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What you will understand after having this lecture ?

• After having this lecture you will be able 

to:

– Understand Design Steps with Verilog-HDL

– Understand main programming technique

with  Verilog HDL

– Understand tools for writing and simulating a 

given design (module(s)). 
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Choice of Hardware Description Languages

❖ There are a fair number of HDLs, but two are by far most prevalent in 
use:

❖ Verilog-HDL, the Verilog Hardware Description Language, not to be 
confused with Verilog-XL, a logic simulator program sold by Cadence.

❖ VHDL, or VHSIC Hardware Description Language and VHSIC is Very 
High Speed Integrated Circuit.

❖ Reality: Probably need to know both languages

– Impossible to say which is better – matter of taste!!

In this lecture, I will be using only Verilog-HDL.
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Why Verilog?
❖ Why use an HDL？

➢ Describe complex designs (millions of gates)

➢ Input to synthesis tools (synthesizable subset)

➢ Design exploration with simulation

❖ Why not use a general purpose language ?

➢ Support for structure and instantiation (objects?)

➢ Support for describing bit-level behavior

➢ Support for timing

❖ Verilog vs. VHDL

➢ Verilog is relatively simple and close to C

➢ VHDL is complex and close to Ada

➢ Verilog has 60% of the world digital design market Verilog modeling

range From gates to processor level

➢ We’ll focus on RTL (register transfer level)
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Design Process in Verilog-HDL 
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Design Process in Verilog-HDL

➢Understand problem and generate block 
diagram of solution 

➢Code block diagram in verilog

➢Synthesize verilog

➢Create verification script to test design

➢Run static timing tool to make sure timing is met

➢Design is mapped, placed, routed, and *.bit file 
is created and download to FPGA
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Modeling Structure: Modules
➢The module is the basic building block in Verilog

➢Modules can be interconnected to describe the 

structure of your digital system

➢Modules start with keyword module and end 

with keyword endmodule
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Modeling Structure: Ports

➢ Module Ports

➢ Similar to pins on a chip

➢ Provide a way to communicate with outside world

➢ Ports can be input, output or inout
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Modeling Structure: instances

➢ Module instances

❖ Verilog models consist of a hierarchy of module 
instances

❖ In C++ speak: modules are classes and instances are 
objects
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❖ For our logic design purposes, we’ll consider Verilog 
to have four different bit values:

✓ 0, logic zero.

✓ 1, logic one.

✓ z, high impedance.

✓ x, unknown.

Data Values
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Data Values

➢When specifying constants, whether they be single bit or multi-
bit, you should use an explicit syntax to avoid confusion:

- 4’d14 // 4-bit value, specified in decimal

- 4’he // 4-bit value, specified in hex

- 4’b1110 // 4-bit value, specified in binary

- 4’b10xz // 4-bit value, with x and z, in binary

❖ The general syntax is:

– {bit width}’{base}{value}
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Data Type
➢ There are two main data types in Verilog. These data types may 

be single bit or multi-bit.

➢ Wires

✓ Wires are physical connections between devices 

and are “continuously assigned”.

✓ Nets do not “remember”, or store, information -This behaves 

much like an electrical wire...

➢ Registers

✓ Regs are “procedurally assigned” values and “remember”, or 

store, information until the next value assignment is made.

✓ Register type is denoted by reg
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Data Type Declaration

➢Register (reg) Definition

➢Wire (wire) Definition



14

Variable Declaration

➢constants
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Example Module
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Verilog Operator
Arithmetic                                         Example:

Relational                                        Example:

Bitwise                                             Example:
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Verilog Operator
Logical                               Example:

Shift                                    Example:

Concatenation                    Example:
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Lexical Conventions

➢ Close to the programming language C++.

➢ Comments are designated by // to the end 

of a line or by /* to */ across several lines.

➢ Keywords, e. g., module, are reserved and 

in all lower case letters.

➢ case sensitive, meaning upper and lower 

case letters are different.
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Port and Data Types

➢ An input port can be driven from outside the module by a wire or 
a reg, but inside the module it can only drive a wire (implicit wire).

➢ An output port can be driven from inside the module by a wire or 
a reg, but outside the module it can only drive a wire (implicit 
wire).

➢ An inout port, on both sides of a module, may be driven by a 
wire, and drive a wire.
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Data type declaration syntax and examples

Treat these as if they were wires here

treat these as a wire, or you can add 

an explicit “reg portname;” declaration 

and then treat it as a reg data type
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Continuous Assignment

➢Continuous assignments are made with the assign

statement:

assign LHS = RHS;

Rules:

• The left hand side, LHS, must be a wire.

• The right hand side, RHS, may be a wire, a reg, a constant, or 

expressions with operators using one or more wires, regs, and 

constants.
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➢Example 1

➢Example 2

Continuous Assignment
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Procedural Constructs

Syntax examples: Sensitivity list:
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Procedural Constructs

➢Combinational logic using operators:
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Procedural Constructs

➢Combinational logic using if-else:
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Procedural Constructs

➢Combinational logic using case:
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Delay Control
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Delay Control (cont.)
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Delay Control (cont.)
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System Tasks

➢ The $ sign denotes Verilog system tasks, there are 
a large number of these, most useful being: 

▪ $display(“The value of a is %b”, a); 
➢ Used in procedural blocks for text output.

➢ The %b is the value format (binary, in this case…)

▪ $finish; 

➢ Used to finish the simulation. 

➢ Use when your stimulus and response testing is done.

▪ $stop; 
➢ Similar to $finish, but doesn’t exit simulation.
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Event Control
➢ Event Control 

– Edge Triggered Event Control 

– Level Triggered Event Control 

➢ Edge triggered Event Control

➢ Level Triggered Event Control 
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Loop Statement

➢Loop Statement 

• Repeat

• While 

• For

➢Repeat Loop 

➢Example

repeat (count)

sum = sum + 6;

➢If  condition is a x or z is treated as o 
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Loop Statement (cont.)
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Conditional statement

➢if Statement 

➢Format:
if (condition)

procedural_statement

else if ( condition) 

procedural_statement

➢ Example 
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Conditional Statement (cont.)

➢Case Statement
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Memories

➢An array of registers 

Example

reg [3:0] mem [0:63]   // an array of  64 4-bit registers

reg mem [4:0]; // an array of  5 1-bit register  
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Compiler Directives

‘include – used to include another file

➢ Example

‘include “./pqp_fetch.v”
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Suggested Coding Style

➢ Write one module per file, and name the file the same as the 

module. Break larger designs into modules on meaningful 

boundaries.

➢ Always use formal port mapping of sub-modules.

➢ Use parameters for commonly used constants.

➢ Be careful to create correct sensitivity lists.
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Suggested Coding Style

➢ Don’t ever just sit down and “code”. Think about what hardware 
you want to build, how to describe it, and how you should test it.

➢ You are not writing a computer program, you are describing 
hardware… Verilog is not C!

➢ Only you know what is in your head. If you need help from 
others, you need to be able to explain your design -- either 
verbally, or by detailed comments in your code.
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PART II

Tools you need 

&

Design Example 
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Tools 

➢ You need two things 

1. Editor 

• Crimson Editor 3.51 Release (Freeware) (for Windows)

• Emacx (For UNIX)

2. Simulators

• Verilog-XL: This is the most standard simulator in 

the market, as this is the sign off simulator. 

• NCVerilogThis simulator is good when it comes to 

gate level simulations.

• Fc2 FPGA compiler for synthesis (net list generation) 

• Simvision for wave form viewing 
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What Editor you may use for your Verilog Code ?

Crimson Editor ( for windows OS)

Download it from Here:

http://www.crimsoneditor.com/
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What Editor you can use for your Verilog Code ?

Emacs (for UNIX OS )

From your UNIX WS 

at the commend prompt type:

mule top.v &
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Example of one bit Full Adder 

Behavior model 
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Test bench for fader to output signal variation on the screen
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Where to FIND and how to RUN  the Verilog XL 

Simulator?

To run the Verilog-XL simulator from your 

UNIX Workstation type: 

verilog  fadder.v  testfadder.v
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Test bench for fader for use with Simvision Wave viewer
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