core_select (core_select.v)

 counter (counter.v)

 send_bus_core (send_bus_core.v)

 core0 (QP_CPU.v)

 fu0 (QP_FU.v)

 du0 (QP_DU.v)

 qcu0 (QCU.v)

 iu0 (QP_IU.v)

 eu0 (QP_EU.v)

 mu0 (QP_MU.v)

 wbu0 (QP_WBU.v)

 qp_c0 (QP_CONTROLLER.v)

 wait_core0 (wait_core.v)

 compare_num (compare_num.v)

 core1 (QP_CPU.v)

 wait_core1 (wait_core.v)

 core2 (QP_CPU.v)

 wait_core2 (wait_core.v)

 core3 (QP_CPU.v)

 wait_core3 (wait_core.v)

- Instruction_Memory_core0 (imem0.v)

- Instruction_Memory_core1 (imem1.v)

- Instruction_Memory_core2 (imem2.v)

- Instruction_Memory_core3 (imem3.v)

- LED_controller (LED_controller.v)

 LED_chip_selector0 (LED_chip_selector.v)

 LED_interface0 (LED_interface.v)

 LED_dec0 (LED_decoder.v)

 LED_dec1 (LED_decoder.v)

 LED_dec2 (LED_decoder.v)

 LED_dec3 (LED_decoder.v)

 LED_dec4 (LED_decoder.v)

MQSoC, Report 2010 22

 LED_dec5 (LED_decoder.v)

 LED_dec6 (LED_decoder.v)

 LED_dec7 (LED_decoder.v)

- PERI_KEY (PERI_KEY.v)

- PERI_SW (PERI_SW.v)

- PERI_MEM (PERI_MEM.v)

 data_memory (dmem.v)

- chattering (chattering.v)

- frq (frq.v)

- stop_clock_SW (stop_clock_SW.v)

Technical Report, Queue Group, 2010 23

References
[1] B. A. Abderazek et al., 並列キュープロセッサの基本設計 Heiretsu Queue Processor no

Kihon Sekkei [Fundamental Design of a Parallel Queue Processor] the institute electronics.

Information and communication engineers, 2002 (in Japanese).

[2] M. Levy, “Multi-core technology: trends and design challenges,” The Embedded

Microprocessor Benchmark Consortium A Non-profit Association (EEMBC), Embedded Control

Europe, 2006.

[3] M. Peter, and K. Plamena, “Shared Memory Design for Multicore Systems,” International

Scientific Conference Computer Science, 2008.

 [4] P. Clancy, “Concurrency in Multi-Core Processor Design,” thesis, Haverford College

2007

[5] H. Hoshino, “Implementation of a Simple Queue Processor on a FPGA,” Technical Report,

Queue Group, 2009.

[6] H. Hoshino, “Advanced Hardware Oprimization Algorithms for High Performance Queue

Processor Architecture,” graduation thesis, School of Computer Science and Eng., Univ. of Aizu,

Fukushima, 2009.

[7] Y. Omoto, “Development Environment for Single Chip Computer intended for Queue

Computing Development and Education,” graduation thesis, School of Computer Science and

Eng., Univ. of Aizu, Fukushima, 2010.

[8] K. Kimura, 今さら聞けないマルチプロセッサの基礎教えます Imasara Kikenai

Multi-processor no Kiso Oshiemasu [Teach the Basic of Multi-processor], 18 Feb. 2005;

http://www.kumikomi.net/archives/2005/02/02multi.php.

[9] A. Asahara, 並列処理を体感してみよう Heiretsu Syori wo Taikan Sitemiyou [Feel the

Parallel Processing], 8 July. 2009;

http://www.atmarkit.co.jp/fcoding/articles/parallel/01/para01a.html.

[10] S. Kato, “Implementation of a Bus Arbitration –Functional specification-,” Technical

Report, Queue Group, 2010.

[11] S. Kato, “Implementation of a Bus Arbitration –Designing specification-,” Technical Report,

2010.

http://www.kumikomi.net/archives/2005/02/02multi.php

MQSoC, Report 2010 24

Appendix

8.1 Assembler (qasm_for_MQ.pl)

 We must write divided programs for four processor cores in assembly language by

ourselves. We must write “.data” in assembly file when we want to insert data to data

memory. We must write “.core0” or “.core1” in assembly file when we want to write

instruction in instruction memory of core0 or core1. We show the example of assembly

language program in Figure 12.

 We can convert the assembly language program to machine language program by the

assembler (qasm_for_MQ.pl).

Technical Report, Queue Group, 2010 25

Figure 18: Example of Assembly Language

8.2 Converting file (bin_to_hex.c)

This file is to convert the machine language program to “.hex” format program. We can load

this “.hex” format program in In System Memory Content Editor.

8.3 In System Memory Content Editor

We can use In System Memory Content Editor. We can reload the data and instruction in

the real time when we use this tool. The memory of Altera Megafunction is needed to use

this tool. The data of this memory is outputted after one cycle because this memory has a

register. We must modify top module (MQSoC_System_Quad.v) in this system to solute this

MQSoC, Report 2010 26

problem. We must assert the signal (Use_In_System_Memory) in top module if we want to

use In System Memory Content Editor. We show the block diagram of the memory in Figure

13.

Figure 19: Block Diagram of Altera Mega-function Memory

8.4 Source Files (Benchmark Programs)

8.4.1 Benchmark1 (


100

0i

i *


100

0j

j)

.data

base_data0:

 .word 0

 .word 1

 .word 2


~~~Skip~~~ 

.core0 

init: 

    seta0 exit              // infinity loop 

    setd0 base_data0        // load address of base_data0 

    setd1 j_sigma_Result0   // load address of j_sigma_Result 

    setd2 Result0           // load address of Result0 

// sigma j calculation (0+1+....+24+25) 

// First     

Load_level0: 

    ldw0 0 

    ldw0 1 

    ldw0 2 

    ldw0 3 



Technical Report, Queue Group, 2010  27 

 

    ldw0 4 

    ldw0 5 

    ldw0 6 

    ldw0 7 

    ldw0 8 

    ldw0 9 

    ldw0 10 

    ldw0 11 

    ldw0 12 

    ldw0 13 

    ldw0 14 

    ldw0 15 

    ldw0 16 

    ldw0 17 

    ldw0 18 

    ldw0 19 

    ldw0 20 

    ldw0 21 

    ldw0 22 

    ldw0 23 

    ldw0 24 

    ldw0 25 

Calculation_level1: 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

Calculation_level2: 

    add  0 



MQSoC, Report 2010  28 

 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

Calculation_level3: 

    add  0 

    add  0 

    add  0 

Calculation_level4: 

    add  0 

    add  0 

Calculation_level5: 

    add  0 

Store: 

    stw1 0           // store the result  to j_sigma_Result0 

 

// i calculation (0*j_sigma_Result0 + 1*j_sigma_Result0 +...+ 99*j_sigma_Result0 + 

100*j_sigma_Result0) 

// First 

Load_level0: 

    ldw0 0 

    ldw1 0 

    ldw0 1 

    ldw1 0 

    ldw0 2 

    ldw1 0 

    ldw0 3 

    ldw1 0 

    ldw0 4 

    ldw1 0 

    ldw0 5 

    ldw1 0 

    ldw0 6 

    ldw1 0 

    ldw0 7 

    ldw1 0 

    ldw0 8 



Technical Report, Queue Group, 2010  29 

 

    ldw1 0 

    ldw0 9 

    ldw1 0 

    ldw0 10 

    ldw1 0 

    ldw0 11 

    ldw1 0 

    ldw0 12 

    ldw1 0 

    ldw0 13 

    ldw1 0 

    ldw0 14 

    ldw1 0 

    ldw0 15 

    ldw1 0 

Calculation_level1: 

    mult 0 

    mult 0 

    mult 0 

    mult 0 

    mult 0 

    mult 0 

    mult 0 

    mult 0 

    mult 0 

    mult 0 

    mult 0 

    mult 0 

    mult 0 

    mult 0 

    mult 0 

    mult 0 

Calculation_level2: 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 



MQSoC, Report 2010  30 

 

    add  0 

    add  0 

    add  0     

Calculation_level3: 

    add  0 

    add  0 

    add  0 

    add  0 

Calculation_level4: 

    add  0 

    add  0 

Calculation_level5: 

    add  0 

Store: 

    stw2            // store result to Result0 

~~~Continue to other processor cores calculation~~~ 

Calculation_level1:

 mult 0

 mult 0

 mult 0

 mult 0

 mult 0

Calculation_level2:

 add 0

 add 0

Calculation_level3:

 add 0

Calculation_level4:

 add 0

Store:

 ldw2 0 // load result from Result3

 add 0

 stw2 0 // store result to Result3

set_flag:

 ldil 1

 stw3 0 // store 1 to Flag3

exit:

Technical Report, Queue Group, 2010 31

 jump0 0

8.4.2 Benchmark2-1 (


100

0i

i : level-order traversal)

.data

base_data0:

 .word 0

 .word 1

 .word 2

 .word 3

 .word 4

 .word 5

 .word 6

 .word 7

 .word 8

 .word 9

 .word 10

 .word 11

 .word 12

 .word 13

 .word 14

 .word 15

 .word 16

 .word 17

 .word 18

 .word 19

 .word 20

 .word 21

 .word 22

 .word 23

 .word 24

 .word 25

base_data1:

 .word 26

 .word 27

 .word 28

 .word 29

MQSoC, Report 2010 32

 .word 30

~~~Skip~~~ 

 

// instruction of core0 

.core0 

Init: 

    seta0 exit       // infinity loop 

    setd0 base_data0 // load address(0x000) 

    setd1 Result0    // load address for result of core0 

 

// First     

Load_level0: 

    ldw0 0 

    ldw0 1 

    ldw0 2 

    ldw0 3 

    ldw0 4 

    ldw0 5 

    ldw0 6 

    ldw0 7 

    ldw0 8 

    ldw0 9 

    ldw0 10 

    ldw0 11 

    ldw0 12 

    ldw0 13 

    ldw0 14 

    ldw0 15 

    ldw0 16 

    ldw0 17 

    ldw0 18 

    ldw0 19 

    ldw0 20 

    ldw0 21 

    ldw0 22 

    ldw0 23 

    ldw0 24 

    ldw0 25 



Technical Report, Queue Group, 2010  33 

 

Calculation_level1: 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

Calculation_level2: 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

    add  0 

Calculation_level3: 

    add  0 

    add  0 

    add  0 

Calculation_level4: 

    add  0 

    add  0 

Calculation_level5: 

    add  0 

Store: 

    stw1 0           // store the result to Result0 

 

// Finally 

    setd1 Flag1        // load address for flag of core1 

    setd2 Flag2        // load address for flag of core2 

    setd3 Flag3        // load address for flag of core3 

Check_flag1: 



MQSoC, Report 2010  34 

 

    ldw1  0            // load Flag1 of core1 

    compi 1            // condition code = Flag1 - 1 

    bne   Check_flag1  // if Flag1 != 1, branch Check_flag1 

Check_flag2: 

    ldw2  0        // load Flag2 of core2 

    compi 1        // condition code = Flag2 - 1 

    bne   Check_flag2  // if Flag2 != 1, branch Check_flag2 

Check_flag3: 

    ldw3  0            // load Flag3 of core3 

    compi 1            // condition code = Flag3 - 1 

    bne   Check_flag3  // if Flag3 != 1, branch Check_flag3 

 

Load_finally: 

    setd0 Result0 

    setd1 Result1 

    setd2 Result2 

    setd3 Result3 

    ldw0  0 

    ldw1  0 

    ldw2  0 

    ldw3  0 

Calculation_finally: 

    add  0 

    add  0 

    add  0 

 

Store: 

    setd0 Last_Result 

    stw0 0 

    halt 

 

    setd1 Flag1 

    setd2 Flag2 

    setd3 Flag3 

    ldil  0 

    ldil  0 

    ldil  0 

    stw1  0      // store 0 to Flag1 



Technical Report, Queue Group, 2010  35 

 

    stw2  0      // store 0 to Flag2 

    stw3  0          // store 0 to Flag3 

exit: 

    jump0 

 

// instruction of core1 

.core1 

~~~Continue to other processor cores calculation~~~ 

Calculation_level4:

 add 0

 add 0

Calculation_level5:

 add 0

Store:

 stw1 0 // store the result to Result3

set_flag:

 ldil 1

 stw2 0 // store 1 to Flag3

exit:

 jump0 0

8.4.3 Benchmark2-2 (


100

0i

i : use index register)

.data

N0:

 .word 25

N1:

 .word 50

N2:

 .word 75

N3:

 .word 100

Result0:

 .word 0

Result1:

 .word 0

Result2:

MQSoC, Report 2010 36

 .word 0

Result3:

 .word 0

Last_Result:

 .word 0

Flag1:

 .word 0

Flag2:

 .word 0

Flag3:

 .word 0

// instruction of core0

.core0

Init:

 setd0 N0

 setd1 Result0

 seta0 exit

 seta1 loop

 ldil 0

 ldw1 0

 mvr r0 // i = 0

 mvr r1 // Result0 = 0

loop:

 mvq r0 // QT <= i

 ldw0 0 // load N0

 comp 0 // condition code = i - N0

 bgt store

Calculation:

 mvq r0

 mvq r1

 add 0

 mvr r1 // Result0 = Result0 + i

 mvq r0 // QT = i

 addi 1 // i++

 mvr r0 // r0 = i++

 jump1 0 // branch to loop

Technical Report, Queue Group, 2010 37

store:

 mvq r1 // QT = Result0

 stw1 0 // memory <= Result0

Check_Flag1:

 setd1 Flag1

 ldw1 0 // load Flag1

 compi 1 // condition code = Flag1 - 1

 bne Check_Flag1

Check_Flag2:

 setd2 Flag2

 ldw2 0 // load Flag2

 compi 1 // condition code = Flag2 - 1

 bne Check_Flag2

Check_Flag3:

 setd3 Flag3

 ldw3 0 // load Flag3

 compi 1 // condition code = Flag3 - 1

 bne Check_Flag3

Last_calculation:

 setd0 Result0

 setd1 Result1

 setd2 Result2

 setd3 Result3

 ldw0 0

 ldw1 0

 ldw2 0

 ldw3 0

 add 0

 add 0

 add 0

Last_store:

 setd0 Last_Result

 stw0 0

 halt // inform end of instruction to processor

exit:

 jump0 0

// instruction of core1

MQSoC, Report 2010 38

.core1

Init:

 setd0 N1

 setd1 Result1

 setd2 Flag1

 seta0 exit

 seta1 loop

 ldil 26

 ldw1 0

 mvr r0 // i = 26

 mvr r1 // Result1 = 0

loop:

 mvq r0 // QT <= i

 ldw0 0 // load N1

 comp 0 // condition code = i - N1

 bgt store

Calculation:

 mvq r0

 mvq r1

 add 0

 mvr r1 // Result1 = Result1 + i

 mvq r0 // QT = i

 addi 1 // i++

 mvr r0 // r0 = i++

 jump1 0 // branch to loop

store:

 mvq r1 // QT = Result1

 stw1 0 // memory <= Result1

set_flag:

 ldil 1

 stw2 0 // Flag1 = 1

exit:

 jump0 0

// instruction of core2

.core2

Init:

Technical Report, Queue Group, 2010 39

 setd0 N2

 setd1 Result2

 setd2 Flag2

 seta0 exit

 seta1 loop

 ldil 51

 ldw1 0

 mvr r0 // i = 51

 mvr r1 // Result1 = 0

loop:

 mvq r0 // QT <= i

 ldw0 0 // load N2

 comp 0 // condition code = i - N2

 bgt store

Calculation:

 mvq r0

 mvq r1

 add 0

 mvr r1 // Result2 = Result2 + i

 mvq r0 // QT = i

 addi 1 // i++

 mvr r0 // r0 = i++

 jump1 0 // branch to loop

store:

 mvq r1 // QT = Result2

 stw1 0 // memory <= Result2

set_flag:

 ldil 1

 stw2 0 // Flag2 = 1

exit:

 jump0 0

// instruction of core3

.core3

Init:

 setd0 N3

 setd1 Result3

MQSoC, Report 2010 40

 setd2 Flag3

 seta0 exit

 seta1 loop

 ldil 76

 ldw1 0

 mvr r0 // i = 76

 mvr r1 // Result3 = 0

loop:

 mvq r0 // QT <= i

 ldw0 0 // load N3

 comp 0 // condition code = i - N3

 bgt store

Calculation:

 mvq r0

 mvq r1

 add 0

 mvr r1 // Result3 = Result3 + i

 mvq r0 // QT = i

 addi 1 // i++

 mvr r0 // r0 = i++

 jump1 0 // branch to loop

store:

 mvq r1 // QT = Result3

 stw1 0 // memory <= Result3

set_flag:

 ldil 1

 stw2 0 // Flag3 = 1

exit:

 jump0 0

8.4.4 Benchmark3 (Factorial Calculation: N! (N=3))
.data

N:

 .word 3

a:

 .word 0

b:

 .word 0

Technical Report, Queue Group, 2010 41

c:

 .word 0

d:

 .word 0

Flag1:

 .word 0

Flag2:

 .word 0

Flag3:

 .word 0

.core0

//First

init:

 seta0 loop

 seta1 Last_exit

 setd0 N

 setd1 a

 ldil 1 // index i = 1

 ldil 1 // a = 1

 mvr r0

 mvr r1

loop:

 mvq r0 // QT <= i

 ldw0 0 // QT <= N

 comp 0 // condition code = i-N

 bgt exit // if i>N, branch exit

calculate:

 mvq r0

 mvq r1

 mult 0 // a*i

 mvr r1 // a = a*i

 mvq r0 // QT <= i

 addi 1 // i++

 mvr r0 // r0 <= i++

 jump0 0 // branch to loop

MQSoC, Report 2010 42

exit:

 mvq r1 // QT <= a*i

 stw1 0 // memory <= a*i

Load_flag:

 setd1 Flag1

 setd2 Flag2

 setd3 Flag3

Check_flag1:

 ldw1 0 // load Flag1 of core1

 compi 1 // condition code = Flag1 - 1

 bne Check_flag1 // if Flag1 != 1, branch Check_flag1

Check_flag2:

 ldw2 0 // load Flag2 of core2

 compi 1 // condition code = Flag2 - 1

 bne Check_flag2 // if Flag2 != 1, branch Check_flag2

Check_flag3:

 ldw3 0 // load Flag3 of core3

 compi 1 // condition code = Flag3 - 1

 bne Check_flag3 // if Flag3 != 1, branch Check_flag3

 halt

Last_exit:

 jump1 0

.core1

//First

init:

 seta0 loop

 seta1 Last_exit

 setd0 N

 setd1 b

 setd2 Flag1

 ldil 1 // index i = 1

 ldil 1 // b = 1

 mvr r0

 mvr r1

loop:

Technical Report, Queue Group, 2010 43

 mvq r0 // QT <= i

 ldw0 0 // QT <= N

 comp 0 // condition code = i-N

 bgt exit // if i>N, branch exit

calculate:

 mvq r0

 mvq r1

 mult 0 // b*i

 mvr r1 // b = b*i

 mvq r0 // QT <= i

 addi 1 // i++

 mvr r0 // r0 <= i++

 jump0 0 // branch to loop

exit:

 mvq r1 // QT <= b*i

 stw1 0 // memory <= b*i

set_flag:

 ldil 1

 stw2 0 // Flag1 = 1

Last_exit:

 jump1 0

.core2

//First

init:

 seta0 loop

 seta1 Last_exit

 setd0 N

 setd1 c

 setd2 Flag2

 ldil 1 // index i = 1

 ldil 1 // c = 1

 mvr r0

 mvr r1

loop:

MQSoC, Report 2010 44

 mvq r0 // QT <= i

 ldw0 0 // QT <= N

 comp 0 // condition code = i-N

 bgt exit // if i>N, branch exit

calculate:

 mvq r0

 mvq r1

 mult 0 // c*i

 mvr r1 // c = c*i

 mvq r0 // QT <= i

 addi 1 // i++

 mvr r0 // r0 <= i++

 jump0 0 // branch to loop

exit:

 mvq r1 // QT <= c*i

 stw1 0 // memory <= c*i

set_flag:

 ldil 1

 stw2 0 // Flag2 = 1

Last_exit:

 jump1 0

.core3

//First

init:

 seta0 loop

 seta1 Last_exit

 setd0 N

 setd1 d

 setd2 Flag3

 ldil 1 // index i = 1

 ldil 1 // d = 1

 mvr r0

 mvr r1

loop:

Technical Report, Queue Group, 2010 45

 mvq r0 // QT <= i

 ldw0 0 // QT <= N

 comp 0 // condition code = i-N

 bgt exit // if i>N, branch exit

calculate:

 mvq r0

 mvq r1

 mult 0 // d*i

 mvr r1 // d = d*i

 mvq r0 // QT <= i

 addi 1 // i++

 mvr r0 // r0 <= i++

 jump0 0 // branch to loop

exit:

 mvq r1 // QT <= d*i

 stw1 0 // memory <= d*i

set_flag:

 ldil 1

 stw2 0 // Flag3 = 1

Last_exit:

 jump1 0

MQSoC, Report 2010 46

Updated information
date Contents details version

12/14 New Create 1.0

1/13 Modify Created 1.0

1/24 Modify Add source code in Appendix

1.1

