Technical Report, Queue Group, 2010

[UNIVERSITY OF AlIZU]

Architecture and
Design of Shared
Memory Multi-Queue
Core Processor

Multi-Queue core System on a Chip (MQSoC)
Report

Shunichi Kato

2011/1/24

1
2

Contents

0T doTe 1L Tl (o) o WP 4

Shared Bus Problemc.cooiiiie ettt ettt e ettt e et e et e et eeneeas 4
2.1 Mechanism of Shared Bus Problemi...........coociiiiiiiiiiiie et 4
2.2 Solution of Shared Bus Problemcccociiiiiiiiiiiieii et 5

MQSO0C SyStem ATCRITECEULE.uveeeieiiiieeiiiieeee et eeeee e e e e e e e e e e e e eeeeeeeeeaareeeeeaeeeeannnes 7
3.1 Bus Arbitration Mechanism (BAM)c.cccoooviuiieieuieieeeteeeeeeeeeee ettt en e 7
3.1.1 () =2 DN 1A: L nTo) s WU RO PR ERRRRUR 8
3.1.2 Algorithm of Bus ArDItrationcoooeiiuiiiiiieiiieeceeeee e e e earrreeea e 9
3.1.3 AlGOrithim Of WaIt_COTE.....ccouivvieiiie et e e e e e e e e e e e e e eeetrrreeaaeeeas 10
3.1.4 Scheduling and FallNesscoooouviiiiiii e e e ee et e e e e e e e aaneeens 10
3.1.5 Timing chart of Bus ArDItration.....cccceiiiiiiiiiiiieeeee et eeee e ee e e e e eeaaes 10
3.1.6 {00} <Y el ' 1< R 11
B3\ Y 1Y s Yo s) Y- VT WU 13
3.2.1 Data MemOTY ..cccoooeeiiieeeeeeeeeeeee 13
3.2.2 T-5egMENt LIED ...t nnan 13
3.2.3 Instruction MemOTYooooiiiiiiiieeeee 13

Evaluation of MQS0C SYSEEM...cc.uviiiiiiiiii ittt ettt e et e e eeir e e e stbe e e e sttaae s eabraeeenasreeaas 14
4.1 SyNthesis ReSUILS ...oooiiiieeeeee et e e e e e e e e e e e e e e arraees 14
4.2 Benchmark Programs............cccccoiiiiiiiii 14

100 100

> 2
4.2.1 Benchmark1 () e e e et r e et e e eaaaeas 15

i=0 j=0

100
4.2.2 Benchmark2-1 (Z I) ettt e et ee—e e e e et e e et e aa—e e et e raeaaaae e 16
i=0
100
4.2.3 Benchmark2-2 (Z I) ettt bttt b kbRt e h bbb Rttt ettt nen e 16
i=0
4.2.4 Benchmark3 (Factorial Calculation: N (IN=8))oeeoeeeeoieeeeee e eeee e eeeeeeeeeeeeeeeeeeeeeeee e 16
4.3 Assumption of each benchmark Programsccveeeeieiiiieiiieeeeeeeeeeeeeeeeee e eeeearee e e e e eeeeareeeees 18
4.4 Evaluation REeSUILS.....coooviiiiiiii ettt e e e e e et et s e e e e e e e e as 18
4.5 Discussion of Evaluation Results.......ccccooiiiiiiiiiiiii 19
5 CONCIUSION cooiiiiiiiiiii 20
6 FUBULE WOTK oottt e e e e ettt e e e e e et e e e eeeeeeeeesansseeeenes 20
7 SEEUCTULE OF IMMOAULES ...ovvvvviiiiiiiiiiiiiiiiiiiettte ettt ettt ettt ettt et et e s et et e s e e e e s e s e s s e s s s b e s asasaaaasaaaaasaasasanaees 21
RELOTCIICES oo 23
J o) 13 0 Lo 1 - SRR 24

MQSoC, Report 2010 2

8.1 Assembler (Gasm_for IMQ.PL)coioriiieeeeeeeeeeee ettt ettt ettt ere e 24
8.2 Converting file (DIN_t0_NEX.C)....ccciiuiiuieeeeeeieeeeeeee et ettt ee e e ee e e eeeeee e e eeeae e 25
8.3 In System Memory Content Editor..........coooiiiiiiiiiiiiiiiiieeee e 25
8.4 Source Files (Benchmark Programs)cccccceiieieieieiieeeeeeeeeeeeeeeeeeseeseeseeseeseeseeeesesseeneas 26
100 100
8.4.1 Benchmark1 (Z L. Z J) ettt bttt b bbbt s ettt s bt s s ne e 26
i=0 j=0
100
8.4.2 Benchmark2-1 (Z I 2 level-order traversal)...............ececeeeeeeeeeeeeeeeeeeeeeeeeeeeee s 31
i=0
100
8.4.3 Benchmark2-2 (Z I D USE INAEX TOGISLEL) ... eneanes 35
i=0
8.4.4 Benchmark3 (Factorial Calculation: N! (N=38)).......cccooiiiiiiiiieieeeeeeeeeeeeee e 40
Updated INFOXIIATIONuvviiiiiiiiieciieeeee et e eeee et e e e e e et eeeeeeeeeeeaaaeeeeeeeeeeenaraeeeeeeeeeenssreenens 46

Technical Report, Queue Group, 2010 3

1 Introduction

Nowadays, processor performance cannot be achieved by simply increasing clock frequency. In
addition, the single core chip architecture is scaled well due to various design challenges.
Multicore systems with a large number of cores have been proposed to take advantage of
micro-electronics development. Multicore systems are emerging as solutions for high
performance embedded and general purpose computing.

However, although important works have been achieved in the design and implementation of
such systems, the issue of synchronization mechanisms and memory arbitration has not been
properly investigated yet.

Queue computing was earlier proposed in our laboratory. A queue processor has several
promising advantages over register-based machines. First, queue programs have higher
instruction level parallelism because they are constructed with a breadth-first algorithm.
Second, queue based instructions are shorter because they don’t need to specify operands
explicitly. That is, data is implicitly taken from the head of operand queue and the result is
implicitly written at the tail of the operand queue. This characteristic makes instruction lengths
shorter and independent from the actual number of physical queue words. Finally, Queue based
instructions are free from false dependencies. This characteristic eliminates the need for register
renaming.

In this thesis, we propose architecture and design of a multicore system based on a simple
Queue core and a new bus arbitration mechanism. All cores in the system are connected via a
shared bus and communicate using shared memory.

In this thesis, we first discuss the communication and arbitration problems issue. In the second
part, a new bus arbitration mechanism (BAM) is proposed, evaluated and discussed in detail.
The remaining part of the thesis discusses the architecture and evaluation results of a multicore

system, named Multi-Queue core System on a Chip (MQSoC).

2 Shared Bus Problem

Efficient communication between the cores is a key design issue in any systems. In previous
studies, there has been a heavy focus on either hardware or software to provide facilities for this
communication. In the multicore systems on Field Programmable Gate Array (FPGA), the focus
on higher-level layer, or the communication arbitration, has given rise to more flexible systems

that provide good speed-up and low cost.

2.1 Mechanism of Shared Bus Problem

The shared bus problem occurs in multi-core system. We show the mechanism of this
problem in Figure 1. The accesses conflict to the shared bus if two or more processors try to

access the bus. One processor core can only access the shared bus per one clock cycle when

MQSoC, Report 2010 4

shared memory has single port.

[Shared Bus]

Shared Memory [I/Os J

Figure 1° Mechanism of Shared Bus Problem

2.2 Solution of Shared Bus Problem

We add the bus arbitration to solute this problem. This bus arbitration is that the method
to decide which a processor core is given access to the shared bus and this is essential to
extend from a single-core system to a multi-core system. We show the action of bus
arbitration in Figure2. When a core0 and a core2 try to access the shared bus, the core0 can
access the bus if the core0 get the grant for an access from bus arbitration.

A programing model is similar to multi-threading on single-core system (but threads run
on different processors). A number of processor cores looks like one processor core from

shared memory and I/O peripherals to add this bus arbitration.

Technical Report, Queue Group, 2010 5

Shared Bus

e

Figure 2 Solution of Shared Bus Problem

MQSoC, Report 2010 6

3 MQSoC System Architecture

The MQSoC System is a multi-core system that extend queue processor core from one processor
core to four processor cores and add the bus arbitration. The bus arbitration includes the
wait_core block. We call some processor cores, wait_core, and bus arbitration the Core System.
This wait_core block and bus arbitration is important area in this system. Each core has each
instruction memory. A divided program is written on each instruction memory. One processor
core can only access this memory because the shared data memory has single port. The I/O
peripherals are mapping by memory mapped I/0. We show block diagram of MQSoC system

architecture in Figure3. We discuss the Core_System in next parts.

Instruction Instruction Instruction Instruction
Memory Memory Memory Memory

‘ | | | | | | | | | | |]
Data, Address, Data, Address, \
I Enable sign Enable signal l
I wait_to_core0 wait_to| corel wait_to_core2 wait_to |core3 I
Control glqck signal I
l ’l' N Control clock signal ’
Bus Arbitration < Data, Address, Enable sthal -
] | | | | |

&, _Data, Address, Enable signal
| | | | |] []

Core_System

Data memory

(single port)

Figure 3: M@SoC system architecture

3.1 Bus Arbitration Mechanism (BAM)

The bus arbitration and wait_core block control accesses for the shared bus from many
processor cores. Many processor cores looks like one processor core from shared memory and
I/0 peripherals because one processor core can only access the bus per one cycle by adding

these two blocks. We don’t need to change other architecture.

Technical Report, Queue Group, 2010 7

3.1.1 Organization

We show creating the bus arbitration module (Core System) that in Figure 4. The

wait_core block exists at each processor core. The bus arbitration module has 3 inputs

by each processor core. These inputs are Address, Data, Control (Enable signal). The

main outputs of this module are Address, Data, Control (Enable signal). These outputs

are similar to single-queue core system. Nothing is changed about how memory is

accessed and connected the bus arbitration to processor cores is straightforward. The

additional outputs are used to make decisions used in wait_core block. We discuss

details of bus arbitration mechanism.

OP_0 PeripheralData

GP_0_PeripheralCont rol
P_0_Peripheral Address

GP_I_Peripherallata

corel WF I IntiAddress int_address
GP_I_Int_Req] int_reg
from_wait_core RESET (LK
reset clk
wait to_corell cou_select
two_or_more
wait_corell rontrol
adrs
CPL_Nim
f rom_cpu
to_cpu
we
0

MQSoC, Report 2010

Oatal To

Addres=0 Control0 Datal_From

counter_value

two_or_more

Controll_to wait

hddress
Oata Out

Oata_In

Cont rol

CLK
RESET

Bus Arbitration

Figure 4. Block diagram of core system

3.1.2 Algorithm of Bus Arbitration

The bus arbitration can takes “Control” (read and write enable) as accessing signal
from each processor core if a processor core try to access the shared memory. These are
two important cases to handle. First case is that either zero or one processor core tries
to access the shared memory. Second case is that two or more processor cores try to
access the shared memory. In first case, the bus arbitration correctly sends the address,
data, and control signal to the shared bus. In second case, the bus arbitration sends
“two_or_more=1" signal to wait_core block. The bus arbitration decide accessible

2 [13

processor core by “two_or_more”, “counter_value”, and “wr[3:0]” that write and read
enable signal for all processor cores. The information of selected processor core is sent to
wait_core block. The address, data, and control signal are sent to the shared bus in last

state of this bus arbitration. We show the block diagram of bus arbitration in Figure5.

Control0[1]
Cort ral0L0]

Contral1[1]
Contral 1007

Cortral2[1]
ContralZ[0]

Contral3[1]
Control3[0]

Control0——Controll_to wait
Cont rol1——Cortrol1 _to_wait
Control? ——Control? to wait

Control3 ——Control3 _to wait

CLIk —ck

calculate two_or_more

|:in out

RiT

RESET——

counter

Address(0~3) —
Datal(0~3) From

Cont rol (0~3) —

counter_value

Data_[n —

Address(0~3)_bus
write_data(l~3)

Cont rol (0~3) _bus

read_data

read datal0~3)

wrl3:0]
two_or_more
() 00 —3 bddress_bus|— shddress
write_data|—sData Out

| —

wrl 0l Control _bus ——Cont rol

two of More core_select
b 10— cpu_select | cpu_select
w3 11—
counter_value send_bus_core

Figure 5 Block Diagram of Bus Arbitration

Data (UWSL_TO

Technical Report, Queue Group, 2010

3.1.3 Algorithm of wait_core

The wait_core block receives three information signals from bus arbitration. This block
sends “wait_to_core=1" signal to the processor core when these three signal condition is
true. The PC of processor core that receives the “wait_to_core=1" from wait_core block
doesn’t update. Condition is that “cpu_select = cpu_num”, “two_or_more=1", and

“Control=1". We show the block diagram of wait_core in Figure 6.

Control[1] j ;
Control[0]
two_or _more El:)— wait to core

CRLU_NUm—3 SU_nidm

ot
cpu_select—1in

COMIE e _num

Figure 6° Block Diagram of wait_core
3.1.4 Scheduling and Fairness

We select the Round Robin for scheduling because a system needs to be implemented
such that all processor cores have the same priority. The Bus arbitration rotates
through processor cores on every clock tick by counter. We show the example of

scheduling in Figure 7.

Counter Accessible core

00 Core0
01 Corel
10 Core2
11 Core3

Figure 7° Example of Scheduling
3.1.5 Timing chart of Bus Arbitration

We show a timing chart of Bus Arbitration in Figure 8. In a case of this timing chart,
processor cored is selected in first. The processor core that receives the “wait_to_core=1"

from wait_core block doesn’t update PC of it.

MQSoC, Report 2010 10

clock
wait_to_core(wait
wait_to_corel | wait
wait_to _core2 | wait
wait_to_core3
PCO 05% . 0x02 = 0x03 | 0x04
PC1 Ox01 > - 0x02 = 0x03
PC2 0x01 > - 0x02
PC3 0x01 |//0x02 & 0x03 | Ox04 | OxOS
Instruction0 [Load | NextInstruction |
Instructionl [iLoad][Next Instruction]
Instruction2 [' Load Lmﬁ_:];:_:m_J
Instruction3 | Load Next Instruction]
Not update

Figure 8 Timing Chart of Bus Arbitration
3.1.6 Correctness

We show the waveform of scheduling in Figure 9. The core3 is selected by bus
arbitration when the “cpu_select” signal is 3. Then, the “wait_to_core” signals of other
processor core are high (1) and the processor core3 can access the shared bus. The core0
is selected by bus arbitration in next clock edge because the “cpu_select” signal is 0. The
“wait_to_core” signals of corel and core2 are high (1) and the processor core0 can access
the shared bus in same way. Nothing processor core are selected when the “cpu_select”
signal is 7 (3’'b111).

We also see the waveform of bus arbitration in Figure 10. The instruction that 5000 is
add instruction and 4400 is load instruction. The “wait_to_core” signals of not selected
processor are high (1) when four processor cores try to access the shared bus by load
instruction. In this time, the “wait_to_core0”, “wait_to_corel”, and “wait_to_core2”
signals are high (1) and the not selected processor core don’t update the PC of it. This

bus arbitration is correctness because this waveform in simulation is same that the

timing charts of Figure 8.

Technical Report, Queue Group, 2010 11

[Bus_arhikration
[Bs_arhikration)

[Bus_Arbitrationfcounter _walue

500 G40
B000 [$4400
cstem/Instruckiond |xoooe [53305 050000 qamn

Figure 10° Waveform of Bus Arbitration

MQSoC, Report 2010 12

3.2 Memory Space

This MQSoC System has next memory space.

3.2.1 Data Memory

® Capacity: 32bits * 2048words = 8KB

® Address space: 0x00000000~0x000007FF
3.2.2 7-segment LED

® Address: 0x80000000
3.2.3 Instruction Memory

® Capacity: 16bits * 1024words = 4KB

® Address space: 0x00000000~0x000003FF

Technical Report, Queue Group, 2010

13

4 Evaluation of MQSoC System
4.1 Synthesis Results

We show the hardware results in Figure 11. The complexity of each system is given as the
number of the Logic Elements (LEs). The speed indicates the maximum frequency that each
system correct runs. The power indicates the thermal power dissipation. Number of the LE
in dual core system is 1.94 times it in single core system. This result indicates that the LE in
dual core system is not twice it in single core system if we double the number of processor
and add the bus arbitration. Each multi-core system correct runs when the frequency is less

than 24MHz. The thermal power dissipation grows by being proportional to the number of

LEs.
Single core Dual core Quad core
LEs 4,879 9,460 18,554
Speed (MHz) 29.17 24.05 27.25
Power (mW) 127.66 130.75 139.83

Figure 11° Hardware Results

4.2 Benchmark Programs

We evaluate the MQSoC System by three benchmark programs. We divide the one
benchmark program into four programs for each processor core in assembly language level.
We use a level-order traversal because this system uses queue processor. We show the

example of assembly program in queue computing in Figurel2.

MQSoC, Report2000 14

[dwl 18
ldw0 19
|dw0 20
ldw0 21 =
|dw0 22
|dw0 23
|dw0 24
Calculation Tevell:
add 07
add
add
add
add
add
add
add
add
add
add
add
Calculati
add
add
add
add
add
add
Calculatio
add 0
add 0
add 0
Calculation_leveld:
add 0
add 0

Calculation_levelb:

L Same Calculation Level
(Instruction Level Parallelism)

level?:

{

SO OODO0 OO

—
=

vel3:

stwl 0 e

Figure 12: Assembly program

100 100

-

4.2.1 Benchmarkl(zol Z(;' J)
i= J=

This benchmark calculate product of from 0 to 100 and from 0 to 100. This program is

divided for each processor core. First, sum of from 0 to 25 is calculated in the core0. Sum

Technical Report, Queue Group, 2010 15

of from 26 to 50 is calculated in the corel and also other value is calculated in same way.
Each processor core stores the flag to the shared memory after each calculation. Second,
product of from O to 100 and previous results (core0: O+1+...+24+25, corel:
26+27+...449+50, core2: 51+52+...+74+75, cored: 76+77+...499+100) is calculated in
each processor core. Finally, the coreO calculate last result from each result on the
shared memory after that the coreO check flags of other processor core on the shared
memory.

100

4272 Benchmark?2-1 (Zoli)

This benchmark calculate sum of from 0 to100. We show the data flow graph in Figure
13. This program is divided for each processor core. Sum of from 0 to 25 is calculated in
the core0. Sum of from 26 to 50 is calculated in the corel and also other value is
calculated in same way. Each processor core stores the flag to the shared memory after
each calculation. Finally, the core0O calculate last result from each result on the shared
memory after that the coreO check flags of other processor core on the shared memory.

100

4.2.3 Benchmark?2-2 (Zoli)

This benchmark calculate sum of from 0 to100. But, this benchmark program does not
use level-order traversal to decrease the number of the memory accesses in the same
cycle. We show the data flow graph in Figure 14. This program is divided for each
processor core. Sum of from 0 to 25 is calculated to use SPR (Special Purpose Register)
in the core0. The SPR is used for index register of a loop. Sum of from 26 to 50 is
calculated to use it in the corel and also other value is calculated in same way. Each
processor core stores the flag to the shared memory after each calculation. Finally, the
core0 calculate last result from each result on the shared memory after that the core0
check flags of other processor core on the shared memory. In this benchmark2-2, the

number of the memory accesses is less than it in benchmark2-1.

4.2.4 Benchmark3 (Factorial Calculation: N! (N=3))

This benchmark calculates the factorial calculation and four times same calculation on
a program. In single core system, four times calculation are calculated on one processor
core. In dual core system, twice calculation is calculated on each processor core. In quad
core system, one calculation is calculated on each processor core. Finally, all processing
will finish after that the coreO check flags of other processor core on the shared memory.

In this benchmark3, the number of memory accesses is fewer.

MQSoC, Report 2010 16

Result2 Result3

Figure 13 Data flow of BenchmarkZ2-1

Result0=0+1+...+24+25 Result1=26+27+...+49+50
Core2 Core3
Same data flow as core0, corel Same data flow as core0, corel, core2
Result2=51+52+...+74+75 Result3=76+77+...+99+100

Figure 14: Data flow of Benchmark2-2

Technical Report, Queue Group, 2010 17

4.3 Assumption of each benchmark

programs

We show the assumption of each benchmark programs in Figure 15. All instructions are
processed by two cycles on a FPGA. We indicate the code size and the number of memory
accesses by the assumption. The percentage of memory accesses in the Benchmarkl
program is the most all of it benchmark programs. On the other hand, the percentage of it in
the Benchmark3 program is the fewest all of it in benchmark programs. The number of

memory accesses is very important in shared memory multi-core system.

. Number of memory accesses Percentage of memory access in
Code Size .
) Load Store a program (Code size / memory
(Lines)
accesses)

Benchmarkl 2391 940 39 41.4%
Benchmark?2-1 459 108 11 26.0%
(level-order
traversal)
Benchmark2-2 196 15 8 11.7%
(use index register)
Benchmark3 182 7 7 7.7%

Figure 15° Assumption of Benchmark programs

4.4 Evaluation Results

We show two evaluation results in Figure 16 and Figure 17. One evaluation results in
Figure 16 indicate the standard evaluation results by processing cycles and waiting cycles.
Another evaluation results in Figure 17 indicate the evaluation results on number of
memory accesses by processing cycles and waiting cycles because the number of memory
accesses 1s very important in the shared memory multi-core system. The waiting cycles
indicate the cycles that other processor cores wait the memory access when two or more

processor cores try to access the shared memory.

Single core Dual core Quad core
Processing Waiting Processing Waiting Processing Waiting
cycles cycles cycles cycles cycles cycles
Benchmark1l 1289 0 1615 940 2451 1,890
Benchmark2-1 477 0 353 166 361 204
Benchmark3 473 0 263 4 171 12

MQSoC, Report 2010 18

Figure 16 Evaluation Results

Percentage Single core Dual core Quad core

of memory Processing Waiting Processing Waiting Processing Waiting

accesses cycles cycles cycles cycles cycles cycles
Benchmark2-1 26.0% 477 0 353 166 361 204
(level-order
traversal)
Benchmark2-2 11.7% 2477 0 1323 2 779 8

(use index register)

Figure 17 Evaluation Results on number of memory accesses

4.5 Discussion of Evaluation Results

In the Benchmarkl, the more the number of processor core increase, the more the
processing cycle increase because the waiting processor cores increase by increasing the
memory accesses. The waiting cycles indicate the basis for this discussion. Actually, the
waiting cycle makes up 58.2% in the dual core system and 77.1% in the quad core system. In
the Benchmark?2-1, the number of the processing cycle in the dual core system is the fewest
all of it. This result also indicate same basis of the discussion in the Benchmarkl. The
number of processing cycle in the quad core system is more than it in dual core system
because the memory accesses make up 26% in this program. In the Benchmark3, the
number of processing cycle in the quad core system is the fewest all of it. The number of
processing cycle in the quad core system is 36.1% it in the single core system and 65% it in
the dual core system because the number of the memory access is few. From these results,
trying to decrease the number of the memory access (waiting cycle) affects improving
performance in the shared memory multi-core system.

We also compared the Benchmark2-2 with Benchmark2-1 in Figure 17 because to discuss
the change of the number of the processing cycle by the increasing and decreasing of the
number of the memory access. In the Benchmark2-2, the number of the waiting cycle
drastically decreases by decreasing the number of the memory access. And the number of
the processing cycle in the quad core system is the fewest all of it. However, all of the
number of the processing cycle in the Benchmark2-2 is more than it in the Benchmark2-1.
As a result, the data flow of queue computing (level-order traversal) is better than trying to

decrease the memory accesses.

Technical Report, Queue Group, 2010 19

5 Conclusion

In order to control the memory accesses from some processor cores, which is important in the
shared memory multi-core system, the BAM was implemented in this study. It was found that
the memory accesses needed to be optimized in the software program (Benchmark program).
The performance in multi-core system worsens when the memory accesses from some processor
cores are too much in the same cycle. On the other hand, the performance in multi-core system
improves as the number of the processor core increases when the memory accesses are optimized
in the software program (Benchmark program). In summary, to control the memory accesses
that the BAM in the hardware and to optimize the memory accesses in the software are the two

main issues in a shared memory multi-core system.

6 Future work

To optimize the memory accesses was one of the main issues in our system. Adding a cache is
one solution to this issue. It will be able to decrease the memory accesses by reading the data
from the cache. Also a compiler and a parallel programing are very important issues to improve
the performance in the multi-core system. To optimize the software (application) for the

multi-core system also improves the performance.

MQSoC, Report 2010 20

7 Structure of Modules

MQSoC_System_Quad (MQSoC_System_Quad.v)
Core_System (Core_System.v)
» Bus_Arbitration (Bus_Arbitration.v)
< calculate_two_or_more (calculate_two_or_more.v)
< core_select (core_select.v)
< counter (counter.v)
< send_bus_core (send_bus_core.v)
> core0 (QP_CPU.v)
< fu0 (QP_FU.v)
du0 (QP_DU.v)
qcu0 (QCU.v)
iu0 (QP_IU.v)
eu0 (QP_EU.v)
mu0 (QP_MU.v)
wbu0 (QP_WBU.v)
< qp_c0 (QP_CONTROLLER.v)

» wait_core0 (wait_core.v)

R IR IR

< compare_num (compare_num.v)
corel (QP_CPU.v)
wait_corel (wait_core.v)
core2 (QP_CPU.v)
wait_core2 (wait_core.v)
core3 (QP_CPU.v)

» wait_core3 (wait_core.v)

vV V V V V

Instruction_Memory_core0 (imem0.v)
Instruction_Memory_corel (imem1.v)
Instruction_Memory_core2 (imem2.v)
Instruction_Memory_core3 (imem3.v)
LED_controller (LED_controller.v)
> LED_chip_selector0 (LED_chip_selector.v)
> LED_interface0 (LED_interface.v)
< LED_decO (LED_decoder.v)
< LED_decl (LED_decoder.v)
< LED_dec2 (LED_decoder.v)
< LED_dec3 (LED_decoder.v)
< LED_dec4 (LED_decoder.v)

Technical Report, Queue Group, 2010

21

< LED_dec5 (LED_decoder.v)
< LED_dec6 (LED_decoder.v)
< LED_dec7 (LED_decoder.v)
PERI_KEY (PERI_KEY.v)
PERI_SW (PERI_SW.v)
PERI_MEM (PERI_MEM.v)
> data_memory (dmem.v)
chattering (chattering.v)
frq (frq.v)
stop_clock_SW (stop_clock_SW.v)

MQSoC, Report 2010

22

References

[1] B. A. Abderazek et al., W5I¥ = —7 vt v OREAFEE Heiretsu Queue Processor no
Kihon Sekkei [Fundamental Design of a Parallel Queue Processor] the institute electronics.
Information and communication engineers, 2002 (in Japanese).

[2] M. Levy, “Multi-core technology: trends and design challenges,” The Embedded
Microprocessor Benchmark Consortium A Non-profit Association (EEMBC), Embedded Control
Europe, 2006.

[3] M. Peter, and K. Plamena, “Shared Memory Design for Multicore Systems,” International
Scientific Conference Computer Science, 2008.

[4] P. Clancy, “Concurrency in Multi-Core Processor Design,” thesis, Haverford College
2007

[5] H. Hoshino, “Implementation of a Simple Queue Processor on a FPGA,” Technical Report,
Queue Group, 2009.

[6] H. Hoshino, “Advanced Hardware Oprimization Algorithms for High Performance Queue
Processor Architecture,” graduation thesis, School of Computer Science and Eng., Univ. of Aizu,
Fukushima, 2009.

[71 Y. Omoto, “Development Environment for Single Chip Computer intended for Queue
Computing Development and Education,” graduation thesis, School of Computer Science and
Eng., Univ. of Aizu, Fukushima, 2010.

[8] K. Kimura, 5 &bl wnw~1rF oty o E#EH %2 £79 Imasara Kikenai
Multi-processor no Kiso Oshiemasu [Teach the Basic of Multi-processor], 18 Feb. 2005;
http://www.kumikomi.net/archives/2005/02/02multi.php.

[9] A. Asahara, WAL &2 K&K L CH X 9 Heiretsu Syori wo Taikan Sitemiyou [Feel the
Parallel Processingl], 8 July. 2009;
http://[www.atmarkit.co.jp/fcoding/articles/parallel/01/para0Ola.html.

[10] S. Kato, “Implementation of a Bus Arbitration —Functional specification-,” Technical
Report, Queue Group, 2010.

[11] S. Kato, “Implementation of a Bus Arbitration —Designing specification-,” Technical Report,

2010.

Technical Report, Queue Group, 2010 23

http://www.kumikomi.net/archives/2005/02/02multi.php

Appendix

8.1 Assembler (gasm _for_MQ.pl)

We must write divided programs for four processor cores in assembly language by
ourselves. We must write “.data” in assembly file when we want to insert data to data
memory. We must write “.core0” or “.corel” in assembly file when we want to write
Instruction in instruction memory of coreO or corel. We show the example of assembly
language program in Figure 12.

We can convert the assembly language program to machine language program by the

assembler (qasm_for_MQ.pl).

MQSoC, Report2000 24

A Benchmark:

A Sigma Calculation

A buthor: Shunichi Kato
A Date: 2010/12/09

A For [uad core

.dat
baze_datal:
cword 0

cword 1

cword 2
Rt
sword U

! “1 n=truction of corel

setal exit A5 infinity loop
cetd) base datal // load address(0x000)
setd] Resultl /¢ load address for result of corel

A First

Load_levell:
[0
[1

ldwl 2
[l 3

Jumpel]

ruct ion of corel

setall exit Aintinity loop

zetd] base datal /¢ load address

zetd] Resultl A |load address for result of corel
zetd? Flagl A load address for flaz of corel

Figure 18° Example of Assembly Language

8.2 Converting file (bin_to_hex.c)

—— (Unix)— Benchmarkd quad.s 233 (121,0) (hesembler) ————[

This file is to convert the machine language program to “.hex” format program. We can load

this “hex” format program in In System Memory Content Editor.

8.3 In System Memory Content Editor

We can use In System Memory Content Editor. We can reload the data and instruction in

the real time when we use this tool. The memory of Altera Megafunction is needed to use

this tool. The data of this memory is outputted after one cycle because this memory has a

register. We must modify top module (MQSoC_System_Quad.v) in this system to solute this

Technical Report, Queue Group, 2010

25

problem. We must assert the signal (Use_In_System_Memory) in top module if we want to
use In System Memory Content Editor. We show the block diagram of the memory in Figure
13.

drrermn

data[31..0]
WFEN

addrezs[10..0] _D_

32 bits
2045 hards

clock

Black type: AUTO

Figure 19° Block Diagram of Altera Mega-function Memory

8.4 Source Files (Benchmark Programs)
100 100

8.4.1 Benchmarkl (Zoli*_z(; j)
1= J=

.data

base _data0-
.word 0
.word 1

.word 2

~~~Skip~~~
.core0
init’
setal exit // infinity loop
setd0 base data0 // load address of base _data0
setdl j_sigma_Result0 //load address of j_sigma_Result
setd2 ResultO // load address of Result0
// sigma j calculation (0+1+....+24+25)
// First
Load levelO:
1dw0 0
1ldwo0 1
1ldw0 2
1ldwo0 3

MQSoC, Report 2010 26



1dw0 4

1ldw0 5

1dwo0 6

ldwo0 7

1dw0 8

1dw0 9

1dw0 10

1ldw0 11

1ldw0 12

ldw0 13

1Idw0 14

1dwo0 15

1dw0 16

1dw0 17

1dw0 18

1dw0 19

1dw0 20

1dw0 21

1dw0 22

1dw0 23

1dw0 24

1dw0 25
Calculation levell:

add 0

add

add

add

add

add

add

add

add

add

add

add

add 0
Calculation level2:

add 0

QA 3 T T © © & & © ©

Technical Report, Queue Group, 2010

27



add

add

add

add

add 0
Calculation level3:

add 0

add 0

add 0
Calculation level4:

add 0

add 0
Calculation level5:

add 0
Store:

S S S O

stwl 0 // store the result toj sigma ResultO

/I calculation (0% _sigma_Result0 + 1% _sigma_ ResultO +..+ 99% sigma ResultO +
100%_sigma_Result0)
// First
Load levelO:-
1Idwo0 0
Idwi 0
1dw0 1
Idwi 0
Idwo0 2
Idwi 0
Idwo 3
Idwi 0
Idw0 4
Idwi 0
Idw0 5
Idwi 0
Idw0 6
Idwi 0
Idwo 7
Idwi 0
Idwo0 8

MQSoC, Report 2010 28



ldwl 0

1dw0 9

ldwl 0

1dw0 10

ldwl 0

1ldw0 11

ldwl 0

1ldw0 12

ldwl 0

ldw0 13

ldwl 0

1dw0 14

ldwi 0

1dwo0 15

ldwi 0
Calculation levell:

mult 0

mult 0

mult 0

mult 0

mult 0

mult 0

mult 0

mult 0

mult 0

mult 0

mult 0

mult 0

mult 0

mult 0

mult 0

mult 0
Calculation level2:

add 0

add

add

add

add

S S < O

Technical Report, Queue Group, 2010

29



add 0
add 0
add 0
Calculation level3-
add 0
add 0
add 0
add 0
Calculation leveld:
add 0
add 0
Calculation level5:
add 0
Store:
stw2 // store result to ResultO
~~~Continue to other processor cores calculation~~~
Calculation levell:
mult 0
mult 0
mult 0
mult 0
mult 0
Calculation level2:
add 0
add 0
Calculation level3-
add 0
Calculation level4:
add 0
Store:
ldw2 0 // load result from Result3
add 0
stw2 0 // store result to Result3

set_flag:
Idil 1
stw3 0 // store 1 to Flag3

exit’

MQSoC, Report 2010

Jump0 0

100
8.4.2 Benchmark2-1 (Z(;': level-order traversal)

.data

base _data0-
.word 0
.word 1
.word 2
.word 3
.word 4
.word 5
.word 6
.word 7
.word 8
.word 9
.word 10
.word 11
.word 12
.word 13
.word 14
.word 15
.word 16
.word 17
.word 18
.word 19
.word 20
.word 21
.word 22
.word 23
.word 24
.word 25

base datal-
.word 26
.word 27
.word 28
.word 29

Technical Report, Queue Group, 2010

31

.word 30
~~~SKkip~~~

// Instruction of core0
.core(
Init:

setal0 exit

// infinity loop

setd0 base data0 // load address(0x000)

setd] ResultO

// First

Load levelO:-
1Idw0 0
1ldwo0 1
ldwo0 2
ldw0 3
1ldw0 4
Idwo0 5
ldwo 6
ldwo0 7
ldw0 8
1Idw0 9
1ldw0 10
Ildw0 11
ldw0 12
ldw0 13
1ldw0 14
ldw0 15
ldw0 16
ldw0 17
ldw0 18
Idw0 19
1Idw0 20
1ldw0 21
1ldw0 22
1ldw0 23
Ildw0 24
1ldw0 25

// load address for result of core0

MQSoC, Report 2010

32



Calculation levell:
add 0
add
add
add
add
add
add
add
add
add
add
add
add 0
Calculation level2:
add 0
add
add
add
add
add 0
Calculation level3-
add 0
add 0
add 0
Calculation level4:
add 0
add 0
Calculation level5:
add 0
Store:
stwl 0

QA T T T T © © © © ©

S S S O

// Finally
setdl Flagl
setd2 Flag2
setd3 Flag3
Check_flagl-:

// store the result to ResultO

// load address for flag of corel
// load address for flag of core2
// load address for flag of core3

Technical Report, Queue Group, 2010

33



ldwi 0 // load Flagl of corel

compi 1 // condition code = Flagl - 1

bne  Check flagl //if Flagl != 1, branch Check_flagl
Check _flag2:

ldw2 0 // load Flag2 of core2

compi 1 // condition code = Flag2 - 1

bne  Check flag2 //if Flag2 != 1, branch Check_flag2
Check _flag3:

ldw3 0 // load Flag3 of core3

compi 1 // condition code = Flag3 - 1

bne  Check flag3 //if Flag3 != 1, branch Check_flag3

Load_finally:
setd0 ResultO
setdl Result]
setd2 Result2
setd3 Result3
Idwo 0
Idwi
ldw2
Idws3

Calculation_finally:
add 0
add 0
add 0

S S

Store:
setd0 Last Result
stw0 0
halt

setdl Flagl

setd2 Flag2

setd3 Flag3

Idil 0

Idil 0

Idil 0

stwl 0O // store 0 to Flagl

MQSoC, Report 2010



stw2 0 // store 0 to Flag2
stw3 0 // store O to Flag3
exit’

jump0

// instruction of corel
.corel
~~~Continue to other processor cores calculation~~~
Calculation leveld:
add 0
add 0
Calculation level5:
add 0
Store-
stwl 0 // store the result to Result3

set_flag:
1dil 1
stw2 0 // store 1 to Flag3
exit:
Jump0 0
100

8.4.3 Benchmark2-2 (Z(; |- use index register)

.data
NO:

.word 25
Ni:

.word 50
N2:

.word 75
N3:

.word 100
Resulto:

.word 0
Resultl:

.word 0
Result2:

Technical Report, Queue Group, 2010

35

.word 0
Results:
.word 0
Last Result:
.word 0
Flagl:
.word 0
Flag2:
.word 0
Flags:
.word 0

// instruction of coreQ
.coreQ
Init-
setd0 NO
setdl ResultO
seta(exit
setal loop
Idil 0
Idwil 0
mvr r0/i=0
mvr rl// ResultO =0

loop-
mvqg rO0/ QT <=1
Idw0 0 //load NO
comp 0 //condition code =1 - NO
bgt store
Calculation-
mvqg r0
mvqg rl
add 0
mvr rl// ResultO = ResultO + i
mvqg rO/ QT =1
addi 1/ 1++
mvr r0/r0=i++

jumpl 0 // branch to loop

MQSoC, Report 2010

36

store-
mvqg rl/ QT = ResultO
stwl 0/ memory <= ResultO
Check _Flagl-:
setdl Flagl
Idwi1 0//load Flagl
compi 1 // condition code = Flagl - 1
bne Check Flagl
Check_Flag2:
setd?2 Flag2
Idw2 0//load Flag2
compi 1 // condition code = FlagZ2 - 1
bne Check Flag2
Check_Flags:
setd3 Flag3
ldw3 0 //load Flag3
compi 1 // condition code = Flag3 - 1
bne Check Flag3
Last _calculation”
setd0 ResultO
setdl Result]
setd2 Result2
setd3 Result3
Idwo 0
Idwil 0
Idw2 0
Idw3 0
add 0
add 0
add 0
Last _store’
setd0 Last Result
stw0 0
halt // inform end of instruction to processor
exit:

Jump0 0

// Instruction of corel

Technical Report, Queue Group, 2010

37

.corel

Init-
setd0 N1
setdl Result]
setd2 Flagl
seta(0 exit
setal loop
Idil 26
Idwi 0
mvr r0/i=26
mvr rl//Resultl =0

loop-
mvqg rO0/ QT <=1
Idw0 0 //load N1
comp 0 //condition code =1 - N1
bgt store
Calculation-
mvq r0
mvq rl
add 0
mvr rl// Resultl = Resultl +1i
mvqg rO/ QT =1
addi 1/ 1++
mvr r0/r0=i++
jumpl 0 // branch to loop
store-
mvqg rl/ QT = Resultl
stwl 0/ memory <= Resultl
set_flag:
Idil 1
stw2 0/ Flagl =1
exit:

JumpO 0

// Instruction of core2
.core2

Init:

MQSoC, Report 2010

38

setd0 N2

setdl Result2

setd2 Flag2

setal exit

setal loop

Idil 51

ldwi 0

mvr r0/i=51

mvr rl//Resultl =0

loop-

mvqg rO0/ QT <=1

1dw0 0 //load N2

comp 0 //condition code =1 - N2

bgt store
Calculation-

mvqg r0

mvq rl

add 0

mvr rl// Result2 = Result2 + i

mvqg rO/ QT =i

addi 1/ 1++

mvr r0/r0=i++

jumpl 0 // branch to loop
store-

mvq rl/ QT = Result2

stwl 0/ memory <= Result2
set_flag:

dil 1

stw2 0/ Flag2 =1
exit:

JumpO 0

// instruction of core3
.core3
Init:

setd0 N3

setdl Result3

Technical Report, Queue Group, 2010

39

setd2 Flag3

seta0 exit

setal loop
Idil 76
ldwi 0

mvr

mvr

loop-

mvq

ro/i=76
rl /7 Result3 =0

ro/ QT <=1

1dw0 0 //load N3
comp 0 //condition code =1 - N3

bgt store

Calculation’

mvq
mvq
add

mvr
mvq
addi

mvr

ro
rl
0
rl // Result3 = Result3 + i
ro/ QT =i
1/71++
r0//r0 = i++

jumpl 0 // branch to loop

store’

mvq

r1// QT = Result3

stwl 0/ memory <= Result3

set_flag:

Idil 1
stw2 0/ Flag3 =1

exit’

Jump0 0

8.4.4

.data
N:

Benchmark3 (Factorial Calculation: N! (N=3))

.word 3

.word 0

.word 0

MQSoC, Report 2010

40

.word 0

.word 0
Flagl:
.word 0
Flag2:
.word 0
Flag3:
.word 0

.core0
//First
init:
seta(0 loop
setal Last exit
setd0 N
setdl a
Idil 1 /index1=1
Idil 1 Na=1
mvr r0

mvr rl

loop-
mvq r0 VRT <=1
ldw0 0 QT <=N
comp 0 // condition code = 1-N
bgt exit /i 1>N, branch exit

calculate:
mvqg rO
mvqg rl
mult 0 /a*i
mvr rl Na=a*i
mvq r0 VRT <=1
addi 1 W 1++
mvr r0 /r0 <= i++

Jump0 0 // branch to loop

Technical Report, Queue Group, 2010

exit:
mvqg rl QT <=a*i
stwl 0 // memory <= a*i
Load_flag:
setdl Flagl
setd?2 Flag2
setd3 Flag3
Check _flagl-:
ldwi 0 / load Flagl of corel
compi 1 // condition code = Flagl - 1
bne Check flagl //if Flagl != 1, branch Check flagl
Check _flag2:
ldw2 0 / load Flag2 of core2
compi 1 // condition code = Flag2 - 1
bne Check flag2 //if Flag2 != 1, branch Check flag2
Check _flag3:
ldw3 0 / load Flag3 of core3
compi 1 // condition code = Flag3 - 1
bne Check flag3 //if Flag3 != 1, branch Check flag3
halt
Last_exit:

jumpl 0

.corel
//First
init:
seta(loop
setal Last exit
setd0 N
setdl1 b
setd2 Flagl
Idil 1 /index 1 =1
Idil 1 /b=1
mvr r0

mvr rl

loop-

MQSoC, Report 2010

42

mvq r0
ldw0 0
comp 0
bgt exit
calculate:
mvq r0
mvq rl
mult 0
mvr rl
mvq r0
addi 1
mvr r0
Jump0 0
exit:
mvqg rl
stwl 0
set_flag:
dil 1
stw2 0
Last_exit:
jumpl 0
.core2
//First
init:
seta(loop
setal Last exit
setd0 N
setdl c
setd2 Flag2
Idil 1
Idil 1
mvr r0
mvr rl
loop-

7 QT <=1

7 QT <=N

// condition code = 1-N
/i 1>N, branch exit

/b
/b =b*
/QT <=1
W i++

/10 <= j++

// branch to loop

// QT <=b*

// memory <= b*I

// Flagl = 1

/index1=1
Ve=1

Technical Report, Queue Group, 2010

43

mvq r0
Idwo 0
comp 0
bgt exit
calculate:
mvq r0
mvqg rl
mult 0
mvr rl
mvq r0
addi 1
mvr r0
Jump0 0
exit:
mvqg rl
stwl 0
set_flag:
Idil 1
stw2 0
Last_exit:
jumpl 0
.core3
//First
init:
seta(loop
setal Last exit
setd0 N
setdl d
setd2 Flag3
Idil 1
Idil 1
mvr r0
mvr rl
loop-

QT <=1

7/ QT <=N

// condition code = i-N
/I 1>N, branch exit

/e
/e=c*i
7RT <=1
W i++

//r0 <= i++

// branch to loop

QT <=c*1

// memory <=c*1

// Flag2 = 1

/index1=1
nd=1

MQSoC, Report 2010

44

mvq r0 7RT <=1

ldwo 0 7 QT <=N

comp 0 // condition code = 1-N

bgt exit // 1f i>N, branch exit
calculate:

mvq r0

mvq rl

mult 0 7 d*i

mvr rl vd=d*

mvq r0 7RT <=1

addi 1 W i++

mvr 10 //r0 <= i++

Jump0 0 // branch to loop
exit:

mvqg rl 7 QT <=d*i

stwl 0 // memory <=d*i
set_flag:

il 1

stw2 0 /W Flag3 =1
Last _exit:

jumpl 0

Technical Report, Queue Group, 2010

Updated information

date Contents

details

version

12/14 New
1/13 Modify
1/24 Modify

Create
Created
Add source code in Appendix

1.0
1.0

1.1

MQSoC, Report 2010

46

