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We present in this report two algorithms for polygonizing implicit

surfaces based on Delaunay triangulation. To improve the quality of

the obtained triangle mesh, we propose a mesh optimization algorithm

for: retrieving sharp features, regularizing mesh triangles, and mini-

mizing the approximation error. We show how to combine an adaptive

selection of vertices, with a Delaunay triangulation and mesh optimiza-

tion to produce good quality triangle meshes.

1 Introduction

In this report, we present two algorithms for the polygonization of implicit
surfaces based on the Delaunay triangulation algorithm. Fig. 1 is illustrating
some steps of the second algorithm.

Figure 1: Some steps of the adaptive algorithm presented in section 3.

Implicit surfaces [6], or F-Reps [3] represent surfaces as the set of points
in space taking a given function value (isovalue), for example the surface
defined by the isovalue 0 of f in R3 is: S = {p ∈ R3 : f(p) = 0}. Taking
the inequality instead of the equality defines more generally a solid: V =
{p ∈ R3 : f(p) >= 0}.

This representation is interesting because of its ability to describe com-
plicated shapes and handle easily topological changes during simulation [14].
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Visualization is typically done by ray-tracing [11], i.e. shooting rays on
a two dimensional grid and checking for their intersection with the object,
or by polygonization [18, 4, 8]. Polygonization consists in generating an
approximation of the surface f = 0 by a set of triangles. It is usually done
by sampling the function on a regular grid and inspecting each cell to see
if it intersects with the surface, which is done by looking at the sign of the
values at each corner of the cell.

In this paper, we propose a new approach for the polygonization of im-
plicit surfaces: random points are projected on the surface f = 0 and a
tetrahedralization of the this point-set is generated by the Delaunay tri-
angulation algorithm. The sign of the function is used to discard outside
tetrahedrons. Triangles on the surface are extracted and their shape is im-
proved by using information from the function and the current triangular
mesh.

1.1 Related works

The Marching Cube algorithm [18] works by inspecting each cells of a reg-
ular grid and check for a potential intersection of the surface with the cell.
An intersection is detected when the values at each corner of the current
cell have different signs. A lookup table is used to retrieve the intersection
topology based on the configuration of the signs in the cell. It is a pop-
ular algorithm for extracting a triangulated surface from a regular grid of
values but suffers from several drawbacks such as: topological ambiguities,
exhaustive investigation of cells, smoothing of the surface’s sharp features,
among others. For an in-depth review of the Marching Cube algorithm,
its improvements and extensions, the reader is referred to the survey from
Newman and Yi [17].

Pasko et al [4] proposed a similar algorithm, which also exhaustively
inspects all cells in the grid, but is free of topological ambiguity in contrast to
the original Marching Cube algorithm. The ambiguity in a cell is removed by
noticing that the intersection of the implicit surface with the cell corresponds
to the branches of an hyperbola.

An algorithm for retrieving the sharp features of the surface was pro-
posed by Kobbelt et al. [12]. Their algorithm extends the Marching Cube
algorithm by using the local distance field information and its gradient to
compute and insert into the mesh additional sample points lying on the sur-
face’s feature. Ohtake et al [19, 20] used a set of post-processing steps to
improve the triangular mesh generated by the Marching Cube algorithm.
Their work attempt to handle sharp features correctly as well as to regu-
larize the mesh by relocating the mesh vertices based on the current mesh
information and the implicit surface (function value and gradient).

In general, these algorithms tend to produce an excessive number of
triangles, especially in the regions of low curvature, because of their use of
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a uniform grid. Moreover, the shapes of the triangles are not controlled and
can degenerate even when a post-processing optimization is used.

A different approach is the Dual Contouring algorithm introduced by Ju
et al [15], which is designed for extracting surfaces with adaptive resolution
(in contrast to using a uniform grid) while reproducing sharp features (based
on normal information). However, the original Dual Contouring algorithm
is not guaranteeing intersection-free surfaces, and it was later extended by
Ju and Udeshi [16] to resolve this issue. In these methods, the size of the
triangle mesh is controlled by the octree’s depth. There is no mechanism in
place to control the shape of triangles.

A different family of algorithm for the polygonization of implicit surfaces
rely on surface tracking, i.e. these methods start from a seed triangle on
the surface and grow by iteratively adding new triangles to approximate the
surface. An example of surface tracking method is the Marching Triangles
algorithm [2].

Starting from a seed triangle on the surface, the algorithm iteratively
creates new triangles covering the surface by: adding a vertex in the plane
of an existing triangle, projecting it to the implicit surface and deciding if
the newly formed triangle should be added. The later decision is based on
the Delaunay surface constraint proposed by Boissonnat [9].

The original Marching Triangles algorithm is not crack-free as noticed
by Akkouche and Galin. They proposed to extend it by: improving the
triangle creation step, especially the projection of the additional point on the
surface, and to tessellate the cracks. Additionally, an incremental algorithm
is proposed to integrate the improved marching triangles algorithm in an
interactive implicit surface editing environment.

However, none of these algorithms seem to be able to handle properly
sharp features of the surface.

Another type of algorithm was proposed by Desbrun et al [13]. Seed
points on the bounding volume of an implicit surface migrate to the surface
to generate a mesh approximating the surface. The algorithm is designed
to work with implicit surfaces defined by skeletal elements only. The main
strength of the algorithm is to be fast and to allow interactive update of
the mesh when adding or removing primitives. This is due to the fact that
the algorithm operates on elements locally and not globally on the implicit
surface. The difficulty of the algorithm is to attach the triangles patches
together. The algorithm may fail to tessellate correctly regions where many
primitives blend. As mentioned earlier, it is also restricted to a single class
of implicit surfaces: skeletal elements.
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De Figueiredo et al. [7] proposed an algorithm inspired by physical sys-
tems to solve the problem of polygonization of implicit surfaces. First, a
particle system is constrained on the implicit surface by solving a partial
differential equation. Particles tend to be attracted by area of high curva-
tures. The sampling is then improved and made uniform by introducing
repelling forces between each particles and solving until equilibrium. An
improved algorithm for sampling particles on an implicit surface was pre-
sented by Witkin and Heckbert in [5]. Finally, a triangular approximation
of the surface is obtained by keeping from the Delaunay triangulation of the
point-set the triangles that approximate the tangent plane at each vertex.
If the initial set of particles is not properly scattered, this algorithm may
miss disjoint pieces and holes of the implicit surfaces. Scattering the points
by solving the partial differential equation is time consuming, as is the reg-
ularization by introducing repelling forces. Finally, sharp features are not
handled properly by the algorithm.

1.2 Overview and main contributions

In this paper, we present first a simple algorithm using Delaunay triangu-
lation for the polygonization of an implicit surface f given a vertex budget
n. The algorithm consists in a few simple steps: 1) generate n random
points and project them on the boundary surface f = 0; 2) generate a set of
tetrahedrons using the Delaunay triangulation algorithm; 3) discard outside
tetrahedrons and generate triangles on the surface; 4) optimize the mesh
(connectivity, surface approximation, triangles shape and sharp features).
An adaptive version of the algorithm is then presented. Starting from a
small sample of random points, it iteratively adds points in area of high
curvature while optimizing the generated triangle mesh.

The presented algorithms are relatively simple to implement, give a di-
rect control on the number of vertices on the mesh, handle sharp features
and generate relatively well shaped triangles. In contrast, to marching cube
algorithms, the function is sampled only on the vertices and not on every
cells’ corners (including in empty cells away from the surface). Additionally,
the adaptive method provides a better distribution of the triangles’ size by
adding smaller triangles only in the high curvature areas.

2 The first polygonization algorithm

In this section, we describe the first version of the polygonization algorithm.
The outline of the algorithm is given first. The details for each steps are
given in the following subsections.

Polygonize (Polygonization of an implicit surface). Given a function f :
R3 → R, a number of points n and a rectangular box bbox bounding the
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space {(x, y, z) : f(x, y, z) ≥ 0}, compute a polygonal approximation of the
surface {(x, y, z) : f(x, y, z) = 0}.

1. [Generate points.] Generate n points p in the bounded space
[bbox(1, 1), bbox(2, 1)] × [bbox(1, 2), bbox(2, 2)]× [bbox(1, 3), bbox(2, 3)].
Points can be randomly generated or lying on a regular grid.

2. [Projection.] Project the points p on the surface f = 0.

3. [Add ghost points.] Generate a small number m << n of ghost points
g lying on regular grids, on each faces of a slightly enlarged box con-
taining all the mesh vertices. Add the ghost points g to the original
point-set p: p← p + g.

4. [Delaunay triangulation.] Compute the Delaunay triangulation t of
the point-set p.

5. [Discard tetrahedrons.] Remove the tetrahedrons from t outside of the
volume {(x, y, z) : f(x, y, z) ≥ 0}.

6. [Generate triangles.] Find the set of triangles tri on the surface. A
triangle is lying on the surface if it is not shared by tetrahedrons.

7. [Mesh optimization.] Optimize the triangular mesh (tri, p) by repeat-
ing a set of simple steps that will optimize the connectivity, extract
sharp features, regularize the mesh and maintain vertices close to the
surface.

8. [Remove.] Remove triangles with an angle below some user defined
threshold.

The algorithm (steps 1 to 6) is illustrated in two dimensions by Fig. 2.
Steps 2, 3, 5, 7 and 8 are detailed in the following subsections.

2.1 Projection on the implicit surface

Given a point p and a function f , we are searching for the projection ps

of the point p on the implicit surface f = 0. If f is the signed distance
function, then the projection: p← p− f(p)∇f(p) is exact. If f is not the
signed distance function, it is possible to project the point on the surface by
a numerical algorithm or to approximate its projection.

2.1.1 Projection for general implicit surface

∆p = p−ps is parallel to ∇f(ps) and at ps, f(ps) = 0, gives the following
system of equations:

f(p + ∆p) = 0
∆p + t∇f(p + ∆p) = 0

(1)
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Figure 2: Illustration of the algorithm Polygonize, steps 1 to 6 in two
dimensions.

By eliminating t, we can get a system in ∆p only:

R(ps) =







f(ps)
fy(xs − x)− fx(ys − y)
fz(xs − x)− fx(zs − z)






= 0 (2)

where fx, fy and fz are the partial derivatives of f with respect to x, y and
z at ps.

Eq. (2) is solved for the unknown vector column ps with the damped
Newton method using as initial guess the current point p: let J be the
Jacobian matrix of the system R, pk+1 = pk − αJ−1(pk)R(pk) is iterated
until R(pk) < ε.

2.1.2 First order approximation

The previous projection can be time consuming and we may want to avoid
it. It is possible to obtain an approximation of the projection. Starting with
a first order Taylor expansion: f(ps) = f(p + ∆p) ≈ f(p) + ∆p.∇f(p),
and taking the gradient gives: ∇f(p + ∆p) ≈ ∇f(p). By combining with
∆p + t∇f(p + ∆p) = 0, we obtain: ∆p + t∇f(p) = 0. f(ps) = 0 gives:

f(p)− t‖∇f(p)‖2 = 0 (3)

and:

∆p =
∇f(p)

‖∇f(p)‖2
(4)
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The first order projection of p to the implicit surface f = 0 is thus given
by:

p← p−
∇f(p)

‖∇f(p)‖2
(5)

Practically, one iteration is not sufficient to reach the surface as illustrated
by Fig. 3. We can iterate the projection (5) until f(p) < ε.
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Figure 3: Error committed when projecting a point on an implicit surface
with a first order projection. The original point is represented by the circle.
The projected point is represented by the cross. The implicit curve is:
x2 + y2 + xy − 0.5x2y2 − 0.25.

2.2 Adding ghost points

The step (3) of the Polygonize is adding a small number of points on a
regular grid. The rectangular grid is obtained by slightly enlarging in each
directions the rectangular box enclosing all mesh vertices (see Fig. 2). We
found that adding these extra points increase the quality of the result.

2.3 Removing external tetrahedrons

The Delaunay triangulation of a point-set gives a triangulation of the convex
hull of the point-set. Tetrahedrons outside of the domain need to be peeled
off (see Fig. 4 for an illustration in two dimensions). Distinguishing between
inside and outside tetrahedrons can be done by inspecting the sign of the
function f at the centroid c of each tetrahedron t: if f(c) < 0, then the
tetrahedron is outside, otherwise it is inside.

Practically, we may want to keep a slightly thicker solid. One possible
approach is to discard tetrahedron for which f(c) < −ε. Another approach
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Figure 4: Delaunay triangulation of a point-set covers the convex hull. Out-
side tetrahedrons (triangles in two dimensions) need to be removed.

is to compute the circumcenter c and the circumradius r of the tetrahedron
t, and keep t if it is outside and if d(c)/r < α, where α is a user defined
constant (smaller than 1) and d is the distance from c to the surface. If f is
not the signed distance function, then d(c) can be approximated by ‖c−cs‖,
where cs is the projection of c to f = 0 and is computed as explained in
(2.1).

2.4 Mesh optimization

After the step (6) of the algorithm Polygonize, a triangular mesh approx-
imating the surface f = 0 is obtained. However, the triangles are not nec-
essarily well shaped and (in case the surface has sharp features) some sharp
features may not have been extracted correctly.

Optimization of the mesh is done using an iterative scheme which resem-
bles what was proposed by Ohtake et al [20]. This iterative scheme consists
of the following steps:

Mesh optimization . Optimize the triangular mesh (tri, p) by repeat-
ing a set of simple steps that will optimize the connectivity, extract sharp
features, regularize the mesh and maintain vertices close to the surface:

• [Optimize connectivity.] if needed: recompute the Delaunay triangula-
tion of p, remove the external tetrahedrons and identify the triangles
on the surface: tri.

• [Sharp features extraction.] Move the triangle vertices to align the
triangle normal with ∇f , the gradient of f .
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• [Regularization.] Regularize the shape of the triangles.

• [Projection.] Project the points p on the surface f = 0 as in step 2 of
Polygonize.

The first step modifies the connectivity of the triangle mesh while the
other steps are vector fields Fi that modifies the mesh vertices: pnew ←
Fi(pold).

2.4.1 Optimization of the connectivity

The mesh connectivity is optimized by computing the Delaunay triangula-
tion of the point-set p1. This is not needed for the first iteration of the mesh
smoothing (since the mesh just got created), nor is it needed if the relative
movement of each vertices is small (below a user defined threshold). Similar
as in the triangle mesh creation, external tetrahedrons need to be removed
(step 5) and triangles on the surface need to be extracted (step 6). This can
be summarized by the following algorithm.

Optimize connectivity . Given a point-set p, a triangular mesh tri, and
the current iteration index iter. Let p0 = p.

1. [Exit ?] if ‖p− piter−1‖ < ttol exit.

2. [Delaunay triangulation.] Compute the Delaunay triangulation t of
the point-set p.

3. [Discard tetrahedrons.] Remove the tetrahedrons from t outside of the
volume {(x, y, z) : f(x, y, z) >= 0}.

4. [Generate triangles.] Find the set of triangles tri on the surface. A
triangle is lying on the surface if it is not shared by tetrahedrons.

2.4.2 Sharp features extraction

For extracting the sharp features, we follow the method of Ohtake et al
(section 2.2 in [20]): mesh vertices are moved in order to align the triangle
normals with the gradient of f .

Let N(p, f) be the transformation applied to a mesh vertex p, then the
modified vertex pnew is set to: pnew ← pold + N(pold, f).

Let n(T ) be the normal to the triangle T , m(x, y, z) = ∇f(x,y,z)
|∇f(x,y,z)| be the

unit gradient to f , and A(T ) the area of the triangle T . The transformation
N is defined by:

N(p, f) =
1

∑

1ring(p) A(T )

∑

1ring(p)

A(T )v(T ) (6)

1the point-set contains the mesh vertices and the ghost points.
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where v(T ) = (−→pc.m(c)).m(c) is the projection of −→pc on the m(c) direction,
c is the centroid of T and 1ring(p) is a function returning the set of triangles
T with p as a vertex.

As noted by Ohtake et al in [20], this step is actually doing more than
only restoring sharp features: it also improves the position of the mesh
vertices, as illustrated by the figure 5 in [20].

2.4.3 Mesh regularization

The modified position pnew of a mesh vertex pold is obtained by:

pnew ←
1

∑

1ring(pold) A(T )

∑

1ring(pold)

A(T )c(T ) (7)

where 1ring(p) is a function returning the set of triangles T with p as a
vertex, A(T ) is the area of the triangle T and c(T ) is the centroid of the
triangle T .

Intuitively, if we consider a set of planar triangles around a vertex p,
then applying Eq. (7) to p should move it to balance the area of each
triangles. Especially, if the triangle vertices (other than p) lay on a circle,
then p should be moved to the center of the circle as illustrated in Fig. 5.

−1 0 1

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

−1 0 1

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

Figure 5: Illustration of the mesh regularization procedure Eq. 7. p is moved
to the center of the circle in order to balance the area of each triangle.

Updating mesh vertices according to Eq. (7) destroys sharp edges. It is
preferable to identify sharp features and mark them as fixed, before invok-
ing the mesh regularization procedure. Identifying sharp features is done
following a method proposed by Kobbelt et al [12]. A mesh vertex p is
tagged as belonging to a sharp feature if: mini,j(ni.nj) < α, where ni is the
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gradient of f at the centroid ci of the i-th triangle in the one ring of p, and
α a user controlled parameter.

2.4.4 Projection

Eq. (7) tends to slightly move the mesh vertices away from the surface. The
mesh vertices are projected back to the surface using the methods described
in section 2.1. Even if the function f is not a signed distance function,
convergence of the methods 2.1.1 or 2.1.2 is practically fast, since the vertices
are initially close to the surface.

2.5 Thin triangles removal

At the end of the step (7) of the algorithm Polygonize, it is possible that
the triangular mesh contains some thin triangles with very small angles.
This will most likely happen when the surface contains sharp features, be-
cause mesh vertices on sharp features are marked and fixed during the mesh
regularization.

To resolve this issue, an additional step is added to iterate through the
triangles and remove those with angle(s) below some user defined threshold.
Removal is done by collapsing the edge opposite to the small angle and
merging its incident vertices (see Fig. 6 top). If the triangle is flat with two
angles below the threshold, we collapse the smaller of the two edges.

Figure 6: Removing thin triangles is done by collapsing edges opposite to
small angles within a triangle. The top row illustrates the case where the
triangle has one small angle and the bottom row illustrates the case where
the triangle has two small angles.

2.6 Discussion

If the point-set is well sampled, then the polygonal approximation will be
good (in term of topology and distance). The work of Amenta and Bern
[1] characterizes good surface samplings. If the result of Polygonize is not
satisfactory, it is always possible as a first and rough solution to increase
the number of points n.

In term of complexity, steps (1) to (6) (included) have a worst case
complexity of O(n2), because of the Delaunay triangulation. One iteration
of the mesh optimization algorithm, step (7), has a worst case complexity
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O(n2) (sharp features extraction and regularization are both O(n)). If the
optimization is iterated N times then the total worst case complexity is
O(Nn2).

Algorithm Polygonize can be improved: the initial sampling of the n
points is random, and sharp features (if any) tend to attract points dur-
ing the projection (see Figure). Even if the mesh optimization (especially
step 2 and 3) tries to improve the vertices locations, there may still be too
many triangles in area of low curvature and not enough in area of high cur-
vature. It is possible to resolve that issue by: collapsing edges in area of
low curvature and using an adaptive subdivision in area of high curvature.
Another possibility explored in the next section and inspired by the work of
Boissonnat and Oudot [10] is to use an adaptive algorithm.

3 Adaptive polygonization of implicit surfaces

In this section an adaptive version of the algorithm Polygonize is described.
This algorithm extends the previous one by adding points in area insuffi-
ciently sampled, while maintaining an optimized mesh.

3.1 Previous works

Boissonnat and Oudot gave in [10] the theoretical background and an algo-
rithm for the creation of a good surface sampling. Their algorithm proceed
by iteratively adding the centers of the bad surface Delaunay balls to the
current point-set, until all Delaunay ball become good. A surface Delaunay
ball is defined in their work as any ball circumscribing a Delaunay facet f
and centered at the intersection of the surface with the Voronoi edge dual
to f . Whether a surface Delaunay ball is good or not is decided based on
the ratio of the circumradius with a 1-lipschitz function. In their analysis,
the distance to the medial axis is used, which is rather difficult to compute
practically.

In the following algorithm, the idea of adding points to the point-set is
kept but the criteria for adding points is simplified. In addition, at each iter-
ation, the current mesh is optimized (following the step (7) of Polygonize

for a small number of iterations).

3.2 Main algorithm

Adaptive polygonization . Given a function f : R3 → R, a num-
ber of points n and a rectangular box bbox bounding the space {(x, y, z) :
f(x, y, z) ≥ 0}, compute a polygonal approximation of the surface {(x, y, z) :
f(x, y, z) = 0}.
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1. [Generate points.] Generate n points p in the bounded space
[bbox(1, 1), bbox(2, 1)] × [bbox(1, 2), bbox(2, 2)]× [bbox(1, 3), bbox(2, 3)].
Points can be randomly generated or lying on a regular grid.

2. [Projection.] Project the points p on the surface f = 0.

3. [Add ghost points.] Generate a small number m << n of ghost points
g lying on regular grids, on each faces of a slightly enlarged box con-
taining all the mesh vertices. Add the ghost points g to the original
point-set p: p← p + g.

4. [Loop.] Repeat the following steps:

(a) [Delaunay triangulation.] Compute the Delaunay triangulation t
of the point-set p.

(b) [Discard tetrahedrons.] Remove the tetrahedrons from t outside
of the volume {(x, y, z) : f(x, y, z) ≥ 0}.

(c) [Add tetrahedron circumcenters.] Select tetrahedron circumcen-
ters c such that d(c)/r < β, where d is the unsigned distance to
the surface, r is the circumradius and β a user defined constant.
Project c on the surface f = 0, and add to the list of additional
points.

(d) [Generate triangles.] Find the set of triangles tri on the surface.
A triangle is lying on the surface if it is not shared by tetrahe-
drons.

(e) [Mesh optimization.] Optimize the triangular mesh (tri, p) by
repeating (for a small number of iterations) a set of simple steps
that will: extract sharp features, regularize the mesh and main-
tain vertices close to the surface.

(f) [Add triangle centroids.] Select triangle centroids c such that
d(c) < h0 and r < Rmin where r is the triangle circumradius,
h0 and Rmin are user defined constant. Project c on the surface
f = 0 and add to the list of additional points.

(g) [Exit ?] if the number of mesh vertices is greater than n or there
is no more points to add then exit the loop

5. [Mesh optimization.] Optimize the triangular mesh (tri, p) by repeat-
ing a set of simple steps that will optimize the connectivity, extract
sharp features, regularize the mesh and maintain vertices close to the
surface.

6. [Remove.] Remove triangles with an angle below some user defined
threshold.
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Figure 7: Because of an insufficient sampling during the first iteration of the
algorithm, the surface may cross the inside of a tetrahedron.

Most of the components of this algorithm have already been discussed in
section 2. Step (4.e) and (5) differ as no connectivity optimization is done in
(4.e). There is no need to call the connectivity optimization in (4.e) because
a Delaunay triangulation is already performed at each iteration of the loop
(4) (in step (4.a)).

3.2.1 Adding tetrahedron circumcenters

Let c be the circumcenter of a tetrahedron t. c is selected if the ratio
between the distance from c to the surface and the circumradius r is less
than a threshold. The goal of this rule is to try to capture undersampled
areas, which appear at the first iterations of the algorithm, when the number
of points is small. Fig. 7 shows the type of configuration that we want
to capture. Selected circumcenters are then projected on the surface and
marked as additional points.

3.2.2 Adding triangle centroids

Let c be the circumcenter of a triangle tri. ct is selected if its distance
to the surface is greater than a given threshold and the circumradius r is
greater than a given threshold. Selecting triangle circumcenters in the area
where the approximation error is high, allow to properly adapt the surface
approximation. Limiting the size of the circumradius, allow to avoid too
small triangles in area of high curvature. Selected triangle circumcenters
are then projected on the surface and marked as additional points.
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3.3 Discussion

The algorithm Adaptive polygonization improves the algorithm Poly-

gonize by adding new vertices where the geometric approximation is insuf-
ficient instead of starting with a randomly distributed set of points. This
means that Adaptive polygonization should allow fewer triangles than
Polygonize in area of low curvature and more triangles in area of high cur-
vature. Given a number of vertices n, it does a better usage of the vertices.

In term of complexity, the loop (4) for has a worst case complexity of
O(n3) (in the case where one point is added at each iteration of the loop (4)).
Step (5) has a worst case complexity of O(Nn2), where N is the number of
iterations in (5) (see section 2.6).

4 Results and discussions

It is possible to polygonize rather complicated shapes as illustrated by Fig. 8.
This shape contains multiple disjoint components (the sphere in the middle,
the eight spherical parts around the core sphere and the outside torii), and
sharp features (see the right image in Fig. 8). The polygonal model in Fig.
8 was obtained by using the adaptive algorithm (section 3.2). 10 steps of the
loop (4) were needed to reach the final sampling. 50 iterations of the mesh
optimization were used to optimize the mesh quality. The mesh is made of
29,998 vertices and 59,980 faces. The average radius ratio2 is 1.13 with a
standard deviation of 0.17. The maximum ratio is 4.2.

Figure 8: Polygonization of a complex model (’core’) with several disjoint
components, and sharp edges. See how sharp features are properly retrieved
(right). The polygonal model is made of 29,998 vertices.

2the radius ratio is defined as the ratio of the radius of the circumscribing circle to the

radius of the inscribed circle.
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Both the algorithm presented in section 2, and the adaptive algorithm
presented in section 3.2, produces good results, with good mesh quality
(distributions of radius ratio and minimum angle are presented) as illus-
trated Fig. 9 (for the algorithm section 2) and Fig. 10 (for the adaptive
algorithm section 3.2). The resulting polygonal models shown in Fig. 9 and
10 are made of approximately 7000 vertices.

Figure 9: Result of the polygonization of a torus with the algorithm pre-
sented in section 2. Distributions of radius ratio and minimum angle illus-
trate the mesh quality.

Figure 10: Result of the polygonization of a torus with the adaptive algo-
rithm presented in section 3. Distributions of radius ratio and minimum
angle illustrate the mesh quality.

In general, the adaptive algorithm does a better treatment of positioning
the vertices as illustrated in Fig. 11. The model on the left has been created
with the algorithm from section 2, while the model on the right has been
created with the adaptive algorithm. The top row illustrates a view of the
top of the object, which is flat. See how the adaptive algorithm adapts
the vertex distribution to the zone of high curvature. On the other hand,
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algorithm Polygonize use lots of vertices on the flat zone, while area of
higher curvature are more sparse (see Fig. 11 bottom left).

Figure 11: Illustration of the vertex distribution with the algorithm Adap-

tive polygonization (top and bottom rows, right column) against the ver-
tex distribution with the algorithm Polygonize (top and bottom rows, left
column) for the model ’sand’. See how vertices are concentrated on the area
of high curvature with the adaptive algorithm.

Table 1 shows some qualitative results of the polygonization of several
models using both the adaptive algorithm from section 3.2 and the algorithm
Polygonize from section 2. For both algorithms, 50 iterations of the mesh
optimization loop were performed.

Effect of fixing vertices on sharp features during the mesh regu-

larization Before optimizing the position of each vertices according to eq.
7, we advised to identify vertices on sharp features and mark them, such
that they remain fixed. Fig. 12 shows a cube polygonized with (left) and
without (right) fixing the vertices on sharp features.

Fixing vertices on sharp features has a negative effect on the triangles
shape, as it forbids the triangles around such vertices to be regularized. A
practical approach is to allow the full mesh optimization, without fixing
vertices, for some iterations, then allow to fix vertices on sharp features
during the remaining iterations. See the results in fig. 13 where the left
picture corresponds to 50 mesh optimization iterations with fixed vertices on
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Model #v #tris max / average min / average
radius ratio minimum angle

sphere 1000 1996 1.65 / 1.07 30 / 47.6

sphere
adaptive 500 996 1.7 / 1.08 30 / 47.4

torus 6998 13996 2.2 / 1.09 25 / 46.4

torus
adaptive 7219 14438 2.5 / 1.07 21 / 48.7

cylinder 3270 6538 6.04 / 1.18 15.11 / 44.5

cylinder
adaptive 4467 8934 5.02 / 1.15 15.06 / 45.3

core 29396 58780 6.2 / 1.13 15.08 / 44.7

core
adaptive 21769 43526 5.5 / 1.15 15.1 / 44.7

sand 27755 55540 7.45 / 1.13 15 / 45.5

sand
adaptive 28103 56346 7.1 / 1.14 15 / 44.8

Table 1: Max/average radius ration and min/average minimum angle ob-
tained on a series of models.

sharp features, while the right picture corresponds to 15 iterations without
fixing vertices and 35 iterations with fixing the vertices, as they are reaching
sharp features.

Limitations The limitations of the first algorithm (section 2) have been
already mentioned in section 2.6 and addressed with the second algorithm
(section 3).

Both algorithms rely on an implementation of the Delaunay triangulation
algorithm. In our experiments, we used Matlab R©, and its implementation of
the Delaunay triangulation. The Delaunay triangulation is the bottleneck
of the algorithm in terms of speed. A fast and robust implementation of
Delaunay triangulation is required.

Both algorithms are not very fast. It is possible to speed up the adap-
tative algorithm by omitting the Delaunay triangulation during the mesh
optimization (step 5). Practically, we did not find that removing the Delau-
nay triangulation from the mesh optimization, in step 5, had any noticeable
effect on the final result. Figure 14 shows the minimum angle and radius
ratio distributions for the model core with (left) and without (right) the
Delaunay triangulation in step 5. On the other hand, for the algorithm
polygonize (section 2), removal of the Delaunay triangulation in the mesh
optimization results in a noticeable lower quality for the final mesh.
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Figure 12: The impact of fixing vertices on sharp features is illustrated on
the left; by allowing vertices to move following Eq. 7 sharp features are not
retrieved properly (right) despite the sharp feature extraction step of section
2.4.2

The second bottleneck of the algorithms is the number of function (im-
plicit surface) evaluations. If the gradient of the function is unknown, it
has to be computed numerically by finite differences. In total, there are
4 function calls at each projection (there is one projection at each triangle
mesh creation, and one projection at each mesh optimization). The gradient
of the function is also needed in the mesh optimization for retrieving sharp
features.

Both algorithms tend to produce triangles with one (or two) very small
angle(s) close to sharp edges and corners. This is caused by the fact that
vertices on sharp features are fixed during the mesh optimization. As dis-
cussed above, it is possible to first optimize the mesh without fixing vertices
on sharp features, and then apply again the mesh optimization but with
fixed vertices on sharp features. We also proposed to remove skinny trian-
gles with small angles (see section 2.5). For the threshold angle, we used 15
degrees for model with sharp features (like for example: core, sand), and 20
degrees for others (like for example: sphere, torus).

5 Conclusion

We have proposed two algorithms for the polygonization of implicit surfaces
based on Delaunay triangulation. We have illustrated the performance of
the algorithms on several examples, including complex implicit surfaces with
sharp features.
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Figure 13: Early fixing of vertices on sharp features forbids good triangle
shapes close to the sharp features. Left model was obtained with 50 itera-
tions of the mesh optimization with vertices fixed on sharp features. Right
model was obtained with 15 iterations of mesh optimization without locking
vertices, and 35 iterations with locked vertices.
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Figure 14: Minimum angle and ratio distributions for the model core ob-
tained with the adaptative algorithm with (left) and without (right) De-
launay triangulation in the mesh optimization step 5. Similar distributions
indicate that the effect of the Delaunay triangulation in the mesh optimiza-
tion may not be so important.
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