
1

Introduction

to

Verilog HDL
© Ben Abdallah Abderazek

National University of Electro-communications, Tokyo,

Graduate School of information Systems

May 2004

2

What you will understand after having this lecture ?

• After having this lecture you will be able

to:

– Understand Design Steps with Verilog-HDL

– Understand main programming technique

with Verilog HDL

– Understand tools for writing and simulating a

given design (module(s)).

3

Choice of Hardware Description Languages

❖ There are a fair number of HDLs, but two are by far most prevalent in
use:

❖ Verilog-HDL, the Verilog Hardware Description Language, not to be
confused with Verilog-XL, a logic simulator program sold by Cadence.

❖ VHDL, or VHSIC Hardware Description Language and VHSIC is Very
High Speed Integrated Circuit.

❖ Reality: Probably need to know both languages

– Impossible to say which is better – matter of taste!!

In this lecture, I will be using only Verilog-HDL.

4

Why Verilog?
❖ Why use an HDL？

➢ Describe complex designs (millions of gates)

➢ Input to synthesis tools (synthesizable subset)

➢ Design exploration with simulation

❖ Why not use a general purpose language ?

➢ Support for structure and instantiation (objects?)

➢ Support for describing bit-level behavior

➢ Support for timing

❖ Verilog vs. VHDL

➢ Verilog is relatively simple and close to C

➢ VHDL is complex and close to Ada

➢ Verilog has 60% of the world digital design market Verilog modeling

range From gates to processor level

➢ We’ll focus on RTL (register transfer level)

5

Design Process in Verilog-HDL

6

Design Process in Verilog-HDL

➢Understand problem and generate block
diagram of solution

➢Code block diagram in verilog

➢Synthesize verilog

➢Create verification script to test design

➢Run static timing tool to make sure timing is met

➢Design is mapped, placed, routed, and *.bit file
is created and download to FPGA

04/09/08 7

Modeling Structure: Modules
➢The module is the basic building block in Verilog

➢Modules can be interconnected to describe the

structure of your digital system

➢Modules start with keyword module and end

with keyword endmodule

8

Modeling Structure: Ports

➢ Module Ports

➢ Similar to pins on a chip

➢ Provide a way to communicate with outside world

➢ Ports can be input, output or inout

9

Modeling Structure: instances

➢ Module instances

❖ Verilog models consist of a hierarchy of module
instances

❖ In C++ speak: modules are classes and instances are
objects

10

❖ For our logic design purposes, we’ll consider Verilog
to have four different bit values:

✓ 0, logic zero.

✓ 1, logic one.

✓ z, high impedance.

✓ x, unknown.

Data Values

11

Data Values

➢When specifying constants, whether they be single bit or multi-
bit, you should use an explicit syntax to avoid confusion:

- 4’d14 // 4-bit value, specified in decimal

- 4’he // 4-bit value, specified in hex

- 4’b1110 // 4-bit value, specified in binary

- 4’b10xz // 4-bit value, with x and z, in binary

❖ The general syntax is:

– {bit width}’{base}{value}

12

Data Type
➢ There are two main data types in Verilog. These data types may

be single bit or multi-bit.

➢ Wires

✓ Wires are physical connections between devices

and are “continuously assigned”.

✓ Nets do not “remember”, or store, information -This behaves

much like an electrical wire...

➢ Registers

✓ Regs are “procedurally assigned” values and “remember”, or

store, information until the next value assignment is made.

✓ Register type is denoted by reg

13

Data Type Declaration

➢Register (reg) Definition

➢Wire (wire) Definition

14

Variable Declaration

➢constants

15

Example Module

16

Verilog Operator
Arithmetic Example:

Relational Example:

Bitwise Example:

17

Verilog Operator
Logical Example:

Shift Example:

Concatenation Example:

18

Lexical Conventions

➢ Close to the programming language C++.

➢ Comments are designated by // to the end

of a line or by /* to */ across several lines.

➢ Keywords, e. g., module, are reserved and

in all lower case letters.

➢ case sensitive, meaning upper and lower

case letters are different.

19

Port and Data Types

➢ An input port can be driven from outside the module by a wire or
a reg, but inside the module it can only drive a wire (implicit wire).

➢ An output port can be driven from inside the module by a wire or
a reg, but outside the module it can only drive a wire (implicit
wire).

➢ An inout port, on both sides of a module, may be driven by a
wire, and drive a wire.

20

Data type declaration syntax and examples

Treat these as if they were wires here

treat these as a wire, or you can add

an explicit “reg portname;” declaration

and then treat it as a reg data type

21

Continuous Assignment

➢Continuous assignments are made with the assign

statement:

assign LHS = RHS;

Rules:

• The left hand side, LHS, must be a wire.

• The right hand side, RHS, may be a wire, a reg, a constant, or

expressions with operators using one or more wires, regs, and

constants.

22

➢Example 1

➢Example 2

Continuous Assignment

23

Procedural Constructs

Syntax examples: Sensitivity list:

24

Procedural Constructs

➢Combinational logic using operators:

25

Procedural Constructs

➢Combinational logic using if-else:

26

Procedural Constructs

➢Combinational logic using case:

27

Delay Control

28

Delay Control (cont.)

29

Delay Control (cont.)

30

System Tasks

➢ The $ sign denotes Verilog system tasks, there are
a large number of these, most useful being:

▪ $display(“The value of a is %b”, a);
➢ Used in procedural blocks for text output.

➢ The %b is the value format (binary, in this case…)

▪ $finish;

➢ Used to finish the simulation.

➢ Use when your stimulus and response testing is done.

▪ $stop;
➢ Similar to $finish, but doesn’t exit simulation.

31

Event Control
➢ Event Control

– Edge Triggered Event Control

– Level Triggered Event Control

➢ Edge triggered Event Control

➢ Level Triggered Event Control

32

Loop Statement

➢Loop Statement

• Repeat

• While

• For

➢Repeat Loop

➢Example

repeat (count)

sum = sum + 6;

➢If condition is a x or z is treated as o

33

Loop Statement (cont.)

34

Conditional statement

➢if Statement

➢Format:
if (condition)

procedural_statement

else if (condition)

procedural_statement

➢ Example

35

Conditional Statement (cont.)

➢Case Statement

36

Memories

➢An array of registers

Example

reg [3:0] mem [0:63] // an array of 64 4-bit registers

reg mem [4:0]; // an array of 5 1-bit register

37

Compiler Directives

‘include – used to include another file

➢ Example

‘include “./pqp_fetch.v”

38

Suggested Coding Style

➢ Write one module per file, and name the file the same as the

module. Break larger designs into modules on meaningful

boundaries.

➢ Always use formal port mapping of sub-modules.

➢ Use parameters for commonly used constants.

➢ Be careful to create correct sensitivity lists.

39

Suggested Coding Style

➢ Don’t ever just sit down and “code”. Think about what hardware
you want to build, how to describe it, and how you should test it.

➢ You are not writing a computer program, you are describing
hardware… Verilog is not C!

➢ Only you know what is in your head. If you need help from
others, you need to be able to explain your design -- either
verbally, or by detailed comments in your code.

40

PART II

Tools you need

&

Design Example

41

Tools

➢ You need two things

1. Editor

• Crimson Editor 3.51 Release (Freeware) (for Windows)

• Emacx (For UNIX)

2. Simulators

• Verilog-XL: This is the most standard simulator in

the market, as this is the sign off simulator.

• NCVerilogThis simulator is good when it comes to

gate level simulations.

• Fc2 FPGA compiler for synthesis (net list generation)

• Simvision for wave form viewing

42

What Editor you may use for your Verilog Code ?

Crimson Editor (for windows OS)

Download it from Here:

http://www.crimsoneditor.com/

43

What Editor you can use for your Verilog Code ?

Emacs (for UNIX OS)

From your UNIX WS

at the commend prompt type:

mule top.v &

44

Example of one bit Full Adder

Behavior model

45

Test bench for fader to output signal variation on the screen

46

Where to FIND and how to RUN the Verilog XL

Simulator?

To run the Verilog-XL simulator from your

UNIX Workstation type:

verilog fadder.v testfadder.v

47

48

Test bench for fader for use with Simvision Wave viewer

49

50

51

52

