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Abstract—Artificial Intelligence (AI) has been used in applica-
tions to alleviate specific problems in academia and industry. For
instance, in healthcare, where edge-based computing platforms
are heavily used, when it comes to latency and security issues, the
increased demands of application of AI applications such as deep
learning require a specific platform to meet the latency, security,
and power consumption challenges. This work presents methods
and architectures for scaling deep learning inference for pneumo-
nia detection in chest X-ray images based on a reconfigurable self-
contained hardware platform named AIRBiS 1. The performance
evaluation results show that the proposed approach achieves
95.2% detection accuracy of pneumonia over the collected test
data with the computer-aided diagnosis scenario. The secure
collaborative-learning approach achieves comparable accuracy
to the conventional training scenario. However, for rapid batch
detection, the detection could be accelerated by 0.023s. Moreover,
the system inference acceleration is 13 times (on average) more
energy-efficient than conventional approaches.

Index Terms—Scaling Deep-Learning; Pneumonia Detection
Inference; Reconfigurable; Self-Contained Platform

I. INTRODUCTION

For many years, Artificial Intelligence (AI) has been used
in applications to alleviate specific problems in academia and
industry [1]. For example, in healthcare, Deep Learning (DL)
models are used for applications such as timely detection of
anomalies in patient health monitoring [2], lung ultrasonog-
raphy classification [3], and recently in the ongoing efforts
to combat the COVID-19 pandemic [4]. In order to meet
the computing requirement of such applications, a common
approach is to deploy DL models on cloud computing plat-
forms [5]. However, some of these applications require secure
real-time analysis of generated medical data [6, 7], making
cloud computing platforms facing security [8] and latency [9]
challenges unsuitable for use. Edge computing, on the other
hand, provides a viable approach to meet the low-latency [10],
privacy-preserving [9], and security [11] requirements of such
applications [12].

As of April 2023, the number of coronavirus cases reported
globally exceeds 687 million, with over 6 million deaths [13].

1AIRBiS project, the University of Aizu: https://www.u-
aizu.ac.jp/misc/benablab/airbis.html

One major key in fighting the COVID-19 pandemic is detect-
ing and isolating infected patients. To achieve this, an efficient
rapid diagnosis method for testing is required.

The standard method to detect COVID-19 is the Reverse
Transcription Polymerase Chain Reaction (RT-PCR), which
tests for genetic materials of the SARS-CoV-2 virus in the
upper respiratory specimens collected from patients. The sensi-
tivity of this test ranges from 60% to 97% [14]. However, there
are significant differences among different patients, resulting
in substantial false-negative results, as shown by the reduction
in detection sensitivity from 60% to 71% [15]. Although RT-
PCR can be tested in batches, the samples to be tested must be
manually collected from test subjects. Another method is to
analyze lung X-ray images of patients, which has accuracy in
the range of 80% to 90% [16]. This approach requires doctors
to examine the lung X-ray images of a patient one at a time
and combine the result with the patient’s physical condition to
complete a diagnosis. However, with the increase in COVID-
19 cases, this approach has become ineffective due to a lack of
quick response and reporting. Moreover, privacy and security
are essential requirements during patient treatment.

To address these issues, computer-aided diagnosis systems
that leverage DNNs have been considered as a potential
solution [17, 18]. However, medical institutions generally need
more resources to afford large-scale computer-aided diagnosis
systems. In addition, traditional biomedical information secu-
rity measures conflict with distributed learning mechanisms,
so it is difficult to aggregate diagnostic models of multiple
medical institutions to improve detection accuracy and speed.
At the same time, it is also challenging to implement fast test
results reporting, quick response mechanisms, and streamlined
collaboration with the government. Therefore, clinicians and
researchers made great efforts to find other alternative and
complementary methods to improve the detection accuracy of
COVID-19.

To solve these problems, this work extends our previous
work AIRBiS [19, 20, 21, 22] and presents a high-performance
and low-power forward-thinking hardware-software co-design
system for pneumonia (i.e., COVID-19) detection. The rest
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of this paper is organized as follows. Section II describes the
proposed system. Section III provides a comprehensive eval-
uation and results of the proposed system, and in section IV,
we present the conclusion and future work.

Fig. 1. AIRBiS System Platform in a Real Deployment Demonstration.

II. SYSTEM ARCHITECTURE

Diagnosing in the conventional system requires patients
to visit a hospital, line up for an X-ray scan and wait for
physician diagnosis results. The drawback is that the hospital
will be congested, physicians will be exhausted, and the result
from the test may not get in time for the final decision. Our
proposed system overcomes these challenges. A patient’s lung
X-ray image is captured in digital format and sent to the
physician within the same hospital or another for diagnosis;
however, this process could be automated. Our approach
further proposed that the X-ray images be uploaded to the
AIRBiS system connected locally for detection and diagnosis.
The results are returned immediately by running the inference
onsite, and physicians are only informed if their intervention
is needed.

The central computing unit in the AIRBiS system is a recon-
figurable AI platform that handles the detection and diagnosis
tasks as shown in Figure 1. The platform is a five Zynq
Ultra Scale+ MPSoC ZCU102 FPGA boards cluster having
reconfigurable nodes connected by Ethernet, enabling scala-
bility. With a secure Ethernet connection, remote nodes can
form larger clusters to support higher computing requirements.
When an active node becomes faulty, other reconfigurable
nodes could continue the work of the faulty node. Using
the user interface shown in Figure 1, physicians can get the
statistical result of infection cases and view the diagnosis
results of all users and the sample of interest (SOI).

A. Neural Network Model and Structure
The proposed neural network detection model is CNN

based and is described in Figure 3. The X-ray images are

fed to the CNN for feature extraction and the final layer
outputs probabilities for each class. The input is X-ray images
which are either in grayscale or RGB. The CNN model also
comprises three convolution layers with a kernel size of 3×3,
32 biases, and ReLU activation function. A Max pooling layer
is used after every convolution layer; two fully connected
layers are used after the flatten operation, and the final layer
outputs probabilities that are assigned to two classes (Infected
and Non-infected). Two dropout layers lie between the max-
pooling and fully connected layers to suppress the network
from over-fitting. Dropout in the neural network improves the
performance by randomly disabling some neurons’ activation
in each layer during training. This method reduces loss due
to over-training during learning. At the output layer, the
softmax activation function is used to estimate the probability
of output classes [19]. Finally, the loss function cross-entropy
is described in Equation 1:

E (w0, bo) =
1

N

N∑
i=1

yi × log (y′
i (wo, bo)) (1)

Where wo and bo are network parameters, y, and y′

denote the real labels and predicted labels, respectively. By
minimizing the loss function using stochastic gradient descent
and back-propagation learning algorithm, the procedures of
optimizing the parameters and making classification decisions
can be performed. A summary of the CNN model with input
of 256×256 (px) grayscale images is described in Figure 3.

TABLE I
DATASET DESCRIPTION.

Label Class Train Test

COVID COVID 2870 701
COVID (augmented) 14349 -

Non COVID
Normal 9791 400

Lung Opacity 5762 250
Viral Pneumonia 1288 49

Sum 34060 1400

To train the neural network model, the lung X-ray image
dataset was used [23, 24] from Kaggle, which is a bench-
mark dataset used in comparing the performance of deep
learning models on X-ray image classification tasks. Table I
describes the specific number of data used for the experiment.
The dataset includes 21,111 original X-ray images divided
into two labels; COVID-19 (3,571) and Non-COVID. Non-
COVID consists of three types of image data, Lung Opacity
(6,012), Viral Pneumonia (1,337), and normal (10,191). We
used a collaborative learning approach to enhance diagnostic
accuracy by utilizing X-ray images from multiple medical
institutions while safeguarding patient privacy. This approach
permits hospitals to share trained models without disclosing
actual datasets, thereby preserving patients’ data privacy.

B. Inference Acceleration

For large-size datasets, GPUs can be used to improve the
inference time of neural networks where model training is
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usually performed in high-performance cloud servers. How-
ever, GPU-based systems cannot obtain good energy efficiency
due to high power consumption. A configurable AI chip sys-
tem can save bandwidth and reduce the application’s latency
while requiring less power than GPUs. Our approach uses an
FPGA-based cluster to scale the inference and decrease power
consumption.
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(a) The profiling results of CNN
Layer1, CNN Layer2, CNN
Layer3, and others (including
flattening, forward and sigmoid.)
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Fig. 2. Profile AIRBiS inference program with the average time cost of
computation

With the theoretical analysis of the execution time and
memory utilization of neural networks, we have analyzed the
complexity of AIRBiSNet and the edge FPGA-based low-
power inference cluster. As shown in Figure 3, there are three
CNN layers and other operations such as load model, flatten,
forward, and sigmoid in the AIRBiS inference process. In
addition, each CNN layer has the computation of Convolution,
ReLU, and Pooling. The average time cost of AIRBiS neural
network inference computation is shown in Figure 2(a). The
first three layers and other operations like flattening take
14%, 69%, 15%, and 2% of the execution time, respectively.
The second layer takes the most time compared to the other
two layers because it has the most input data. Figure 2(b)
presents the profiling results of the Convolution, Pooling, and
ReLU computation in the three CNN layers. The convolution
operation takes 95% of the total time cost, the Pooling 3%,
and ReLu 2%. Since the convolution mainly computes the
massive multiplication operations, we noticed that most of the
computation time is consumed in this operation [25].

C. AIRBiS Inference Acceleration Design

We propose two architectures, namely; (a) non-pipelined
inference and (b) pipelined inference for mapping neural
networks on software into programmable FPGA clusters to
achieve high performance and low power consumption. The
non-pipelined inference architecture described in Figure 3 (a)
is used for mapping neural networks that can be flexible and
scalable, thus allowing adjustable scale according to the sys-
tem load and providing fault tolerance. For larger DNNs, the
pipelined inference architecture described in Figure 3 (b) can

Fig. 3. AIRBiS parallel inference architecture. (a) Non-pipelined inference.
(b) Pipelined inference.

be applied to split and map the network into different nodes
of the programmable logic cluster according to the layer level.
This allows the system to support high-precision inference
tasks and reduce network latency and power consumption.
Also, the proposed programmable clusters are used for edge
collaborative learning, allowing the network to learn from new
data accumulated in each edge device to improve detection
accuracy and robustness.

As shown in Figure 3, the proposed AIRBiS parallel in-
ference architecture is based on a scalable and reconfigurable
AI chip that consists of clustered FPGA development boards
(Zynq UltraScale+ MPSoC ZCU102 Evaluation Kit). The
processing unit in the AI chip is an ARM processor which
initializes the Programmable Logic (PL) through the control
bus to construct the convolution layer parameters during run
time.

III. EVALUATION

A. Evaluation Methodology

We used the X-ray image dataset described in Table I to
evaluate our proposed system. We randomly selected 700
images from each of the two labels as the test data. The
AIRBiSNet was trained with conventional training and collab-
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orative learning techniques. The pneumonia detection model
(AIRBiSNet) was trained on multiple CPU and GPU servers.
Each server has 64GB DDR4 RAM and NVIDIA GeForce
RTX 2060 GPU.

The inference FPGA cluster was implemented using Xil-
inx’s EDA suite (SDSoC, Vivado, and Vivado HLS). The
average classification time of predicting each image on our
proposed system, CPU, and GPU are measured and compared
(see Figure 5). The power consumption was measured by a
power meter, and also refer to related studies [26] and software
simulation results.

B. Evaluation Results

1) AIRBiS Detection Accuracy: Table II presents the de-
tection accuracy of COVID-19 and Non-COVID-19 infected
images calculated by Equation 2.

Accuracy =
TP + TN

TP + FN + FP + TN
× 100% (2)

TABLE II
PNEUMONIA (COVID-19) DETECTION ACCURACY OF THE 256×256 (PX)

INPUT MODEL.

Real
Predict Infected Non COVID Sum Accuracy

Infected (TP ) 640 (FN ) 60 700 91.4%
Non COVID (FP ) 7 (TN ) 693 700 99.0%
Lung Opacity 4 246 250 98.4%

Viral Pneumonia 3 47 50 94.0%
Normal 0 400 400 100.0%
Correct 640 693 1400 95.2%

TP : True positive. TN : True negative.
FP : False positive. FN : False negative.
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Fig. 4. AIRBiS collaborative learning accuracy over a Non-IID case.

The concentrated training scheme recorded a final accuracy
of 95.2% as shown in Table II. In general, as the number
of nodes and the amount of data increase, the accuracy of the
final model gradually improves and eventually approaches that
of the traditional training method. Figure 4 shows the train-
ing process of the non-identical and independent distribution
(Non-IID) scenario with a final accuracy of 94.7%. Centralized
training requires collecting all training data, which sometimes
has privacy issues. Distributed collaborative learning solves
this issue by aggregating weights from distributed learning

nodes. Although part of the original image data can be inferred
from the weights, inexhaustive X-ray images do not cause
privacy issues. The collaborative machine learning scheme can
improve the accuracy of the detection model by learning from
more data provided by different hospitals. It still achieves good
performance accuracy even with uneven data distribution. At
the same time, because the training data is not transferred over
the network to a centralized server for learning, the privacy of
the medical data is ensured.

We compared the performance of AIRBiS with some other
state-of-the-art studies. These studies also used machine learn-
ing techniques like CNN and a COVID-19 dataset. The studies
in [27, 28, 29, 30, 31, 32, 24] used not more than 2000 lung
X-ray images and 1000 COVID-19 images respectively. This
disproportionate number of COVID-19 images leads to data
imbalance, affecting the CNN model’s robustness. Similarly,
Lin in [33] used a more extensive dataset with 15,478 chest X-
ray images, yet only 473 COVID-19 images, which still left
the dataset heavily imbalanced. Compared to other studies,
the proposed system used a better proportion of COVID-19
images, which validates the robustness of the system [34].

We optimized the system parameters through extensive
experiments with feature visualization feedback. We consid-
ered several data augmentation methods, such as shift, scale,
contrast, noise, rotation, and reflection, some of which did not
perform well. Also, some typical CNN optimization methods,
such as the Adam optimizer, batch normalization, and dropout,
were applied. Furthermore, AIRBiSNet (256×256) utilized
only 3.7 million parameters, which is about a 53% reduction
in the number of parameters compared to the work in [24].

The proposed AIRBiSNet-64 further improves the inference
speed to better fit the demand for high-speed detection in
pneumonia detection for different scenarios with only a 3%
loss in detection accuracy and three times faster detection
speed than the high-precision AIRBiSNet-256. This is espe-
cially important for rapid end-side detection.

2) Inference Time and Power Consumption: As explained
in the previous section, AIRBiS inference is accelerated on a
reconfigurable and scalable FPGA cluster to improve the speed
of pneumonia detection and achieve low-power consumption.
Figure 5 shows a comparison of the average energy con-
sumption per inference and power consumption over various
platforms (GPU, Desktop CPU, ARM CPU, AIRBiS-HW)
using the test dataset. The four subplots show the average
energy required for each inference for the four platforms with
four different input sizes, namely, 64× 64× 1, 128× 128× 1,
256 × 256 × 1, and 128 × 128 × 3. Experiments with four
different input data sizes demonstrate that the proposed FPGA-
based inference platform is 1.8 to 13 times more energy-
efficient than the GPU, 2.6 to 5.2 times that of the desktop
CPU, and 2.2 to 2.6 times that of the ARM CPU.

Table III shows the hardware resource utilization of the
256 × 256 × 1 AIRBiS-HW design. It utilizes approximately
19.9% of the lookup table (LUT) on the Xilinx ZCU102 FPGA
board. Many of the configurable logic blocks (CLB) on the
ZCU102 are implemented using a minimal amount of RAM

952



0 20 40 60 80 100
Power consumption(W)

0

2

4

6

8

10

FP
S

pe
rW

at
t

GPU, 1.44J

CPU, 0.58J

ARM, 0.25J

AIRBiS-HW, 0.11J

64x64x1 (px)

0 20 40 60 80 100
Power consumption(W)

0.0

0.5

1.0

1.5

2.0

2.5

FP
S

pe
rW

at
t

GPU, 2.64J
CPU, 1.76J

ARM, 1.2J

AIRBiS-HW, 0.46J

128x128x1 (px)

0 20 40 60 80 100
Power consumption(W)

0.0

0.1

0.2

0.3

0.4

FP
S

pe
rW

at
t

GPU, 5.1J

CPU, 7.45J
ARM, 6.33J

AIRBiS-HW, 2.78J

256x256x1 (px)

0 20 40 60 80 100
Power consumption(W)

0.0

0.5

1.0

1.5

2.0

2.5

FP
S

pe
rW

at
t

GPU, 3.14J
CPU, 1.93J

ARM, 1.26J

AIRBiS-HW, 0.47J

128x128x3 (px)

Fig. 5. AIRBiS Inference power consumption (W) and fps per watt (FPS/Watt)
comparison with different computing platforms when giving different input
sizes.

in the form of LUT that contains all the combinatorial logic
used for the AIRBiS design. About 19.9% of LUT and 9.7%
of the FF, among other resources, were also utilized for the
design. On average, about 11.6% of the FPGA resources were
utilized, which is an acceptable result for the target application.

TABLE III
HARDWARE COMPLEXITY OF AIRBIS INFERENCE ACCELERATOR.

Resource Utilization Available Utilization rate (%)
LUT 54585 274080 19.9

LUTRAM 3668 144000 2.5
FF 53035 548160 9.7

DSP 35 2520 1.4
BUFG 4 404 1.0

MMCM 1 4 25

IV. CONCLUSION

In this work, we presented methods and architectures for
scaling deep learning inference for pneumonia detection in
chest X-ray images based on a reconfigurable self-contained
hardware platform named AIRBiS. AIRBiS is a deep learning-
based pneumonia detection system in chest X-ray images. The
system is based on a high-performance, low-power, recon-
figurable FPGA cluster for inference, a robust collaborative-
learning mechanism for privacy preservation, and an interac-
tive user interface for effective operation and monitoring. We
were able to optimize and satisfy design constraints such as
power consumption. The performance evaluation results show
that the proposed AIRBiS system achieves 95.2% detection
accuracy of pneumonia over the collected test data with the
computer-aided diagnosis scenario. In the rapid batch detec-
tion scenario, the detection could be accelerated to 0.023s.
Moreover, the system inference acceleration is 13 times more
energy-efficient than GPUs, 5.2 times more than CPUs, and
2.6 times that of ARM CPUs. Overall, the proposed approach
demonstrates the potential for using reconfigurable hardware
platforms for AI applications in healthcare and other fields.

For future work, we plan to address the training scheme with
a decentralized approach for better performance and security.
Investigating how to optimize deeper CNN models such as
ResNet50 or ResNet101 to fit into the FPGA system is one
of our future directions. We also plan to improve the fault
tolerance of the AIRBiS platform.
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