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3D Discrete Transforms with Cubical Data
Decomposition on the IBM Blue Gene/Q

Tomoya Sakai and Stanislav G. Sedukhin

Abstract

This report presents the implementation and performance evaluation of
the three dimensional (3D) discrete transforms with cubical data decompo-
sition. We implemented newly proposed GEMM-based algorithm with the
3D data decomposition which can be extremely scaled up to N3 computer
nodes. In this algorithm, only local communications between nearest neigh-
bor nodes are required and overlapping of computation and communication
is possible. The algorithm implementation and some optimization tech-
niques for overlapping of computation and communication are presented.
As an exmample of the algorithm with 3D data decomposition, we imple-
mented and evaluated the performance of the 3D Discrete Fourier transform
in complex-double precision on the IBM BG/Q which has 5-dimensional
torus interconnection. Comparison between our results with 3D data decom-
position and 3D FFT with 2D data decomposition is included for number of
nodes less than N2.

1 Introduction
Three-dimensional (3D) discrete transforms (DT) such as Fourier transform,

cosine/sine transform, Hartley transform, Walsh-Hadamard transform, etc., are
known to play a fundamental role in many application areas such as spectral anal-
ysis, digital filtering, signal and image processing, data compression, medical di-
agnostics, etc. Increasing demands for high speed in many real-world applications
have simulated the development of a number of Fast Transform (FT) algorithms,
such as Fast Fourier Transform (FFT), with dramatic reduction of arithmetic com-
plexity [7]. However, further reduction of time complexity is only possible by
overlapping these arithmetic operations, i.e. using parallel implementation.

There exists three different approaches for parallel implementation of the 3D
discrete transforms. Two of them are especially for Fourier transform.
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Figure 1: 3D data distribution over np computer nodes: (a) 1D or “slab” decom-
position, (b) 2D or “pencil” decomposition, and (c) 3D or “cube” decomposition.

The first one is the 1D or “slab” decomposition of a 3D initial data. In this
approach, N × N × N data is divided into 2D slabs of size N × N × b, where
b = N/P and P is the number of computer nodes, and assigned to each node
(see Fig. 1 (a)). This approach allows scaling problem among np = P = N/b
nodes, where b is the blocking factor. The scalability of the slab-based approach
or the maximum number of nodes is limited by the number of data elements along
a single dimension of the 3D transform, i.e. nmax

p = N when b = 1. Different
implementation of the 3D FFT with a “slab” decomposition can be found in [10,
11].

The second approach is the 2D or “pencil” decomposition of a 3D N×N×N
initial data among a 2D array of np = P × P computer nodes (P = n/b). Initial
N ×N ×N cube is divided into an 1D “pencil” of size N × b× b and is assigned
to each node. This approach increases the maximum number of nodes from N to
N2. Parallel 3D FFT implementation with a 2D data decomposition is discussed
in [9, 17, 22, 2].

In both of these so-called “transposed” approaches, the computational part
and inter-node communication part are separated [4]. Moreover, a computational
part inside each node is implemented by using either 2D or 1D fast (recursive)
algorithm for “slab”- or “pencil”- based decomposition, respectively, without any
inter-node communication. However, on completion of each computational part,
in order to support contiguity of memory accesses, a transposition of the 3D data
array is required to put data in an appropriate dimension(s) into each node. At least
one or two transpositions would be needed for the 1D or 2D data decomposition
approaches, respectively. Each of this 3D data transposition is implemented by
global “all-to-all” inter-node, message-passing communication.

The last approach is the 3D or “cube” decomposition, which is recently pro-
posed in [23]. The 3D or “cubic” decomposition of an N × N × N initial data
among np = P ×P ×P computer nodes where a 3D data “cube” of size b× b× b
is assigned to each node (see Fig. 1 (c)). The scalability is further improved from
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N2 to N3. In this approach, blocked matrix multiplication based algorithms are
used to compute the basic one-dimensional N -size transform not on a single but
on the P = N/b cyclically interconnected (for data reuse) nodes of a 3D torus
network. This approach is an integration of a local intra-node computation with
a nearest-neighbor inter-node communication at each step of three-dimensional
processing.

The proposed [23] algorithm with 3D data decomposition eliminates global
communication. In addition, computation and local communication can be over-
lapped. The 3D transform is represented as three chained sets of the cubical
tensor-by-matrix or matrix-by-tensor multiplications which are executed in a 3D
torus network of computer nodes by the fastest and extremely scalable orbital
algorithms.

Our main objective of this report is to implement and evaluate the 3D dis-
crete transform with 3D data decomposition. For the 3D data decomposition, we
propose the method for overlapping of computation and communication. As an
example of implementation, the performance of the 3D Discrete Fourier Trans-
form (DFT) with 3D data decomposition is measured on the IBM Blue Gene/Q.
We also compare our result of the 3D DFT with 3D data decomposition with the
result of 3D FFT with 2D data decomposition which is presented in [12].

The report is organized as follows. In Section 2, the scalar and block notations
of the 3D forward and inverse separable transforms are described. In Section 3, we
introduce algorithm with the 3D decomposition and psuedcode for its implemen-
tation. In Section 4, we show the implementation detiails and some optimization
techniques. In Section 5, we discuss the performance result of the 3D DFT in
complex-double precision on the Blue Gene/Q. In Section 6, we will conclude the
report with conclusions and future works.

2 3D Separable Transform
Let X = [x(n1, n2, n3)], 0 ≤ n1, n2, n3 < N , be an N×N×N cubical grid of

input data or three-way data tensor [15]. A separable forward 3D transform of X is
another cubical grid of an N×N×N data or three-way tensor

...
X = [

...
x(k1, k2, k3)]

where for all 0 ≤ k1, k2, k3 < N :

...
x(k1, k2, k3) =

N−1∑
n3=0

N−1∑
n2=0

N−1∑
n1=0

x(n1, n2, n3) · c(n1, k1) · c(n2, k2) · c(n3, k3) (1)

In turn, a separable inverse or backward 3D transform of three-way tensor
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...
X = [

...
x(k1, k2, k3)] is expressed as:

x(n1, n2, n3) =
N−1∑
k3=0

N−1∑
k2=0

N−1∑
k1=0

...
x(k1, k2, k3) · c(n1, k1) · c(n2, k2) · c(n3, k3) (2)

where 0 ≤ n1, n2, n3 < N and X = [x(n1, n2, n3)] is an output N × N × N
cubical tensor.

There is a direct correspondence between the equation (1) or (2) and the
so-called multilinear matrix multiplication, which is used to represents three-
way data tensor X or

...
X in different bases and where an N × N matrix C =

[c(ns, ks)] = [c(n, k)], s = 1, 2, 3 is a (non-singular) change-of-basis matrix (see
[15, 18, 14] for more details). It is also interesting to mention that equations (1)
and (2) can viewed as the so called Tuker’s 3D tensor decomposition which is rep-
resented in the form of three-way tensor-by-matrix multiplication [15, 16]. More-
over, the equation (1) or (2) describes the so-called three-way tensor contraction
which is widely used in abinitio quantum chemistry models [3, 19, 25].

The various separable transforms differ only by the transform coefficient (change-
of-basis) matrix C = [c(n, k)] which can be

• symmetric, i.e. C = CT , and unitary, i.e. C−1 = C∗T , C∗ is a complex con-
jugate of C, like in the Discrete Fourier Transform (DFT), where c(n, k) =
exp[−2πi

N
(n · k)] = cos(2πnk

N
)− i sin(2πnk

N
) and i =

√
−1, or in the Discrete

Hartley Transform (DHT), where c(n, k) = cos(2πnk
N

)− i sin(2πnk
N

);

• unitary and real, i.e. orthogonal, like in the Discrete Cosine Transform
(DCT), where coefficient c(n, k) = cos[ π

2N
(2n+ 1) · k] and C 6= CT ;

• consists only ± 1 and be symmetric and orthogonal, like in the Discrete
Walsh-Hadamard Transform (DWHT).

We will abbreviate the genetic form of a discrete transform as DXT without
taking into account the specific features of a coefficient matrix, i.e. we will use
direct algorithm for the 3D transform (1) and (2) with an arithmetic complexity of
O(N4) instead of using the so-called “fast” DXT algorithms, like 3D FFT, with
O(N3 logN) complexity.

To formulate the problem in the block notation we firstly divide an N×N×N
input data volume or three-way tensor X = [x(n1, n2, n3)] into P × P × P data
cubes, where each cube X(N1, N2, N3), 0 ≤ N1, N2, N3 < P , has the size of
b× b× b, i.e. b = N/P and 1 ≤ b ≤ N/2 is the blocking factor. Then the forward
3D DXT (3D FDXT) can be expressed as a block version of the multilinear matrix
multiplication:
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...
X(K1, K2, K3) =

∑P−1
N3=0

∑P−1
N2=0

∑P−1
N1=0 X(N1, N2, N3)

×C(N1, K1)× C(N2, K2)× C(N3, K3), (3)

where 0 ≤ K1, K2, K3 < P and C(Ns, Ks) = C(N,K), s = 1, 2, 3, is an
(Ns, Ks)-th block of the transform matrix C.

It is clear that a 3D block inverse transform (3D IDXT) can be written as:

X(N1, N2, N3) =
∑P−1

K3=0

∑P−1
K2=0

∑P−1
K1=0

...
X(K1, K2, K3)

×C(N1, K1)× C(N2, K2)× C(N3, K3), (4)

where 0 ≤ N1, N2, N3 < P .
Due to separability of the linear transforms, a 3D transform can be splitted

into three data dependent sets of 1D transform as it is shown below for the 3D
FDXT (3).

At the first stage, the P × P 1D FDXT of X(N1, N2, :) are performed for all
(N1, N2) pairs, 0 ≤ N1, N2 < P , as block cubical tensor-by-matrix multiplica-
tion:

Ẋ(N1, N2, K3) =
P−1∑
N3=0

X(N1, N2, N3)× C(N3, K3), (5)

where 0 ≤ N1, N2, K3 < N .
At the second stage, the P × P 1D FDXT of Ẋ(:, N2, K3) are implemented

for all (N2, K3) pairs, 0 ≤ N2, K3 < P , as second block tensor-by-matrix multi-
plication:

Ẍ(K1, N2, K3) =
P−1∑
N1=0

Ẋ(N1, N2, K3)× C(N1, K1), (6)

where 0 ≤ K1, N2, K3 < N .
At the third stage, the P×P 1D FDXT of Ẍ(K1, :, K3) are implemented for all

(K1, K3) pairs, 0 ≤ K1, K3 < P , as third block tensor-by-matrix multiplication:

...
X(K1, K2, K3) =

P−1∑
N2=0

Ẍ(K1, N2, K3)× C(N2, K2), (7)

where 0 ≤ K1, K2, K3 < N .
By slicing cubical data, i.e. representing three-way tensors as the set of ma-

trices, it is possible to formulate a 3D transform (3) or (4) as conventional block
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matrix-by-matrix multiplication. In this case, an initial P × P × P data grid
or three-way tensor {X(N1, N2, N3), 0 ≤ N1, N2, N3 < P}, is divided into P 1D
“slice” or “slabs” or “matrices-of-cubes” along one of axises, for example, along
N2-axis, such that each b × b × b data cube X(N1, N2, N3) can be referred as a
block element X(N1, N3)N2 of the N2-th P ×P matrix, where N2 ∈ [0, P ). Then
a 3D FDXT (3) can also be computed in three data-dependent stages as chaining
sets of the block matrix-by-matrix products.

At the first stage, since there is no dependency in 1D transforming data be-
tween all N2-slabs, the cubical tensor-by-matrix multiplication (5) can be pre-
sented as P , independent on N2, block matrix-by-matrix multiplications:

Ẋ(N1, K3)N2 =
P−1∑
N3=0

X(N1, N3)N2 × C(N3, K3), (8)

where the same change-of-basis matrix C = [C(N3, K3)], 0 ≤ N3, K3 < P , is
used for all N2-slices, N2 ∈ [0, P ).

At the second stage, the original tensor-by-matrix product (6) is computed by
the set of P , also independent on N2, block matrix-by-matrix multiplications in
the following form which keeps required row-by-column index agreement:

Ẍ(K1, K3)N2 =
P−1∑
N1=0

C(N1, K1)
T × Ẋ(N1, K3)N2 . (9)

It can be seen from (9) that the same coefficient matrix C = [C(N1, K1)], 0 ≤
N1, K1 < P , is used for all N2 slices, N2 ∈ [0, P ).

At the third stage, the final tensor-by-matrix product (3) is implemented as the
set of P , independent on K3, block matrix-by-matrix multiplications:

...
X(K1, K2)K3 =

P−1∑
N2=0

Ẍ(K1, N2)K3 × C(N2, K2), (10)

where the same P × P matrix C = [C(N2, K2)], 0 ≤ N2, K2 < P , is used for all
K3-slices, K3 ∈ [0, P ).

It is clear that an inverse 3D transform (IDXT) (4) is implemented in the re-
verse order, i.e. as rolling back of a forward 3D DXT. By keeping the slicing of
an initial cubical P × P × P tensor

...
X(K1, K2, K3) along K3-axis, a 3D IDXT

would require implementation of the following three stages:
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Stage I: for all pairs (K1, K2) at slabs K3 ∈ [0, P ) do

Ẍ(K1, N2)K3 =
P−1∑
K2=0

...
X(K1, K2)K3 × C(N2, K2)

T , 0 ≤ K1, N2 < P (11)

After completion, a resulting in this stage cubical tensor Ẍ(K1, N2, K3) is
used as sliced into 1D slabs along N2 axis.

Stage II: for all pairs (N1, K3) at slabs N2 ∈ [0, P ) do

Ẋ(N1, K2)N2 =
P−1∑
K1=0

C(N1, K1)× Ẍ(K1, K3)N2 , 0 ≤ N1, K3 < P. (12)

Stage III: for all pairs (N1, N3) at slabs N2 ∈ [0, P ) do

X(N1, N3)N2 =
P−1∑
K3=0

Ẋ(N1, K3)N2 × C(N3, K3)
T , 0 ≤ N1, N3 < P. (13)

It is easy to verify that the total number of P × P block matrix-by-matrix
multiplications in a forward or inverse 3D DXT is 3P 4. Each block matrix-by-
matrix multiplication is a b × b × b tensor-by-matrix product which requires an
execution of b4 scalar fused multiply-add (fma) operations, where b = N/P is a
blocking factor. The total number of such scalar fma-operations for a 3D DXT is,
therefore, 3P 4 · b4 = 3N4, i.e. blocking does not change an arithmetic complexity
of the transformation. Obviously, this is because our 3D DXT implementation is
totally based on a matrix-by-matrix multiplication.

3 3D Data Decomposition Algorithm

3.1 Algorithm Description
At the beginning, each computer node CN(Q,R,S) in a P ×P ×P torus array

holds in a local memory the four b× b× b data cubes:
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• X = X(Q,R, S) = X(N1, N2, N3),

• Ẋ = Ẋ(Q,R, τ) = Ẋ(N1, N2, τ ) = 0,

• Ẍ = Ẍ(S,R, τ) = Ẍ(N3, N2, τ ) = 0,

•
...
X =

...
X(S,Q, τ) =

...
X(N3, N1, τ ) = 0,

as well as the three b× b change-of-basis matrices of transform coefficients:

• CI = C(S, τ), CII = C(Q,S), and CIII = C(R,Q),

where 0 is a cubical b× b× b tensor with all its entries being zero.
Each computer node CN(Q,R,S) has six bi-directional links labeled as ±Q,

±R and ±S. During processing some blocks of tensor and matrix data are rolled,
i.e. cyclically shifted, along (+) or opposite (-) axis (orbit) according to the
scheduling vector α (see [24] for more details). As it can be seen from the as-
signment above, the P × P matrices CI and CII are replicated among P parallel
along R-axis slabs of computer nodes while P×P matrix CIII is duplicated among
P parallel along S-axis slabs.

A three-stage orbital implementation of the 3D forward transform in a 3D net-
work of toroidally interconnected nodes {CN(Q,R, S) : 0 ≤ Q,R, S < P} un-
der the scheduling function τ = (Q + R + S) mod P, i.e. α = (αQ, αR, αS) =
(+1,+1,+1)T , is described below.

Stage I. Ẋ(Q,R, τ) =
∑

0≤S<P X(Q,R, S)× C(S, τ) :

• for all P 3 CN(Q,R,S) do P times:

1. compute: Ẋ ← X × CI + Ẋ

2. data roll: +S⇐== Ẋ
−S⇐== || +Q⇐== CI

−Q⇐==

Stage II. Ẍ(S,R, τ) =
∑

0≤Q<P C(Q,S)T × Ẋ(Q,R, τ) :

• for all P 3 CN(Q,R,S) do P times:

1. compute: Ẍ ← CT
II × Ẋ + Ẍ

2. data roll: +Q⇐== Ẍ
−Q⇐== || +S⇐== Ẋ

−S⇐==

8



Stage III.
...
X(S,Q, τ) =

∑
0≤R<P Ẍ(S,R, τ)× C(R,Q) :

• for all P 3 CN(Q,R,S) do P times:

1. compute:
...
X ← Ẍ × CIII +

...
X

2. data roll: +R⇐==
...
X

−R⇐== || +Q⇐== Ẍ
−Q⇐==

Due to the orbital (cyclical or rotational) nature of processing, after completion
of each stage, i.e. after P “compute-and-roll” steps, all rotated data are returned
to the same originated nodes and, therefore, a computed cubical tensor can be
immediately used for the next stage of a cyclical 3D processing. Note that initial
tensor X = X(Q,R, S) is assigned to the nodes in the canonical (in-order) layout
whereas all intermediate and final tensors, Ẋ, Ẍ and

...
X , will be distributed in the

skewed (out-of-order) layouts.
The first two stages implement the set of P space-independent 2D forward

transform on P parallel along R-axis (orbit) slabs, 0 ≤ R < P , with the P × P
toroidally interconnected computer nodes {CN(Q, ∗, S)R : 0 ≤ Q,S < P} each
(see Fig. 2 for the stage I and II). Totally, 2P “compute-and-roll” time-steps are
needed for each R-th slab-of-nodes to independently implement a 2D forward
transform (stage I and stage II) of the R-th slab-of-cubes X(N1, N3)R=N2 .

This required initial, intermediate and final data distributions are defined and
controlled by the modular (orbital) scheduling function τ . By using this schedul-
ing, no data redistribution is needed during processing and the final P independent
sets of 1D forward transform in stage III can be immediately started by P , now
parallel along S-axis (0 ≤ S < P ), slabs of the P × P toroidally interconnected
computer nodes {CN(Q,R, ∗)S : 0 ≤ Q,R < P} each (see Stage III in Fig. 2
for P = 2). Totally, 3P “compute-and-roll” time-steps are needed for completion
of 3D DXT.

An orbital computing of the 3D inverse transform is implemented as rolling
back of the described above 3D forward transform where skewed distribution of
the final cubical tensor

...
X among computer nodes will correspond to the initial

three-way tensor distribution for the 3D inverse transform (see also Fig. 3 for
P = 2).

After 3P “compute-and-roll” time-steps, i.e. after completion of a 3D inverse
transform, the resulting cubical tensor X will be distributed in a 3D processor
space in the canonical (in-order) layout.
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Stage I.
...
X(S,R, τ) =

∑
0≤Q<P

...
X(S,Q, τ)× C(R,Q)T :

• for all P 3 CN(Q,R,S) do P times:

1. compute: Ẍ ←
...
X × CT

III + Ẍ

2. data roll: +R⇐==
...
X

−R⇐== || +Q⇐== Ẍ
−Q⇐==

Stage II. Ẋ(Q,R, τ) =
∑

0≤S<P C(Q,S)× Ẍ(S,R, τ) :

• for all P 3 CN(Q,R,S) do P times:

1. compute: Ẋ ← CII × Ẍ + Ẋ

2. data roll: +Q⇐== Ẍ
−Q⇐== || +S⇐== Ẋ

−S⇐==

Stage III. X(Q,R, S) =
∑

0≤τ<P Ẋ(Q,R, τ)× C(S, τ)T :

• for all P 3 CN(Q,R,S) do P times:

1. compute: X ← Ẋ × CT
I +X

2. data roll: +S⇐== Ẋ
−S⇐== || +Q⇐== CI

−Q⇐==
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3.2 Algorithm’s Pseudocodes
Each stage of forward and inverse transforms with 3D data decomposition

has common structure, i.e. P steps of “compute-and-roll”. The differences of
parameters in each stages are:

• the data array is tensor or matrix,

• the data array should be rolled or not. If the data array is rolled, it should be
defined which direction the data array is rolled along or opposite,

• the coefficient matrix is transposed or not,

• by slicing cubical tensor into the set of matrices, tensor-matrix or matrix-
tensor multiplication can be represented as the set of independent matrix-
by-matrix multiplications. Which 2D plane, Q-R, Q-S or S-R, the tensor is
sliced along.

Table 1 shows those differences for the each stage (see also algorithm descrip-
tion in Section 3.1). Here, we describe the first operand in tensor-matrix multi-
plication or matrix-tensor multiplication as A. B is used as the second operand
and the output tensor is described as C. “A (B) is tensor/matrix” means the first
(second) data array is tensor or matrix. “Rolling direction of {A, B, C }” defines
the direction for the data rolling for the each stage. Here, “-” means the data array
is not rolled at the stage. “Transposition of A and B” shows whether input matrix
A and B is transposed or not, respectively. “Slicing plane” defines which plane
the sliced tensors belong to. By using this information, we simplify the psuedcode
of the algorithm with 3D data decomposition.

The psuedocode of the algorithm with 3D data decomposition is shown in
Algorithm 1. Each calling for the Update function in line 2-4 corresponds to the
stages I, II and III of the forward transform, respectively. X , Ẋ , Ẍ and

...
X are

b × b × b cubical tensors and C is b × b coefficient matrix. First three arguments
are regarded as a data array A, B and C inside Update function. Remaining
arguments are used to tell the different parameters of each stage. The 3D block
inverse transform has the same structure as the 3D block forward transform (see
Algorithm 2).
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Table 1: Parameters for each stage of the forward and inverse transforms.

Forward Forward Forward Inverse Inverse Inverse
I II III I II III

A is
tensor/matrix Tensor Matrix Tensor Tensor Matrix Tensor

B is
tensor/matrix Matrix Tensor Matrix Matrix Tensor Matrix

Rolling
direction of A - - Q R - S

Rolling
direction of B Q S - - Q Q

Rolling
direction of C S Q R Q S -
Transposition

of A and B NN TN NN NT NN NT
Slicing plane Q-S Q-S Q-R Q-R Q-S Q-S

Algorithm 1 3D block forward transform
1: function 3DBlockForwardTransform(b, P,X, Ẋ, Ẍ,

...
X,C)

2: Update(X(Q,R, S), C(S, τ), Ẋ(Q,R, τ),
true, false,NN, false,−, true,Q, true, S,Q− S)

3: Update(C(Q,S), Ẋ(Q,R, τ), Ẍ(S,R, τ),
false, true, TN, false,−, true, S, true,Q,Q− S)

4: Update(Ẍ(S,R, τ), C(R,Q),
...
X(S,Q, τ),

true, false,NN, true,Q, false,−, true, R,Q−R)
5: end function

Algorithm 2 3D block inverse transform
1: function 3DBlockInverseTransform(b, p,X, Ẋ, Ẍ,

...
X,C)

2: Update(
...
X(S,Q, τ), C(R,Q), Ẍ(S,R, τ),
true, false,NT, true,R, false,−, true,Q,Q−R)

3: Update(C(Q,S), Ẍ(S,R, τ), Ẋ(Q,R, τ),
false, true,NN, false,−, true,Q, true, S,Q−R)

4: Update(Ẋ(Q,R, τ), C(S, τ), X(Q,R, S),
true, false,NT, true, S, true,Q, false,−, Q− S)

5: end function
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Update function in Algorithm 3 includes P steps of “compute” and “roll”.
Computed result is stored in a cubical tensor C. The arguments A and B are input
data array of tensor/matrix which depends on the stage of the transform. We can
know whether A and B is tensor or matrix from the arguments IsTensorA and
IsTensorB, respectively. Compute function requires IsTensorA, IsTensorB,
Transpose and SlicingP lane for updating output tensor. IsSendX and DirX
is used in DataRoll function. If IsSendX is true, the data will send to DirX
directions. The “compute” part in line 3 and “roll” part in line 4-12 can be over-
lapped. The overlapping strategy is shown in Section 4.5.

Algorithm 3 Update
1: function Update(C,A,B,

IsTensorA, IsTensorB, Transpose,
IsSendA,DirA,
IsSendB,DirB,
IsSendC,DirC,
SlicingP lane)

2: for step← 1, P do
3: Compute(A,B,C, IsTensorA,

IsTensorB, Transpose, SlicingP lane)
4: if IsSendA then
5: DataRoll(A,DirA)
6: end if
7: if IsSendB then
8: DataRoll(B,DirB)
9: end if

10: if IsSendC then
11: DataRoll(C,DirC)
12: end if
13: end for
14: end function

The Compute function, shown in Algorithm 4, updates cubical tensor by im-
plementing tensor-matrix or matrix-tensor multiplication. In each loop, one slice
of matrix from tensor is updated. By using IsTensorA and IsTensorB, in line
(3-9), whether the calling of this function is for tensor-matrix or matrix-tensor
multiplication can be checked. Then, the i-th slice in SlicingP lane is stored to
temporary matrix. After checking, an slice of tensor is updated by matrix-matrix
multiply-add operation. Depending on the Transpose, matrix A′ or B′ is trans-
posed.
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After local computation, the DataRoll function is called for each data array
X ∈ {A,B,C} if IsSendX is equal to true. According to the selected vector a =
(+1,+1,+1)T , the DataRoll function, shown in Algorithm 5, send Data along
(+) direction Dir and receive Data from opposite (-) direction, where Dir ∈
{Q,R, S}.

Algorithm 4 Compute
1: function Compute(A,B,C, IsTensorA, IsTensorB, Transpose,

SlicingP lane)
2: for i← 1, b do
3: if IsTensorA == true then
4: A′ is the i-th sliced matrix in SlicingP lane plane of tensor A
5: B′ is the coefficient matrix B
6: else if IsTensorB == true then
7: A′ is the coefficient matrix A
8: B′ is the i-th sliced matrix in SlicingP lane plane of tensor B
9: end if

10: C ′ is the i-th sliced matrix in SlicingP lane plane of tensor C
11: if Transpose == NN then
12: C ′ ← A′ ×B′ + C ′

13: else if Transpose == TN then
14: C ′ ← A′T ×B′ + C ′

15: else if Transpose == NT then
16: C ′ ← A′ ×B′T + C ′

17: end if
18: end for
19: end function

Algorithm 5 Data Rolling
1: function DataRoll(Data,Dir)
2: Data are cyclically shifted along Dir axis.
3: end function

4 Algorithm Implementation

4.1 GEneral Matrix Multiplication
Because tensor-by-matrix or matrix-by-tensor multiplications can be expressed

as the set of matrix-by-matrix multiplication, we can use an existing GEMM
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[8] library to compute the 3D transform. GEMM operation is defined as C ←
αop(A)×op(B)+βC, where both α and β are scalar values, and op(A), op(B) and
C are m×k, k×n, m×n matrices, respectively. The op(X) is non-transposed (N)
matrix (X) or transposed (T) matrix (XT ). Several implementations of GEMM
from BLAS library such as ATLAS [6] and the Intel Math Kernel Library (MKL)
[1] are available.

There are four different GEMM forms:

1. C ← αA×B + βC,

2. C ← αAT ×B + βC,

3. C ← αA×BT + βC,

4. C ← αAT ×BT + βC,

which are shortly named as NN, TN, NT and TT forms, respectively. The algo-
rithm with 3D data decomposition requires NN form to compute the stage I and
III of the forward transform, and stage II of the inverse transform. TN form is
used in the stage II of the forward transform. NT form is used in the stage I and
III of the inverse transform.

4.2 Intra-node Data Layout

Figure 4: 2 × 2 × 2 tensor data layout

It is assumed that a cubical (b×b×b) tensor is stored as a single 1D continuous
block in the memory of each computer node. We propose that each slice in Q-S
plane is stored in row-major order (see Fig. 4 as an example). A scalar element
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A(q,r,s) of cubical tensor is stored in m-th place of the memory, where m =
r × n× n+ q × n+ s.

The stage I and II of the forward transform require multiplication of each data
slice in Q-S plane with coefficient matrix. Each slice of data in Q-S plane is stored
sequentially in the node’s memory. Thus, the stage I of the forward transform can
be implemented directly by calling NN form of GEMM for each slice. The stage
II requires transposition of coefficient matrix. However, GEMM allows its input
matrix to be transposed. So, the stage II of the forward transform also can be
computed by calling TN form of GEMM.

Figure 5: Transposition of each S-R plane

(a) (b)

Figure 6: Data layout before data rearrangement (a) and after data rearrangement
(b).
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The stage III requires multiplication of each data slice in Q-R plane with co-
efficient matrix, i.e. NN form. However, the elements of intermediate tensor
in Q-R plane are not located sequentially with stride one in the node’s memory.
Thus, we cannot call GEMM library directly. To use GEMM library, the cubical
data should be rearranged inside memory of each node. In the local data rear-
rangement, a scalar element A(q,r,s) will move to A(q,s,r). This required data
rearrangement corresponds to the transposition of each S-R plane (see Fig 5). An
example of a 2× 2× 2 data rearrangement is shown in Fig. 6. After transposition,
we can directly call NN form of GEMM.

It is assumed that the inverse transform is computed after executing the for-
ward transform. Thus, the initial data layout for the inverse transform is already
properly rearranged. At the stage I of the inverse transform, each b × b slice in
Q-R plane is multiplied with the coefficient matrix. The stage I can be directly
computed by using NT form of GEMM without any data rearrangement. The
stages II and III for the inverse transform compute each slice in Q-S plane. So,
local data rearrangement within each node is required after the first stage. After
rearrangement, NN and NT forms of GEMM can be used directly for the stages II
and III of the inverse transform, respectively.

4.3 Multi-node Implementation
Message Passing Interface (MPI) [20] is used for multi-node implementation.

MPI is highly portable and widely used as a standard library for parallel comput-
ing. Non-blocking point-to-point communication supported by MPI enables over-
lapping of computation and communication. MPI_I_SEND and MPI_I_RECV
function supports non-blocking point-to-point communication.

To simplify a 3D implementation, a virtual 3D Cartesian inter-node process
topology provided by MPI is used. In a 3D Cartesian topology, each MPI pro-
cess is connected to its neighbors and we can set cyclic boundaries for the 3D
torus interconnection. To create a Cartesian grid, MPI_CART_CREATE func-
tion is used. The information about nearest neighbor node is obtained by us-
ing MPI_CART_SHIFT function. This function only provide the information
and MPI doesn’t support cyclic shift. Thus, we should use the combination
of the non-blocking point-to-point communication function, MPI_I_SEND and
MPI_I_RECV, and MPI_CART_SHIFT.

4.4 Multi-thread Optimization
Some systems support multi-threading on each node. There exists two pos-

sible ways to optimize tensor-matrix multiplication on such systems. The first
one is to use multi-threaded GEMM library. For example, ATLAS [6] supports
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multi-thread GEMM implementation. In the first approach, each slice of the ten-
sor is computed by multiple threads (see Fig. 7 (a) for 12 slices and four threads).
The other one is to use OpenMP. Each slice in tensor is computed by different
threads at the same time (see Fig. 7 (b)). To use OpenMP, we just add one line,
#pragma omp parallel for, before loop of matrix-matrix multiplication
(see Algorithm 3). We cannot say that which one is better because it depends on
the system. To obtain the best performance, it is better to evaluate both implemen-
tations on mutli-threaded systems.

1st 
slice

Thread 1

Thread 2

Thread 3

Thread 4

2nd 
slice

3rd 
slice

4th 
slice

5th 
slice

6th 
slice

7th 
slice

8th 
slice

9th 
slice

10th 
slice

11th 
slice

12th 
slice

(a) In multi-threaded GEMM, each slice is computed by four threads.

Thread 1

Thread 2

Thread 3

Thread 4

1st slice 5th slice 9th slice
2nd slice 6th slice 10th slice
3rd slice 7th slice 11th slice
4th slice 8th slice 12th slice

(b) In OpenMP implementation, each slice is computed in parallel.

Figure 7: Examples of task distribution, each slice of matrix-matrix multiplica-
tion, among four threads.

4.5 Multi-node Optimization
Each stage of the algorithm with 3D data decomposition consists of P steps

of “compute-and-roll”. The local computation and inter-node communication at
each step can be overlapped. In each rolling part, two of three data arrays, (in-
put cubical tensor A, coefficient matrix B and output cubical tensor C), are rolled.
Depends on which data arrays are rolled, we should consider three different strate-
gies for optimization.

4.5.1 Overlapping Data

Let us consider the situation that rolled data are the input cubical tensor A and
coefficient matrix B. The output tensor C is fixed inside a computer a node. Thus,
we can send A and B while independently updating the tensor C. In this case, a
perfect (100%) overlapping can be possible. This optimization technique is used
in the stage III of the inverse transform.
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4.5.2 Slicing Data

Figure 8: Sliced cubical tensor.

Next case when coefficient matrix B and computed cubical tensor C are rolled.
Transferring of the coefficient matrix B can be totally overlapped with computa-
tion. However, output tensor should be updated before transmitting. To solve this
problem, we use slicing of cubical output tensor. Let us define h as the slice height
for the b × b × b output tensor, where b mod h = 0. An output tensor is divided
into b × b × b/h slabs (see Fig. 8). Each data slab is transferred immediately
after updating and is overlapped with computing of subsequent slab. In this case,
only data transferring of the last slice cannot be overlapped with the computation.
Simplified scheduling for updating slabs when number of slabs is 4, i.e, b/h = 4,
is shown in Fig. 9. The stage I of the forward transform uses this overlapping
technique.

Slice 1

Slice 2

Slice 3

Slice 4

Computing Rolling

1st compute-and-roll step

Computing Rolling

Computing Rolling

Computing Rolling

Computing Rolling

Computing Rolling

Computing Rolling

Computing Rolling

Computing Rolling

Computing Rolling

Computing

2nd step 3rd step

Figure 9: Overlapping of computing and data rolling for 4 divided slabs.

4.5.3 Overlapping and Slicing

When the input cubical tensor A and output cubical tensor C should be rolled,
both of the overlapping and slicing data techniques are employed for input tensor
A and output tensor C, respectively. This technique is required for remaining
stages.
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4.6 Blocked Matrix Multiplication

1 2 3 4 5 6 7 8

9 10 11 12 13 14 15 16

17 18 19 20 21 22 23 24

25 26 27 28 29 30 31 32

33 34 35 36 37 38 39 40

41 42 43 44 45 46 47 48

49 50 51 52 53 54 55 56

57 58 59 60 61 62 63 64

b

b

51 52 55 56 59 60 63 64

49 50 53 54 57 58 61 62

35 36 39 40 43 44 47 48

33 34 37 38 41 42 45 46

19 20 23 24 27 28 31 32

17 18 21 22 25 26 29 30

3 4 7 8 11 12 15 16

1 2 5 6 9 10 13 14

b'
b

b

b'

(a) Row-major data layout (b) Block data layout

Figure 10: (a) Row-major data layout and (b) block data layout; the number in
each data layout indicates the order of memory assignment.

As we discussed previously, each slice of the tensor is stored as row-major
order in Q-S plane or Q-R plane. It is well known that blocked algorithms increase
the performance reusing data. We apply two levels of blocking for the ZGEMM,
which is GEMM for complex-double precision, on the Blue Gene/Q.

At the first level of blocking, each b × b slice of tensor is divided into b′ × b′

square blocks. The data layout is changed to store each b′×b′ block sequentially in
the memory. This kind of data access pattern is called as block data layout (BDL)
[21] (see Fig. 10 (b)). It can shown that b′ = 16 on the BG/Q is the optimal
parameter. If the size of problem for each node, b, is less than 16, we solve the
problem by using traditional row-major data layout (see Fig. 10 (a)).

16

= + ×

8

16
8

Figure 11: The second level of blocking

As the second level of blocking, to utilize SIMD instructions on the BG/Q, the
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16 × 16 resulting matrix is divided into 4 × 8 rectangular matrices (see Fig. 11).
To update these 4× 8 matrices efficiently, we implemented NN form of ZGEMM
kernel by using intrinsic functions for vectorized fused multiply-add (fma) and
fused multiply-subtract (fms) operations.

Currently, we only implemented NN form of ZGEMM. The 3D forward and
inverse transforms with cubical data decomposition also requires TN and NT
form. To deal with it, additional transposition for the coefficient matrix is re-
quired. However, time for transposition of the 2D b × b matrix can be negligible
in total time of computing.

5 Performance Evaluation on the IBM Blue Gene/Q
In this Section, performance evaluation of the 3D DFT with 3D data decom-

position in complex-double precision on the IBM Blue Gene/Q is presented. This
system supports 5D torus interconnected networks. Following formula is used to
estimate performance:

Performance (Gflop/s) =
The number of flops

Time (sec)
. (14)

The number of floating point operations for 3D DFT can be defined as 3×8×N4.
The BG/Q compute chip (BQC) is a System-on-Chip (SoC) design combining

CPUs, caches, network and message unit on a single chip [13]. A single BG/Q
rack contains 1024 BG/Q nodes. Each node contains the BQC and 16 GB of
memory. Each BQC has 16 PowerPC A2 cores. The A2 core runs at 1.6 GHz
and allows 4 fmas per cycle, translating to a peak performance per core of 12.8
Gflop/s or 204.8 Gflop/s for the BQC. The BG/Q has a 5-D torus interconnected
topology. Each compute node has 10 communication links with its neighbors.
Each torus link can simultaneously send at 2GB/s and receive at 2GB/s [5].

The IBM BG/Q system at the High Energy Accelerator Research Organiza-
tion (KEK), Japan, is used to evaluate performance of the 3D DFT with 3D data
decomposition in double precision. We measured the performance of 3D DFT
in complex-double precision with different number of nodes. We used our opti-
mized ZGEMM. The performance is measured on 32 (2 × 2 × 2 × 2 × 2), 128
(2× 2× 4× 4× 2) and 512 (4× 4× 4× 4× 2) nodes. The details are described in
Table 2. The first column of the table shows the number of nodes and the second
column shows the total number of MPI processes. The third column shows the
number of MPI processes per node. BG/Q allows to assign multiple cores per
MPI processes. The forth column shows the maximum number of the available
threads per MPI process.
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Table 2: The available number of nodes and number of MPI processes on the
BG/Q.

# Nodes # MPI Processes # MPI Processes # threads
per node per MPI processes

32 64 (43) 2 32
32 512 (83) 16 4

128 512 (83) 4 16
512 512 (83) 1 64

5.1 Performance Evaluation
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Figure 12: Performance results with 1 node on the BG/Q.

Fig. 12 shows the one node results on the BG/Q. The available performance
efor the forward and inverse transforms are almost the same. It achieves about 41
Gflop/s when N = 256 for the forward and inverse transforms. This is 20% of the
hardware peak performance in one node.

The performance results on the BG/Q is shown in Fig. 13. For all four different
configuration of nodes, the performance of the forward and inverse transforms are
almost the same. On 32 nodes, the performance for the 3D DFT with 64 MPI
process is 1519.3 Gflop/s (23.2% of the hardware peak performance) and with
512 MPI process 1675.5 Gflop/s (25.6% of peak). The obtained performance on
128 nodes with 512 MPI processes is 6563.05 Gflop/s (25.0% of the peak). The
efficiency is almost the same when the number of nodes are 32. The obtained
performance of 512 nodes with 512 MPI processes is 25579.08 Gflop/s (24.4% of
the peak).

To better understand how the computation time is compared to the communi-
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(a) 64 MPI processes (32 nodes × 2
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Figure 13: Performance results on the BG/Q.

cation time, we show the relative percentages of the time spent for “computation”,
“communication” and other “rearrangement”. Here, “computation” includes both
updating of output tensor and overlapped communication time. From Fig. 14, we
can see that the ratio of computation increases smoothly and reaches more than
70% of the total execution time. Because of the scalability of the torus cluster we
can expect that the tendency of the relative percentage of computation time is the
same for larger number of nodes and we can say that good weak scaling can be
possible on this system.

5.2 Strong Scalability
The execution time is shown in Fig. 15. The x-axis shows the number of MPI

processes on a logarithmic scale and the y-axis shows the execution time on a
logarithmic scale. For N = 1024, the speedup T32/T128 is 3.72 and T128/T512 is
3.24. For N = 2048, the speedup T128/T512 is 3.85 which is close to the maximum
speedup (512 nodes / 128 nodes = 4). For the large size, we can see good strong
scalability.
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Figure 14: The relative percentage of computation, communication and all other
overheads for the inverse 3D DFT on the BG/Q with different number of MPI
processes.

5.3 Comparison with 3D FFT
We compared our result of 3D DFT with 3D data decomposition with 3D FFT

with 2D data decomposition [12] when the problem size is 10243. The number
of flops of the 3D DFT and FFT is approximately 24 × N4 and 15 × N3 log2 N ,
respectively. Thus, the 3D DFT is approximately 24N4/15N3 log2N = N/log2N
times slower than 3D FFT, i.e, 163.84 times slower when N = 1024. We can see
that 3D DFT is only 6-8 times slower than 3D FFT (see Table 3), i.e. about 19-27
times faster than theoretical estimation.

Currently, our one node implementation for tensor-matrix multiplication rou-
tine is only 20% of the peak performance of one node, and it affect the perfor-
mance on multinode. We expect that it is still possible to optimize performance in
one node, and thus further improvement of performance can be possible. More-
over, currently it is practically impossible to use the number of nodes which is
equal to the problem size, i.e. 10243, to demonstrate performance of the algo-
rithm with 3D data decomposition. We can expect that there is a possibility that
3D DFT is faster than 3D FFT especially the number of nodes is equal to size of
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Table 3: Comparison of execution time between 3D DFT with 3D data decompo-
sition and 3D FFT with 2D decomposition [12] when the problem size is 10243.

# 3D FFT [12] 3D DFT (sec) DFT/FFT 3D DFT (sec) DFT/FFT
Nodes (sec) (forward) (forward) (inverse) (inverse)

32 2.731 15.749 5.77 16.251 5.95
128 0.713 4.790 6.72 4.886 6.85
512 0.179 1.488 8.31 1.475 8.24

6 Conclusions
We have shown the implementation and performance evaluation of the algo-

rithm with 3D data decomposition. To the best of our knowledge, this work is the
first implementation of the 3D data decomposition of the discrete forward/inverse
transform.

We proposed pseudocode, how to implement the algorithm and some opti-
mization techniques for the 3D data decomposition. Our proposed implementa-
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tion requires GEMM routine from BLAS and MPI, which are usually available
on the supercomputers. Thus, by using those libraries, the implemented code can
be easily ported to any environment. There are two possible ways for multit-
thread optimization, using multi-threaded GEMM or OpenMP. Which is better is
depends on the system. Each of the forward and inverse transforms of 3D dis-
crete transform has three different stages. We define three different optimization
techniques based on which data arrays are rolled.

We evaluated 3D DFT on the BG/Q with various number of nodes as an ex-
ample of implementation for the algorithm with 3D data decomposition. In this
environment, we can compare our results with the 3D FFT on the BG/Q. The prac-
tical execution time for 3D DFT is about 19-27 times faster than the theoretical
estimation. Therefore, we can predict that the 3D DFT with 3D data decomposi-
tion can be faster than 3D FFT in the future supercomputers where the number of
nodes will be equal to the size of data, i.e., N3.

6.1 Future Works
Future work includes following things. Our implementation of the algorithm

with 3D data decomposition is required to compute the small size of matrix-matrix
multiplication efficiently. However, currently, GEMM can achieve the high per-
formance when the problem size is relatively large. To improve GEMM perfor-
mance in small size is considered. To make the analytical model is also important
task to estimate the performance with different problem sizes and number of pro-
cessors.
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