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Abstract—This paper presents results of an implemen-
tation of code generator for fast general matrix multiply
(GEMM) kernels. When a set of parameters is given, the
code generator produces the corresponding GEMM kernel
written in OpenCL. The produced kernels are optimized
for high-performance implementation on GPUs from AMD.
Access latencies to GPU global memory is the main drawback
for high performance. This study shows that storing matrix
data in a block-major layout increases the performance and
stability of GEMM kernels. On the Tahiti GPU (Radeon HD
7970), our DGEMM (double-precision GEMM) and SGEMM
(single-precision GEMM) kernels achieve the performance up
to 848 GFlop/s (90% of the peak) and 2646 GFlop/s (70%),
respectively.

Keywords-matrix multiplication; OpenCL; GPU; auto-
tuning

I. INTRODUCTION

Matrix-matrix multiply-add is a fundamental routine in
linear algebra, which is referred to as GEMM (GEneral
Matrix Multiply) in BLAS (Basic Linear Algebra Subrou-
tines) standard [1]. GEMM appears in a lot of important
numerical algorithms and is a building block of LAPACK
(Linear Algebra PACKage) [2] and other Level-3 BLAS
routines [3]. The computational intensity and the regularity
of GEMM algorithms make them good candidates for
performance acceleration.

There are a lot of work on GEMM performance ac-
celeration on CPUs [4]–[6] and GPUs [7]–[10]. Auto-
matic performance tuning (or auto-tuning in short) is
an important technique to generate near-optimal GEMM
implementations. ATLAS (Automatically Tuned Linear
Algebra Software) [4] is a prominent auto-tuning software
library for BLAS routines running on CPUs. An auto-
tuning system was also developed for GEMM kernels
in CUDA (Compute Unified Device Architecture) for
NVIDIA GPUs [7], [11], [12]. In addition, there is a
report on auto-tuning methods for developing near-optimal
GEMM kernels in OpenCL (Open Compute Language) for
AMD GPUs [13].

Auto-tuning system needs two core components: code
generator and heuristic search engine. Code generator
produces codes parameterized from a pre-defined code
template. Heuristic search engine runs the generated codes
and searches the best set of parameters for increasing
performance using a feedback loop. This study proposes a
code generator for fast GEMM kernels written in OpenCL
as a preliminary work for an auto-tuning system. The

main difference from the similar works [9], [13] is that
our code generator supports generating GEMM kernels
where matrix data are stored in memory not only in a
standard row-/column-major layout, but also in a block-
major layout.

The rest of this paper is organized as follows. Section
II describes our GEMM code generator. This section also
explains relations between parameters of the generator and
the OpenCL execution model. Section III shows results of
performance evaluation on the AMD Tahiti GPU (Radeon
HD 7970). Finally, Section IV concludes the paper.

II. CODE GENERATOR

In BLAS [1], GEMM is defined as

C ← αop(A)op(B) + βC,

where both α and β are scalar values, and op(A), op(B)
and C are m×k, k×n and m×n matrices, respectively.
The op(X) takes X (non-transposed matrix) or XT (trans-
posed matrix); thus, there are four multiplication types:

(a) C ← αAB + βC,
(b) C ← αABT + βC,
(c) C ← αATB + βC,
(d) C ← αATBT + βC,

in each real (double or single) precision. In the following
description, if not specified, we assume that matrix data
are stored in a row-major layout, which is standard in C
Programming Language.

Our code generator takes a set of parameters as the
input. When the input is given, the code generator pro-
duces the corresponding GEMM kernel code written in
OpenCL as the output. We can set different parameters
to the generator for each GEMM type (14 parameters
for (c) type and 12 parameters for the other (a), (b),
(d) types). Six parameters define the blocking factors and
the other parameters are related to optimization of a way
for accessing matrix data. The followings describe the
meaning of every parameter.

A. Blocking

A straightforward implementation of GEMM is a three-
nested-loop program. Blocking a GEMM algorithm is
necessary for getting high performance on a processor with
a multi-level memory hierarchy. It is because the blocking
increases the data reuse ratio which is required to tolerate
memory access latencies.



We can consider that the GPU has three levels of mem-
ory spaces: off-chip memory (global memory), on-chip
memory (cache or local memory), and private memory
(register file). Roughly speaking, the off-chip memory
is the largest memory space with the lowest bandwidth,
the private memory is the smallest memory space with
the highest bandwidth, and the on-chip memory is in the
middle of them.

OpenCL is an open standard for general-purpose par-
allel programming on heterogeneous platforms [14], [15].
The OpenCL execution model covers the three memory
spaces. OpenCL specifies a C99-based language that al-
lows to write parallel functions called kernels. When a
kernel is submitted for execution on the GPU, an index
space, which is called NDRange, is defined. Each instance
in NDRange is named work-item, and several work-items
are organized into a work-group. Every work-item can
access its own private memory which is not visible from
other work-items. Work-items in a single work-group
concurrently run on the processing elements of a compute
unit, and share their own on-chip memory. Global memory
can be accessed from all work-items, though there is no
way for synchronization of work-items in different work-
groups during a kernel execution.

We use a two-level (larger and smaller) blocking in
our GEMM kernel template since it is effective for high-
performance implementation to utilize the three levels
of memory and execution model. Let ml, nl, kl be the
larger blocking factors. The blocking divides the three
matrices A,B,C into (m/ml)× (k/kl), (k/kl)× (n/nl)
and (m/ml)×(n/nl) grids of ml×kl, kl×nl and ml×nl

blocks, respectively. Fig. 1 depicts a matrix multiply-
add partitioned with the blocking factors. Workloads for
a single ml × nl block of C are allocated to a work-
group. The work-group is associated with multiplication
of a ml × k stripe of A with a k × nl stripe of B and
addition of the product to an ml × nl block of C for the
final result.

An algorithm for the stripe-by-stripe multiplication ite-
rates k/kl times in the outermost loop of our GEMM
algorithm (let us consider matrix sizes m,n, k as mul-
tiples of ml, nl, kl, respectively). In every iteration of
the outermost loop, the work-group produces the partial
result of ml × nl block by multiplying ml × kl block
on kl × nl block and adding the product to the ml × nl

block. Fig. 2 shows the block-by-block multiplication.
Each block is further divided with the smaller blocking
factor (ms, ns, ks) such that a work-item in the work-
group is in charge of multiplication of ms× ks sub-block
of A by ks × ns sub-block of B and accumulation of the
product on an ms × ns sub-block of C.

B. Way for accessing matrix data

For storing matrix data in OpenCL, we can choose
either of two types of memory objects: buffer objects and
image objects. Buffer objects are like one-dimensional
arrays in C Language and buffer data are sequentially
stored in global memory. Image objects are intended to
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Figure 1. Matrix-matrix multiply-add with the larger blocking factor
(ml, nl, kl) in an OpenCL kernel on a GPU
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Figure 2. Block-block multiply-add with the smaller blocking factor
(ms, ns, ks) in a work-group on a compute unit

contain pixel data for image processing, and image data
are stored in special global memory called texture memory.
Using images may take advantage of spatial memory
locality for increasing performance. Our code generator
has a parameter to designate using either buffer or image
for reading data from matrices A and B. For data related
to matrix C, buffer is always used.

As another parameter, we can designate a width of
vector variables to the generator. Kernels using different
widths show different performance. Note that, when a
kernel uses image objects, the width is limited to two in
double-precision (double2) and four in single-precision
(float4).

GPUs have a local memory1 to share data between
work-items in a single work-group. The bandwidth of the
local memory is higher than that of the L1 cache. For
instance, in case of the Tahiti GPU (Radeon HD 7970),
the peak bandwidth of the local memory is 3789 GB/s
while that of the L1 cache is 1894 GB/s [15]. A drawback
of using the local memory is that it requires a barrier
synchronization between the work-items, which costs a
certain amount of time. The drawback leads to the fact
that using the local memory is not always good for higher
performance; hence, we have added to the code generator
a parameter for either using the local memory for each
matrix of A and B or not.

It is known that ATB + C kernel is the fastest among
all four GEMM types in row-major on the Cypress GPU,
because of its efficient memory access patterns [10], [16].
For example, the maximum performance of ATB + C
double-precision kernel is 472 GFlop/s while that of
AB + C kernel is 359 GFlop/s on the Cypress GPU
(Radeon HD 5870) [10]. ATB + C kernel is the fastest
also on the Tahiti GPU (experimental results are shown
in Section III). This means that using the ATB + C

1In GPUs from AMD, the local memory is named local data store
(LDS).



Table I
TAHITI GPU SPECIFICATIONS

Codename Tahiti
Product name Radeon HD 7970
Core clock speed [MHz] 925
Number of compute units (CUs) 32
Number of double-precision (DP) units 512
Number of single-precision (SP) units 2048
Peak DP performance [GFlop/s] 947
Peak SP performance [GFlop/s] 3789
Memory clock speed [MHz] 1375
Global memory size / GPU [GB] 3
L2 cache size / GPU [kB] 768
L1 cache size / CU [kB] 16
Local memory size / CU [kB] 64
Global memory peak bandwidth [GB/s] 264
L2 cache peak bandwidth [GB/s] 710
L1 cache peak bandwidth [GB/s] 1894
Local memory peak bandwidth [GB/s] 3789

kernel also for the other three GEMM types will contribute
performance improvement. A solution for the kernel uti-
lization is to copy matrix data in a transposed form
if necessary. Such optimization was used previously by
Du et al. [9]. They showed that the optimization works
effectively for large matrices in which the O(n2) time of
the copying is negligible compared with O(n3) time of
execution of GEMM kernel.

We extend the solution with matrix transposition such
that matrix data are stored in global memory in a block-
major layout to increase a spatial locality. Currently, as an
option, the code generator supports producing ATB + C
kernels where matrix data are supposed to be aligned in
either of two block-major layouts shown in Fig. 3 (on an
m×k transposed matrix A with the blocking factor ml, kl).
Fig. 3(a) shows a column-block major layout and data in
each k × ml column-block are sequentially stored in a
row-major order. We name this layout column block layout
(CBL). In CBL, matrix data needed for a multiplication of
k ×ml stripe and k × nl stripe are aligned in contiguous
memory locations. Fig. 3(b) depicts a row-block major
layout and data in each kl × ml sub-block of a kl × m
row-block are stored in a row-major order. Let us name
this layout row block layout (RBL). In RBL, matrix data
required for a multiplication of kl×ml block and kl×nl

block are aligned in memory. There are past studies on the
benefits of using block major layouts to improve memory
utilization in CPUs [17], [18].

III. PERFORMANCE EVALUATION

We evaluate the performance of DGEMM (double-
precision GEMM) and SGEMM (single-precision GEMM)
kernels generated by our code generator on the AMD
Tahiti GPU (Radeon HD 7970). The GPU specifications
are shown in Table I. The GPU system runs on Ubuntu
10.04. The installed display driver is AMD Catalyst 12.3.
We use AMD Accelerated Parallel Processing (APP)
SDK v2.6 for OpenCL software development. The present
performance evaluation does not take into account data
transfer time between host (CPU) and GPU.

The implemented code generator has been used to

search the best set of parameters which produces the
fastest GEMM kernel. We tested at least ten thousand
kernel variants per GEMM type. Such large number of
variants were heuristically chosen. Our heuristic search
engine measures the performance of generated kernels in
order according to a feedback of the measured perfor-
mance. Note that the search engine is not matured. It takes
around three hours to find the best set of parameters for
each GEMM type and takes 24 hours to find all the fastest
DGEMM and SGEMM kernels shown in this paper. The
following shows the procedure for selecting the fastest
kernel:

1) Measuring the performance in GFlop/s of every
generated GEMM kernel for two problem sizes
n = 1536 and 4096.

2) Further measuring the performance of the fastest 50
kernels for problems sizes n (256 ≤ n ≤ 8192 in
multiples of 256) among a large number of kernels
tested in 1).

3) Selecting the fastest kernel among the 50 kernels
tested in 2).

The performance of the fastest DGEMM and SGEMM
kernels is shown in Fig. 4. Table II shows sets of param-
eters and the observed maximum performance of the ker-
nels. In row-major, the maximum DGEMM performance
(790 GFlop/s) of ATB + C kernel is higher than that
(689 GFlop/s) of AB + C kernel, though the ATB + C
performance fluctuates depending on matrix sizes probably
due to memory bank conflicts. It was found that there
exist several ATB + C kernels demonstrating a stable
(non-fluctuated) performance tendency with around 620
GFlop/s. The ATB + C kernel in CBL is most superior
to the other shown kernels in terms of the performance
and the stability; the achieved performance for this kernel
is up to 848 GFlop/s (90% of the peak performance)
in double-precision and 2646 GFlop/s (70%) in single-
precision. The present code generator limits the size of all
blocking factors to a power of two. Therefore, there may
be some room for improving the performance.

To make use of the ATB + C kernel in CBL, matrix
data have to be copied into CBL before executing the
kernel. We need to prepare two kinds of copying kernels: a
kernel copying data into CBL without matrix transposition
and a kernel copying data into CBL with transposition.
For instance, in case of AB + C, the matrix A has to
be copied with transposition and the matrix B has to be
copied without transposition. Every copying kernel for a
square matrix-matrix multiplication (i.e., m = n = k)
reads n×n matrix from a memory space in global memory
and then, writes the n×n matrix to another memory space
in global memory. The memory bandwidth of every n×n
matrix-to-matrix copying kernel can be calculated as

BW (n) [Bytes / sec] =
2n2 · S [Bytes]

Time for copying [sec]
,

where S = 8 for the double precision and S = 4 for the
single precision. The measured memory bandwidth of the
copying kernels is shown in Fig. 5. The copying kernels
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Table II
PARAMETERS AND PERFORMANCE OF THE FASTEST GEMM KERNELS

Kernel type ml, nl, kl ms, ns, ks Vectora Sharedb Imagec Performance [Gflop/s]

DGEMM

ATB + C in CBL 64,16,16 4,4,2 2 B - 848
ATB + C in RBL 64,16,16 4,4,2 2 B - 812

ATB + C in row-major 256,8,16 4,4,2 2 - - 790
AB + C in row-major 32,128,128 4,4,4 4 A - 689

SGEMM

ATB + C in CBL 128,128,256 16,8,4 4 - - 2646
ATB + C in RBL 128,32,8 8,8,8 2 B - 2577

ATB + C in row-major 128,64,4 8,4,4 4 - - 2488
AB + C in row-major 128,64,256 8,4,4 4 - A 2382

a. Width of vector variables
b. Matrix whose data are shared in local memory
c. Matrix whose data are loaded from image
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Figure 4. Performance of the fastest GEMM kernels produced by our code generator on the Radeon HD 7970. Matrix sizes are in multiples of 256.

are not deeply tuned; hence, the measured bandwidth
of 20-160 GB/s is not high compared with the peak
bandwidth (264 GB/s).

Fig. 6 shows the performance of our GEMM implemen-
tation with the fastest ATB+C kernel in CBL supported
by the coying kernels. In the figure, the performance is
compared with that of the AB + C kernel in row-major
and GEMM routines from AMD Accelerated Parallel Pro-
cessing Math Libraries (APPML) clBLAS 1.8.269 [19].
The time for the copying is amortized when matrix sizes
become larger, and our implementation shows higher
performance than the AB +C kernel in row-major when

n ≥ 1536 in DGEMM and n ≥ 4096 in SGEMM. Also,
the performance of our implementation is higher than that
of APPML. The maximum performance of our DGEMM
and SGEMM AB + C implementations is 823 GFlop/s
(87% of the peak) and 2541 GFlop/s (67%), respectively.
The performance difference among all four GEMM types
is not large and within 3% for DGEMM and 5% for
SGEMM.

When a matrix size is not in multiples of a blocking
factor, we use a zero padding technique. In the padding
technique, the values of padded portion in matrices A,B
are initialized as zero such that our GEMM implementa-
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Figure 6. Performance of our GEMM implementation using the fastest ATB + C kernel in CBL supported by the copying kernels, and the
performance comparison with the AB + C kernel in row-major and GEMM routines of AMD APPML clBLAS 1.8.269 [19].

tion can utilize the fastest GEMM kernel in CBL, which
is optimized for matrix sizes in multiples of the blocking
factor. The performance of the GEMM implementation
with the padding is shown in Fig. 7. One disadvantage
of the padding is that it causes a performance degrada-
tion due to the extra computation for padded portions.
The performance degradation is small for relatively large
problem sizes. Another side effect of the padding is that
it requires three extra buffers for matrices, and as a result,
the DGEMM computation becomes impossible in the case
of m = n = k > 6800 on the 3 GB memory.

In the SGEMM case of Fig. 7, two performance results
are shown. The green line indicates the performance of
the implementation with the already mentioned ATB+C
kernel in CBL which uses 256 as one of the blocking
factors. In the padding, the larger a blocking factor is,
the bigger the performance deterioration becomes. To see
effects of using different blocking factors on the perfor-
mance, we test another SGEMM implementation with an
ATB+C kernel in CBL having 64 as the largest blocking

factor2. The gray line of Fig. 7 represents the performance.
As shown, using the smaller blocking factor refrains a
drastic performance deterioration although the maximum
performance (2430 GFlop/s) of the implementation is a
little lower.

IV. CONCLUSION

This paper has presented our code generator for search-
ing fast GEMM kernels. The performance of GEMM
kernels running on GPUs is determined by many factors
and it is extremely difficult and time-consuming to develop
highly optimized kernels by hand tuning. We think that
searching a number of kernel pattens with an auto-tuning
system is a good solution for quick development of fast
GEMM kernels. Currently, the heuristic search engine in
our implemented system is not matured and our system
is not a perfect auto-tuning system; however, results of
this study show that searching exhaustive kernel patterns
by the code generator still contributes development of fast

2Parameters of the SGEMM kernel: {ml, nl, kl} = {64, 32, 32},
{ms, ns, ks} = {4, 8, 4}, the width of vector variables is 4, and
common data of the matrix B is shared in local memory.
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Figure 7. Performance of our AB + C GEMM implementation with a padding technique. In SGEMM, two performance results are shown in
different blocking factors {ml, nl, kl}.

GEMM kernels with modest development time. The code
generator supports production of ATB+C GEMM kernels
where matrix data are sequentially stored in a block-major
layout. It was shown that using the best kernel in the
block-major layout results in achieving higher maximum
performance and performance stability than using a kernel
in a row-major layout on the Tahiti GPU (Radeon HD
7970).

Since programs written in OpenCL are portable across
OpenCL supported devices including multi-core CPUs and
GPUs from different vendors, a possible future work is to
evaluate GEMM kernels produced by the code generator
on several different architectures of CPUs and GPUs.
Implementing a code generator for other BLAS routines
is another future work.
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