Introduction

o
erilog HDL

© Ben Abdallah Abderazek
National University of Electro-communications, Tokyo,
Graduate School of information Systems
May 2004

What you will understand after having this lecture ?

« After having this lecture you will be able
to:

—~ Understand with Verilog-HDL

— Understand
with Verilog HDL

— Understand tools for a
given design (module(s)).

Choice of Hardware Description Languages

» There are a fair number of HDLs, but two are by far most prevalent in
use:

, the Verilog Hardware Description Language, not to be
confused with Verilog-XL, a logic simulator program sold by Cadence.

% Hardware Description Language and VHSIC is Very
High Speed Integrated Circuit.

«» Reality: Probably need to know both languages
— Impossible to say which is better — matter of taste!!
In this lecture, | will be using only Verilog-HDL.

Why Verilog?

- Why use an HDL ?

» Describe complex designs (millions of gates)
» Input to synthesis tools (synthesizable subset)
» Design exploration with simulation

- Why not use a general purpose language ?

» Support for structure and instantiation (objects?)
» Support for describing bit-level behavior
» Support for timing

» Verilog vs. VHDL

» Verilog is relatively simple and close to C
» VHDL is complex and close to Ada

» Verilog has 60% of the world digital design market Verilog modeling
range From gates to processor level

Design Process in Verilog-HDL

BT

[_Ere e e e

tegd b macm AW E PE MR W

e g M e WAE e b b s e

Design Process In Verilog-HDL

Understand problem and generate block
diagram of solution

Code block diagram in verilog

Synthesize verilog

Create verification script to test design

Run static timing tool to make sure timing is met

Design is mapped, placed, routed, and *.bit file
IS created and download to FPGA

Modeling Structure:

The module is the basic building block in Verilog

Modules can be interconnected to describe the
structure of your digital system

Modules start with keyword module and end
with keyword endmodule

Port List

I
:mmdule cktix,v,2,a.b,c);

:Hf Output port definitions

—p @ ckt X —m I cutput x;
Input Output | sutput v;
> b ¥ > :Dutput E;
Ports Ports ! // Input port definitions
—> —» !

| input a;

1
1 input b;
'1nput C;

module body

endmodule

Modeling Structure:

» Similar to pins on a chip
» Provide a way to communicate with outside world
» Ports can be input, output or inout

Module AMD (10, il, o)
input i0, ilj
output 0F

D

epdnodu e

Modeling Structure:

Verilog models consist of a hierarchy of module
Instances

» In C++ speak: modules are classes and instances are
objects

AMDSE

Module AMDY (10, il, 13, a);

input 4i0, il, i2 ;
output 0F
11T —

wire temp
o
-__III' RHD a0 {10, 11, temp);

AHD al {12, temp, 0)7
endmoduy e

NN XN X

Data Values

For our logic design purposes, we'll consider Verilog
to have four different bit values:

10

Data Values

When specifying constants, whether they be single bit or multi-
bit, you should use an explicit syntax to avoid confusion:

- 4'd14

-4’he

-4p1110

-4'b10xz

. The general syntax is:
— {bit width}{base}value}

11

Data Tvpe

There are two main data types in Verilog. These data types may
be single bit or multi-bit.

Wires are physical connections between devices
and are “continuously assigned”.

Nets do not “remember”, or store, information -This behaves
much like an electrical wire...

Regs are “procedurally assigned” values and “remember”, or
store, information until the next value assignment is made.

Register type is denoted by reg

12

Data Type Declaration

wire a, b, c; // Define 1-bit nets a, b, and c.

wire [7:0]v; /] Define 8-bit wire vector

d
b
3
v -
reg [7:0] data; // 8-bits wide, LSBO

reg [0:15] status; // 16-bits wide, MSBO

/76543210

data

mwn =

11111
123456789012 34

status

0
M
s
B

Variable Declaration

Un-Sized (32-bit)
127 = 0000 0000 0000 0000 0000 0000 0000 0111 1111,

Sized (As specified)

4'b1010 = 1010,
8'd255 = 1111 1111,
16'hbeef = 1011 1110 1110 1111,

14

B P =R

Example Module

e e ettt =amt o o0 e i

mocha |l = ogoc

i

gt ot
gt ot
gt ot
gt ot
ot =t

-

=t
=t
=t
=t
=t
st
st
st

A ottt port=
| b ot .

et

=t __ ot .

b e = operard .
T las=s oot .

A et port= fFrom e i o=
A e o il tial poimters o vram o=
|l =l .
] o T I o
=t__ irm.
A rom these decod=sr umi
=l tam | okl P
i BN e == | A mumbbe=er of oppserand=s conmsum=d
=l tam ot A Pumber of produaced result= 00O o 12
o= rard . P
T las=_im P
-
CF=0]1 | o _cuat :
CF=01] <= _coat :
CF=01 at_ocut ;
CF:=-0]1 g9 _=lu= operacred:
CF:=-01 ¥ lass ocaat :
CF=-0]] l =tk iz A dAdeclares | iwe ol e bheadd = e
CrF:-0] | o T I o = A dAdec larese aguaslse heasdd o sr=m e
CF=-0]] —t_ iz A dAdec larese aguaslse heasdd o sr=m e
Cr¥ -] A=l tam | o gy Aec lares d=lata | ok
CF=-0]] e N B =T | o A cormsumeasc] ddata mouambee e
LCF -] =l tam ot s A produaced data mombee e
LCF -] o= rared s A dec lare o ramd
LCF -] T las==__irm;: -

15

&

&
a0

Verilog Operator

(addition)
(subtraction)
(multiplication)
(division)
(modulus)

(less than)

(less than or equal to)
(greater than)

(greater than or equal to)
(equal to)

(not equal to)

{bitwise NOT)
{bitwise AND)
{bitwise OR)
{bitwise XOR)

or “~(bitwise XNOR)

parameter n — 4.
reg[3:0] a, c, f, g. count:

f=a+c:

g=c-n;

count = (count +11%16; HCan count O thru 5.
it(x==v}) e=1:
else e =10

1

[Compare in 2°s compliment; a=b
reg [3:0] a.b:
if (a[3]==Db[3]) a[2:0] = b[2:0]:
else b[3].

module and2 {(a, b, ¢):
input [1:0] a, b:
output [1:0] c:
assign ¢ —a & b;

endmodule

cl(1)

D,

16

! (logical NOT)
&& (logical AND)
| (logical OR)

<< (shift lett)
== (shift right)

| | (concatenation)

Verilog Operator

wire[7:0] x, vy, z: /1 x, v and z are multibit variables.
reg a;

if (x=—=v)&& (z))a=1.//a=1ifxequals v, and z is nonzero.
else a = !x; [la =0if x is anvthing buft zero.

assign ¢ = a << 2. /¥ ¢ = a shified lefi 2 bits;
vacant positions are filled with €'s %/
wire [1:0] a, b: wire [2:0] x: wire [3:0] v, Z:

assign x =} 1'b0, a}: [/ xf2]=0, x[1]=afl]. x[0]=a[0]
assign v = ja, bl. /[y[3]=afl], v[2]=al0], v[I]=b]]]
v[O]=hjO] */

assign |cout, v} = x + Z:; [/ Concatenation of a result

17

| exical Conventions

Close to the programming language C++.
Comments are designated by // to the end

of a line or by across several lines.
Keywords, e. g., module, are reserved and
in all letters.

, meaning upper and lower
case letters are different.

18

Port and Data Types

An input port can be driven from the module by a wire or
a reg, but the module it can only drive a wire (implicit wire).
An output port can be driven from the module by a wire or
a reg, but the module it can only drive a wire (implicit
wire).

An inout port, on both sides of a module, may be driven by a
wire, and drive a wire.

19

Data type declaration syntax and examples

PP = el =l
mocdul e agoee o
A5 ottt port=
| b ot .
et o B e I ol
it ot .
b=l u= operarmd .
f las=_out .

e e et at o i e i £

=r= wa | ue=

A imeuat port=s T rom press i o=
A oo or imitial poimt
IC:I}L'hF

b i

at__ ir.

AT rom the decoder it
d=lta_ | gk, o

delta o,
de=lta ot .,

A5 mumbber o operanc=s
A5 mrumbbesr of prodouaced

treat these as a wire,
an explicit “reg portname;
and then treat it as a reg data type

Corrs=rmec]
result=s C 0O or- 12

or you can add
” declaration

declares | iwe causluas head wwa l e
declares aususe head wra e
declares aususe head wra e
declare delata | abls

comn=sum=c] data moumbbe e

eroduaced data moumbbe e

dec lares operamd

e rared . o
e
e
ottt CF 070 | ab ot
ciateat [CF 00 gl et
ottt [CF 00 gt caat :
ottt L7010 gblelus ooerand:s
outeut C7P 010 F las=s out :
- N\
it (L7 -0 l b i P
it (L7 -0 = T N - P
it (L7 -0 at_ i P
it (L7 -0 delta_ | abl: P
it (L7 -0 delta__ ok P
it (L7 -0 delta__ ot : P
it [CF 0] o rard ; e
i CF-0 fFflas=_imn: T

% Mt)

Treatﬁéhese as 1f they were

wires here

20

Continuous Assignment

Continuous assignments are made with the assign
statement:

assign ;

Rules:
* The left hand side, LHS, must be a wire.

* The right hand side, RHS, may be a wire, a reg, a constant, or
expressions with operators using one or more wires, regs, and
constants.

21

Continuous Assignment

»Example 1

»Example 2

module two input xor (inl, in2, out);

input inl, inZz; // use these as a wire
output out; /4 use thils as a wire
assign out = inl * in2;

endmodul e

module two input xor (inl, inZ, out);
input inl, inZz;
output out;

wire productl, productz;

assign productl = inl & !inZ2; // could have done all in
assign product2 = !inl & inZ; /{ assignment of out with
assign cut = productl | productZ; // bigger expression
endmodule

22

Procedural Constructs

Two Procedural Constructs

> initial Statement
» always Statement

iNnitial Statement : Executes only once
always Statement : Executes in a loop

Syntax examples:

initial

begin
// These procedural assignments are executed
// one time at the beginning of the simulaticn.

end

always @(sensitivity list)

begin
// These procedural assignments are executed
// whenever the events in the sensitivity list
f/ oocour.

end

A

densitivity list:
— always @(aorb) /[l any changes inaorb
— always @(posedge a) // a transitions from 0 to 1
— always @(negedge a) // a transitions from 1to 0
— always @(a or b or negedge c or posedge d)

Assignment rules:
— The left hand side, LHS, must be a reg.

— The right hand side, RHS, may be a wire, a
reg, a constant, or expressions with operators
using one or more wires, regs, and constants.

23

Procedural Constructs

Combinational logic using operators:

module two input xor (inl, inZ, out);

input inl, 1inZ2; // use these as wires

output out; // use this as a wire

redg out ;

always @({inl or in2) // Note that all input terms

begin // are in sensitivity list!
out = inl * inZ2; /4 Or equivalent expression...

end

// I could have simply used:

// always @(inl or in2) out = inl in2;

endmodul e

24

Procedural Constructs

Combinational logic using if-else:

module two input xor (inl, in2, out);

input inl, 1inZ; // use these as wires

output out; J// use thils as a wire

req out;

always @({inl or in2) // MNote that all input terms

begin // are in sensitivity list!
if (inl == in2) out = 1'k0;

else out = 1'b1;
end

endmodul e

Procedural Constructs

Combinational logic using case:

module two input xor (inl,
input inl, inZ2;
output out;

red out;

always @(inl or in2)

begin
case ({in2, inl})
2'kb01: out = 1'b1;
2'b10: out = 1'b1;
default: out = 1'k0;
endcase

end

endmodule

in2, out):;
J/ use these as wires
J/ use this as a wire

/4 Note that all input terms
// are in sensitiwvity list!

// Concatenated 2-bit selector

26

Delay Control

You can add control the timing of assignments
In procedural blocks In several ways:
— Simple delays.
« #10:
* #10a=Db;
— Edge triggered timing control.

posedge clk);
negedge clk) a = b;

27

Delay Control (cont.)

Delay can be introduced

>~ Example: assign #2 sum = a ™ b;
“#H2” indicates 2 time-units

> No delay specified : O (default)

Associate time-unit with physical time
> timescale time-unit/time-precision
> Example: "timescale 1ns/100 ps

Timescale
“timescale 1ns/100ps
> 1 Time unit = 1 ns
> Time precision is 100ps (0.1 ns)
> 10.512ns is interpreted as 10.5ns
28

Delay Control (cont.)

Example:

“timescale 1ns/100ps
module HalfAdder (A, B, Sum, Carry);
input A, B;
output Sum, Carry;
assign #3 Sum = A ™ B;
assign #6 Carry = A & B;
endmodule

29

System Tasks

The $ sign denotes Verilog system tasks, there are
a large number of these, most useful being:

$display(“The value of a is %b”, a);
Used in procedural blocks for text output.
The %b is the value format (binary, in this case...)

$finish;
Used to finish the simulation.
Use when your stimulus and response testing is done.

$stop;

Similar to $finish, but doesn’t exit simulation.

30

Event Control

Event Control
Edge Triggered Event Control
Level Triggered Event Control

Edge triggered Event Control

@ (posedge CLK) //Positive Edge of CLK
Curr_State = Next_state;

@ negedge @ posedge
15X 0 »>x
152 0>z
10 01
Xx—0 X —1
z >0 z > 1

Level Triggered Event Control

@ (A or B) //change in values of A or B
Out = A&B;

31

Loop Statement

Loop Statement
* Repeat

« While

* For

Repeat Loop

Example
repeat (count)
sum = sum + 6;

If conditionis a or

IS treated as O

32

Loop Statement (cont.)

While Loop

» Example:
while (Count < 10) begin
sum = sum + 5;
Count = Count +1;
end

» If condition is a xor z it is treated as 0O

For Loop
> Example:
for (Count = 0; Count < 10; Count = Count + 1) begin
sum = sum + 5;
end

33

Conditional statement

If Statement
Format:;

If (condition)
procedural_statement
else if (condition)
procedural _statement

Example
if (Clk)
Q=0;
else

Q=D

34

Conditional Statement (cont.)

Case Statement

Example 1:
case (X)
2'b00: Y = A + B;
2'b01: Y = A-B;
2'b10: Y =A/ B;
endcase
Example 2:
case (3'b101 << 2)
3’p100: A=B + C;
4'b0100: A=B-C;
5'010100: A =B/ C; //This statement is executed
endcase

35

Memories

An array of registers

reg [msb : Isb | memoryl [upper : lower |;

Example

reg [3:0] mem [0:63] // an array of 64 4-bit registers

reg mem [4:0]; // an array of 5 1-bit register

36

Compiler Directives

‘include — used to include another file

Example
‘include “./pqp_fetch.v”

“define — (Similar to #define in C) used to define global
parameter

Example:
"define BUS_WIDTH 16
reg [BUS_WIDTH -1 : 0] System_Bus;

“undef — Removes the previously defined directive

Example:
"define BUS_WIDTH 16

reg ['BUS_WIDTH - 1 : 0] System_Bus;

"undef BUS_WIDTH

37

Suggested Coding Style

Write one module per file, and name the file the same as the

module. Break larger designs into modules on meaningful
boundaries.

Always use formal port mapping of sub-modules.
Use parameters for commonly used constants.
Be careful to create correct sensitivity lists.

38

Suggested Coding Style

Don't ever just sit down and “code”. Think about what hardware
you want to build, how to describe it, and how you should test it.

You are not writing a computer program, you are describing
hardware...

Only you know what is in your head. If you need help from
others, you need to be able to explain your design -- either
verbally, or by detailed comments in your code.

39

PART I

Tools you need
&
Design Example

40

Tools

1. Editor

« Crimson Editor 3.51 Release (Freeware) (for Windows)
« Emacx (For UNIX)

2. Simulators

Verilog-XL: This is the most standard simulator In
the market, as this is the sign off simulator.

NCVerilogThis simulator is good when it comes to
gate level simulations.

Fc2 FPGA compiler for synthesis (net list generation)
Simvision for wave form viewing

41

What Editor you may use for your Verilog Code ?

CrlmSOn EdItOr (forwindowsOS)

B’ Grimson Editor — [C:¥*home¥v¥]_current¥top.v] | L z
@ File Edit Search Aiew Document Tools Macros Window Help - O
D2 @ SR ymE - - D a8 s o DEwE e n | 7 a8

& topy I

5/ File Dotop.w

WSS Library

S I onone

el Description @ Top Laver of CPU.
LA Simulator @ Swnopisis Yerilog-¥L
NN/ Svnthesizer @ Swnopsis FPGA COMP

5/ Revision Mumber : 1

LA Date of charnze @ 13th of November, 2003

15/ Date of chanze : 17th of MNovember, 2003

57 date of change @ 3rd of January, 2004

W/ date of change @ 28th of Jarwary i@ instantiation of QCU.BOU. TULEL
A4 date of change @ 3rd of February, 2004:: STR, INST, dx, ax added
/¢ date of change : Feb 28th, 2004 :: STATUS, OREG, SBUS, DBUS

A7 date of change : Feb. 26th, 2004 ::

N7 date of change @ Feb. 27th, 2004 :: pc_in,decoder address

A date of change @ Mar. Tst, 2004 :: code orderinz, "fsel” is not defined wet
A4 date of chanesg @ Maw. 11th, 2004 :: gcu and bau ports

/7 Creator : Ben A. Abderazek for POPRfB project

&/ Description t Initial Design

mocule crucore(
clk,

et declartione Download it from Here;

paddr, . .
ortain, http://www.crimsoneditor.com/
rortbout .
portcout,
/Adebugeing
clebuszw,
debugpc,
cebuginst ,
debugstatus,
Alinterrupt
EVENT_RECL T, /¢ Hardware Exception Event Request (not/supported wet)

[A e LA EE

< | 3

e

Zle >

Feady [Ln1, Cal [1001 [UNIX [READ [REC [COL [OwR

5 Z & "2 fm 1006

#3 Adobe Acrobat — [ver...

What Editor you can use for your Verilog Code ?

EmMacs orunixos)

emacs@swvws0202

wﬁﬁe fBl:Dj qregf%1eiﬁ;

gregtitleocut;

regtilaews;
regftilere;

Eesleb e ey
reg [31:0]

ELEd R e TR dE -~ =t Pl = P eESHE SR P SR SEE RN

parameter [1:D] ALUASEL . W
Al LUASEL. SEUS
Al UASEL._RES]
AI_UASEI__:L

bérémeter ' D] ALUBSEL W
ALUBSEL_SBUS
ALUBSEL_RES1

AI_UBSEI__:L

TRIM MR KRN KRN

From your UNIX WS
at the commend prompt type:
mule top.v &

Example of one bit Full Adder

Bit Full Adder

e
modu |l e fadder{a,

Sh-—--

input
input
: k' input
1) . | sUm output
- aut put
b
cin cout

Behavior model

wire tempSum;

endmodule

Test bench for fader to output signal variation on the screen

Ainodule testFadder();
A

/7 Port-connect ion siegnal declaration

wire t_sum;
wire t_cout;

b (t_k),

.cin (t_cind,
.sum Ct_sum),
ccout (t_cout)

initial begin
Aflnitialize the input signals
t_a = 'kt b = 1'bl;t_cin = 17k0;
Afbhssign the pattern to the lozic

#1 t_a = 1'b0; t_b = 17k0; t_cin = 17bT;
#1 t_a = 1'B0; t_b = 1'b1; t_cin = 17b0;
#1 t_a = 1'b0; t_b = 1'b1; t_cin = 1'b1;
#1 t_a = 1'bl: t_b = 17h0; t_cin = 17b0;
#1t.a =1bl: t_.b = 1'b0: t_cin = 17b1;
#1 t_a = 1'b1; t_b = 1'b1; t_cin = 17b0;
H1t_ = 1'bl: b = 17b1; t_cin = 17b1;

A4 FProvide some mechanism to finish the simulat ion

81 $stop is used, the simulation is stopped temporarilvw.
A8 1 $finish iz used the simulator just exits.

#2 3 inish;

end

initial begin

Sronitortdtime, .. a = ®h, b = 3h, cin = %h, cout = ¥b, =um = ¥b7, t_a, t_b, t_cin, t_cout. t_sum);
end
2 endmodu | e

Where to FIND and how to RUN the Verilog XL
Simulator ?

To vs=e the simulator vou should:

tal First add the following line to vour .teshre file

k¥ Synopays configquration ¥§§

getenv SYNOPSYS

Fead/synopsys0i/design compdler

geteny !'IHE!"LHI'.'_L:':EHSE_T:LE SSYHNOPSYS/admin/license/key §Kafter

2000.05

getenv LD LIBRARY EFATH

F{LD LIBRARY FATH):3 {CADENCE]/tools.aundv

et path =
SCADENCE/tools/bin W
WSYNOPSYS/aparced,/syn/bin ¥
SSYNOPSYS/ ../ /fpga compller?

seteny MANEATH

vpath SCADENCE,tools.sundav,/ bl

Lib

n W

AT b

F{MANEATH} SCADENCE/tools .. sundv,/man,/manl : 3CADENCE,//share /man /manl : /3CAD

EWCE/share/man/man5: 35YNOPSYS /doc,/syn,/man
limit coredumpsize O

getenv CWSROOT SHOME/CVS DR

ib) To uze the simulator remote login to one of the

machines:
1. nwr=(E300

[y} oy Tyl

2, swaelEiE

verilog fadder.v testfadder.v

46

Window Edit Options

RESTRICTED RIGHTS> LEGEMD

Use, duplication, or disclosure by the Gowvernment is subject to
restrictions as set forth in subparagraph Cc)C13Ci1) of the Rights 1in
Technical Data and Computer Software clause at DFARS 252.227-7013 or
subparagraphs CciC1) and (2) of Commercial Computer Software — Restricted
Rights at 48 CFR 52.227-19, as applicable.

Cadence Design 5Systems, Inc.
555 Riwver Oaks Parkway
San Jose, California 95134

For technical assistance please contact the Cadence Response Center at
1-877—CD5-4911 or send email to support@cadence.com

For more information on Cadence’s Verilog—XL product line send email to
talkwvidcadence. com

Compiling source file "fadder.w"
Compiling source file "testfadder.w"
Highest lewvel modules:

testFadder

T cout
cin EleihE =
cin eleiihE =

' SUMm =
1
1

=il SrelaiinE
1
)
)

5 LM
5 LM
SUm
S5 Lm
5 LM
5 LM
SUm =

s cin Cout
L il
T i
a2 a i e e
L68 "testfadder.w": $finish at simulation time 9

0 simulation events Cuse +profile or +listcounts option to count)

CPU time: 0.0 secs to compile + 0.0 secs to link + 0.0 secs 1n simulaticon
End of Tool: WVERTLOG—XL 04.10.001—p May 18, 2004 14:20:17

= it i
[i e R T
| I e e T

e 2 B B 0 I N0 e i

i nws0300: /home/ben/tm3 /teach>]}

Test bench for fader for use with Simvision Wave viewer

fadder u fadder(.a (t_al,
b (t_bJ,
.cin (t_cin),
csum (t_sum),
.cout (t_cout)

initial begin
Aflnitialize the input sizrnals
t_a = 1’bl;t b = 1b0;t_cin = 17h0;
ffbssien the pattern to the lozic
Bl t.a = 1b0; t_b =10 t_cin = 1'b1;

Bl t_a = 17B0; b = 17b1: t_cin = 17B0;
Bl t_a = 17B0; b = 17b1; t_cin = 17b1;
Bl t_a = 1'b1; t-b = 17b0; t_cin = 17b0;
Bl t_a = 1'b1; t2b = 1705 t_cin = 1'b1;
Bl t_a = 1'b1: b = 1°b1: t_cin = 17b0;
Bl t_a = 17b1: tb = 17b1: t_cin = 17b1;

A Provide some mechanism to finish the simulation
A1 Istop is used, the simulation iz stopped temporarilw.

A0 11 Binish is used the simulator just exits]

B2 $inish;

end

initial begin
$ehm_open (“testFadder.shn™)
$ehm_probe(7857
$=hm_close(0);

end

48

Terminal

Window Edit Options

|| THIS SOFTWARE AND ON-LINE DOCUMENTATION CONTAIN CONFIDENTIAL IMFORMATION

|| AND TRADE SECRETS OF CADENCE DESIGN SYSTEMS, INC. USE, DISCLOSURE, OR

|| REPRODUCTION IS PROHIBITED WITHOUT THE PRIOR EXPRESS WRITTEW PERMISSIOM OF
CADENCE DESIGM S5YSTEMS, INC.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the Government is subject to
restrictions as set forth in subparagraph (c3C13Ci1) of the Rights 1in
Technical Data and Computer Software clause at DFARS 252.227-7013 or
subparagraphs ¢c) (1) and (23 of Commercial Computer 5oftware — Restricted
Rights at 48 CFR 52.227-19, as applicable.

iCadence Design Systems, Inc.
255 River Oaks Parkway
S5an Jose, California 95134

For technical assistance please contact the Cadence Response Center at
1-877-C05-4911 or send emaill to support@cadence.com

For more information on Cadence’s Yerilog—-XL product Tine send email to
talkv@cadence. com

compiling source Tile "fadder.w"
Compiling source file "testfadder?.v"
Highest lewvel modules:

testFadder

55T2 Database Write APL — DWAPI Version 04.10-—p002 — 1071572002
Copyright 1997-2002 Cadence Design Systems, Inc.

L6&8 "testfadder?2.w": $finish at simulation time 9

O simulation ewvents Cuse +profile or +listcounts option to count)

CPU time: 0.0 secs to compile + 0.0 secs to Tink + 0.1 secs 1n simJlation
|| End of Tool: WERTLOGC—XL 04.10.001-p May 18, 2004 14:23:17

[l nws0300: /home/ben/tm3 /teach>j}

Eile Windows

SimVision: Utility

Open Database

Directory: fhomesbenftmafteachtestFadder.shm

-] &

_E] testFadder. trn

File name:

Files of type:

Transition Files [".trm)

50

SimVision: Design Browser 2

Eile Edit ¥iew Select Windows

SEIERIEIE @B &

acope Tree: g signalsfariables of scope: |testFadder::testFadder :_-j g

testFadder g5 t_a
t h
testFadder g 1
g t cin
f5p t cout
g t sum

Filter: |

© {51

SimVision: Waveform 4

Miew Explore Format Windows

‘ch Times: | Marker =

Cursar -

