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1 Introduction

The distance from a given point to a point set is defined as the minimum of
distances between this point and any point of the set. Definitions of shape
models by exact real distance functions are useful in different applications such
as:

e constant-radius offsetting and blending operations [RR84];
e surface metamorphosis and smoothing [PT92];

e object reconstruction from a set of cross-sections [JC94];
e rendering using sphere tracing [Har96];

e generation of skeletal shape representation [ZKT98];

e heterogeneous object modeling [BST02].

The signed real distance function can define a closed surface as a zero value
point set, and take positive values inside and negative values outside the surface.
It is known that such a distance function can be C! discontinuous on some
surfaces, curves, or points in 3D space. This discontinuity can cause unexpected
results of further operations on the object such as blending, metamorphosis,
and others. Deriving analytical expressions for a distance function for a given
shape is a tedious work. Applying constructive modeling is one of the practical
approaches to derive a distance function. Constructive modeling is based on
successively applying set-theoretic and other operations to predefined shapes
(primitives). If two point sets are defined as f1(X) > 0 and f2(X) > 0, where
f1 and fo are signed real distance functions, then the union of two objects
can be defined as f3 = max(f1, f2) and the intersection as f3 = min(f1, f2)
[Sab68], [Ric73]. In constructive modeling, min/max operations result in the
exact distance function for the entire complex object, if the initial primitives are
described by exact distance functions. However, min/max operations result in
C" discontinuity by definition, as mentioned above.

There are several works on replacing min/maz functions in constructive
modeling by C! continuous exact or approximated descriptions of set-theoretic
operations. R-functions [Rva63], [Rva74] provide distance properties of the
defining function but not the exact distance function value. Moreover, expo-
nential function value growth can be observed, for example, when applying
R-functions to define union of a number of overlapping solids (”positive ex-
plosion” effect). A normalization procedure [Rva82], [BS01] can be applied
to the resulting function to approximate the distance function. However, this
recursive procedure is quite computationally expensive. Furthermore, the dis-
tance property of the resulting function is provided for points only close to the
boundary. The superelliptic min/max approximation [Ric73] do not describe
exact set-theoretic operations and suit for blending only. The elliptic min/max
approximation [BDS'03], if applied to normalized primitives, can well approx-
imate the distance near the boundary, but the error of the distance function
grows infinitely far from the boundary.

We propose here to extend the approach of [BDS103] for providing approx-
imation of real distance functions by using a circular min/maz approximation



and by introducing an additional bounding band to guarantee a fixed upper
limit of the distance function error at any given point.

As such approximations of min and max functions are acceptable for distance-
based modeling, we call the resulting defining functions of shapes by the term
signed approximate real distance functions (SARDF), approximate min func-
tion can be called “SARDF intersection”, approximate max function - “SARDF
union”.



2 Circular approximation of min and max func-
tions

In this section, we introduce the circular approximation of the min and max
functions for the set-theoretic operations to approximate signed real distance
functions. Any contour line of the min and max functions has sharp corner,
corresponding to the union of two vertical and horizontal rays, see for instance
Fig. 1 showing the sharp corners appearing when drawing different contour
lines for the min function. This feature of the contour lines reflects the C*
discontinuity of the min and max functions that occurs at any point when two
arguments are equal.
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Figure 1: Each contour line of the min function contains a sharp corner.

Following the general approach of [BDS'03], we propose to replace this sharp
corner in any contour line with a circular arc. All operations are discussed for
two half spaces fi = «, fi > 0 and fo =y, fo > 0. We consider two straight
lines, with the symmetry line defined by y = x and with an angle 6 between
these lines, which act as a frontier for the circular arcs. Later we intend to apply
these operations to arbitrary distance functions f; and fa.

The Euclidean plane is divided into four quadrants; the first quadrant cor-
responds to z > 0 and y > 0, the second quadrant to z < 0 and y > 0, the third
quadrant to x < 0 and y < 0, and finally the fourth quadrant to > 0 and
y < 0. In the second and fourth quadrants, the approximate functions for min
and max are equal exactly to min and max; thus we will restrict the discussion
to the first and third quadrants, where the sharp corners need to be smoothed.

2.1 Circular min function approximation
2.1.1 Circular min approximation: quadrant I

We discuss here the circular approximation of the function F(z,y) = min(z,y)
in the first quadrant, where z > 0 and y > 0. We want to replace any contour



lines F' = d with a circular arc and two rays tangentially attached to it as shown
in Fig. 2. The angle § made by two straight lines L; and Lo is introduced as in
Fig. 3.

Figure 2: Contour line of the function min has a sharp corner (left) to be
replaced by a circular arc (right).

These two straight lines Ly and Lo break this first quadrant into three zones:
A (below L;), B (between L; and Lg) and C (above Ls), as shown in Fig. 3.
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Figure 3: Two straight lines with the angle 6 between them break the first
quadrant into three zones.

The attachment points P, and P> of the arc and the rays are placed on the
lines L1 and Ly correspondingly. Fig. 4 shows such a contour line configuration.

We are interested in the contour lines F' = d of the smooth approximation
F of the min function. Given an arbitrary point P(z,y), we need to calculate
a function value d for it.

In zone A, F is equal to min(z,y), therefore the contour is a horizontal line
going through the point P and defined as F =y. In zone C, F is also equal
to min(z,y), so the contour is a vertical line going through the point P and
defined as F = x.

Finally, in zone B, we want to have a circular arc passing through the point
P(z,y). This arc should go through the point P and change into the horizontal
ray in zone A and into the vertical ray in zone C. Both of these rays are at the
distance d from the corresponding x and y axes. Such a distance is used for the
definition of the value of the function. In order to calculate this distance d, we
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Figure 4: New contour line configuration: two frontier straight lines, two rays,
arc, and two junction points between the rays and the arc located on the straight
lines.

start from the equation of the circle passing through P:
(z —20)* + (y — 90)* = R? (1)

In this equation, xg, yo and R are unknown but can be expressed in terms of
the value d being searched, and «, the angle between the straight lines and the
axes. Fig. 5 shows the unknowns and their geometric relations.

First, « is expressed using 6 (a parameter left to the user, expressing the
angle between Ly and Ls): a = @. Then, from the lower triangle in zone
A (Fig. 5), g = d tan(«). By analogy, from the upper triangle in zone C (Fig.
5), yo = d tan(a), and R = xg — d. By replacing these variables in Eq. 1, we
obtain the following quadratic equation for the variable d:

d? [cotan®(a) + 2 cotan(a) — 1] — 2 d (x + y) cotan(a) + 2* +y* =0 (2)

The solution of the quadratic Eq. 2 for the unknown d is:

2a

d— bt (b —4ac)™® if @ # 0 and in zone B
—% if @ = 0 and in zone B

where a = cotan®(a) + 2 cotan(a) — 1, b = —2 (x + y) cotan(a) and ¢ = 22 + 32
are the coefficients of the quadratic Eq. 2.

The final expression for the value of F', at P in the quadrant I, is summarized
below:

bl (e 10 if a # 0 and P in zone B
if a =0 and P in zone B
Y if P in zone A
T if P in zone C

where a = cotan®(a) +2 cotan(a) — 1, b = —2 (x+y) cotan(a) and ¢ = x2 + 32,
and « is an angle between L; and z-axis, and between Ly and y-axis.
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Figure 5: Unknowns of the Eq. 1 and their geometric relations.

2.1.2 Circular min approximation: quadrant IIT

We consider now the approximation F of the min function in the third quadrant,
where < 0 and y < 0. The method is the same as for the first quadrant. The
continuation of the two straight lines L and Lo into the third quadrant, breaks
it into three zones: D above Li, E between L; and Lo, and F below L, as
indicated in Fig. 6.

Given an arbitrary point P(x,y) in the third quadrant, we want to evaluate
F, the smooth approximation of the min function at this point.

In zone D, F is equal to min(z,y), therefore the contour is a vertical line
going through the point P and defined as F' = x. In zone F, F is also equal
to min(x,y), so the contour is a horizontal line going through the point P and
defined as F = y.

In zone E, we want to have a circular arc passing through the point P(x,y).
This arc should go through the point P and change into the horizontal ray in
zone F and into the vertical ray in zone D. Both of these rays are at the distance
d from the corresponding = and y axes. Such a distance is used for the definition
of the value of the function.

Again, in order to calculate this distance d, we start from the equation of
the circle passing through P:

(x—20)* + (y — 0)* = R? (3)

In this equation, xg, yg and R are unknown but can be expressed in terms of d
and angle «. Fig. 7 shows the unknowns and their geometric relations.

First, a is expressed using 6 (the angle between Ly and Lo): a = (%;0).
Then, from the triangle in zone D, yo = —d tan(«). By analogy, from the
triangle in zone F, o9 = —d tan(a), and d = R + |zg|. By replacing these
variables in Eq. 3, we obtain the quadratic equation for the variable d:

d? [tan®(a) + 2 tan(a) — 1]+ 2 d (x +y) tan(a) + 2° +y* =0 (4)
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Figure 6: The continuation of Ly and Ls from the quadrant 1 (z > 0 and y > 0)
breaks the quadrant 3 into three new zones D, F, and F.
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Figure 7: Unknowns of the Eq. 3 and their geometric relations.



The solution of the quadratic Eq. 4 for the unknown d is:

2a

& if a =0 and P in zone E

dz{ _ b (t?—4ac)® if a #2 0 and P in zone E
b

where a = tan?(a) + 2 tan(a) — 1, b= 2 (z +y) tan(a) and ¢ = 22 + 32 are the
coeflicients of the quadratic Eq. 4.

The final expression for the value of F, at P in the quadrant III, is summa-
rized below:

%ﬁf‘w)“ if a # 0 and P in zone E
if a=0 and P in zone E
if P in zone D
if P in zone F

F(P)=d=

<< 8o |

where a = tan?(a) + 2 tan(a) — 1, b = 2 (z + y) tan(a) and ¢ = 22 + y2.

2.2 Circular max function approximation
2.2.1 Circular mazr approximation: quadrant I

As for the min function, we want to replace the maxz function by a smooth
approximation: the sharp corners of every contour line should be replaced by a
circular arc as shown in Fig. 8.

B

Figure 8: Sharp corner in the contour line of the max function shall be replaced
by a circular arc.

Like in 2.1.1, two straight lines L; and Lo are introduced; they break the
first quadrant in three zones A, B and C, see Fig. 3. We are interested in the
contour lines of the smooth approximation to the maz function, G. Given an
arbitrary point P(z,y), we need to calculate a function value d for it.

In zone A, G is equal to maxz(z,y), therefore the contour is a vertical line
going through the point P and defined as G = z. In zone C, G is also equal
to max(z,y), so the contour is a horizontal line going through the point P and
defined as G = y.

Finally, in zone B, we want to have a circular arc passing through the point
P(z,y). This arc should go through the point P and change into the vertical
ray in zone A and into the horizontal ray in zone C. Both of these rays are at
the distance d from the corresponding = and y axes. Such a distance is used for
the definition of the value of the function.

In order to calculate this distance d, we start from the equation of the circle

passing through P:
(z —20)* + (y — 90)?* = R? (5)



In this equation, xg, yo and R are unknown but can be expressed in terms of
d and the angle between the straight lines and the axes. Fig. 9 shows the
unknowns and their geometric relations.

L2

Zone C

Zone B

Zone A

Y

Figure 9: Unknowns of the Eq. 5 and their geometric relations.

First, « is expressed using 6 (the angle between L; and Lg): a = (%;0).

Then, from the lower triangle in zone A (Fig. 9), yo = d tan(a). By analogy,
from the upper triangle in zone C (Fig. 9), g = d tan(«). And, R = d — xo.
By replacing these variables in Eq. 5, we obtain a quadratic equation of the
variable d:

d? [tan®(a) + 2 tan(a) — 1] — 2 d (z + ) tan(a) + 2> +y> =0 (6)

The solution of the quadratic Eq. 6 for the unknown d is:

2a
—% if @ = 0 and in zone B

d:{ b (B —dae)™? if a # 0 and in zone B
where a = tan?(a) + 2 tan(a) — 1, b = =2 (z + y) tan(a) and ¢ = 22 + y? are
the coefficients of the quadratic Eq. 6.
The final expression for the value of GG, at P in the quadrant I, is summarized
below:

—bE(—daq)®? if a # 0 and P in zone B
ifa=0and P in zone B
x if P in zone A

Yy if P in zone C

where a = tan?(a) + 2 tan(a) — 1, b = =2 (x + y) tan(a) and ¢ = 22 + 3.
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2.2.2 Circular mazr approximation: quadrant III

Following the same strategy, we consider now the approximation G of the maz
function in the third quadrant, where z < 0 and y < 0. The continuation of the
two straight lines I,; and Lo into the third quadrant, breaks it into three zones:
D above Ly, E between L; and Lo, and F below L5 as indicated in Fig. 6.

Given an arbitrary point P(x,y) in the third quadrant, we want to evaluate
G, the smooth approximation of max at that point.

In zone D, G has to repeat maz(z, ), therefore we draw an horizontal line
through the point P and take G = y. In zone F, G has to repeat maz(z,y), so
we draw a vertical line through the point P and take G = z.

In zone E finally, we want to have an arc of a circle passing through the
point P(x,y). This arc of circle should go through the point P and change into
the vertical ray in zone F and into the horizontal ray in zone D. Both of these
rays are at the distance d from the corresponding = and y axis. Such a distance
is used for the definition of the value of the function.

Again, in order to calculate this distance d, we start from the equation of
the circle passing through P:

(x —20)* + (y — yo)?* = R? (7)

In this equation, xg, yo and R are unknown but can be expressed in terms of
d, the searched value and «, the angle between the straight lines and the axes.
Fig. 10 shows the unknowns and their geometric relations.

i

Zone D d

Theta

LL

{20, y0)

Zone E

Lz Zone E

Figure 10: Unknowns of Eq. 7 and their geometric relations.

First, « is expressed using 6 (the angle between L; and Lg): a = (%2_0).

Then, from the triangle in zone D, yo = —d tan(a). By analogy, with the
triangle, in zone F, 2o = —d tan(a). And finally, R = |z¢| — d. By replacing
these variables in Eq. 7, we obtain a quadratic equation of the variable d:

d? [cotan® () + 2 cotan(a) — 1] + 2 d (z + y) cotan(a) + 2 +y* =0 (8)

11



The solution of the quadratic Eq. 8 for the unknown d is:

d— W if a # 0 and P in zone E
if a =0 and P in zone E

Slo |

where a = cotan®(a) + 2 cotan(a) — 1, b = 2 (x + y) cotan(a) and ¢ = 22 + y?
are the coefficient of the quadratic Eq. 8.

The final expression for the value of G, at P in the quadrant III, is summa-
rized below:

M if a #% 0 and P in zone E
if a=0 and P in zone E
if P in zone D
if P in zone F

G(P)=d=

8 < <o |

where a = cotan®(a) + 2 cotan(a) — 1, b =2 (x + y) cotan(a) and ¢ = 22 + y2.

2.3 Problems of the circular approximation

The use of the described above circular approximations for the min and max
functions can provide the C' approximation of the resulting distance function
for constructive shapes built using normalized primitives (defined by distance
functions). Unfortunately, this approach has the following problem: the radius
of the circular arc used to replace the sharp corners in the contour lines keeps
growing with the distance from the initial surfaces. Fig. 11 illustrates this
problem for the case of the min function approximation. Because of this be-
havior of the arc radius, the error of the distance function approximation grows
infinitely with the distance, which is unacceptable for distance-based modeling
and application algorithms.

\_

L

Figure 11: The radius of the circular arc is growing with the distance from the
origin, thus increasing the error in the distance function made by the approxi-
mation.
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We propose to prevent the radius from growing infinitely by introducing a
fixed radius circular arc, and by switching to it, when some threshold for the
radius is reached.

3 Approximation with additional bounding band

In the previous approach, the smoothing area grows infinitely in size inside the
given angle. In this area in the case of min function, the exact distance is
replaced by smaller approximate values with the growing error. It is better to
introduce a fixed threshold for the radius R of the circular arc. A new bounding
band can be introduced by two parallel straight lines that enclose the arcs with
the fixed radius. These band lines are defined by a shift of the line y = x at
R distance in positive and negative x directions: y = x — R and y = = + R.
This measure will guarantee a known upper limit at any point in space for the
distance error. As such approximations of min and max functions are acceptable
for distance-based modeling, we call the resulting defining functions of shapes
by the term signed approximate real distance functions (SARDF), approximate
min function can be called "SARDF intersection”, approximate max function
- ”SARDF union”.

3.1 SARDF intersection
3.1.1 Approximate min: quadrant I

The intersections of the two parallel bounding band lines, y =  + R and y =
x — R, with the lines parallel to the axes, x = R and y = R, result in two points:
A1(2 R, R) and A3(R,2 R), as shown in Fig. 12. These points are connected by
the circular arc (z — 2 R)? + (y — 2 R)? = R2. This makes a natural boundary,
that splits the first quarter into two zones I and II, for applying two approaches
to approximation (see Fig. 12).

Zone Il

2R
Zone Il

* oy=x-r

Zone 1L

/A

Zone [ R 2R
y=x—R .-

Figure 12: The first quadrant is divided into two zones. The circular approxi-
mation is applied in zone I, whereas we introduce a fixed radius approximation
with the bounding band in zone II.
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Zone I Zone I corresponds to the set of points P(z,y) for which z < R or
y<Ror(r<2Randy<2Rand (z—2R)>+ (y—2 R)?> > R?), see Fig. 12.
In this zone, the circular approximation described in 2.1.1 is used. In this case,
the bounding lines for the angle 8 are:

e Ly: O— Ay, where O is the origin (0,0),
L] LQI O — Ag.

and the angle « is defined by cotan(a) = 2. We remind the expression of the
circular approximation F' = d for the min function, in the first quadrant:

b —da)®? if a # 0 and P in zone B
if a =0 and P in zone B
Y if P in zone A
T if P in zone C

where a = cotan®(a)+2 cotan(a) —1 =7, b= —2 (z+y) cotan(a) = —4 (x+y)
and ¢ = 22 + y2.

Zone II In the zone II, the fixed radius with the bounding band is applied
to get a smooth approximation F of the min function. Outside the bounding
band lines y = z + R and y = = — R, the approximation of min is min itself,
therefore we take F' = min(z,y). Between the lines, we start from the equation
of the circle: (z — x0)? + (y — y0)? = R?, where x¢, yo are parameters that can
be expressed using the radius R and the distance d, which is the searched value
of F.

Fig. 13 displays these different parameters and their geometric relations.
It is obvious that 9 = yo = d + R. Replacing xy and yg in the equation
of the circle, the following quadratic expression of the unknown d is obtained:
2d°+d(—2x—2y+4R)+ (22 +y> 21 R—2y R+ R?) = 0. The solution
for the unknown d, gives the searched value for the smooth approximation of
the min function: d = M, where a =2, b= -22x—-2y+4 R and
c=22+y?—22 R—2y R+ R? are the coefficients of the quadratic equation.

The expression for F' in the zone II becomes:

~ %;4“)0'5 inside the bounding band

F(P)=d=13 vy below y =z — R
x abovey=x+ R

wherea =2,b=-2xr—-2y+4Randc=2>+9y> -2z R—-2y R+ R%

Final expression for the SARDF intersection in the quadrant I We
give the final expression for the SARDF intersection F' approximating the min
function in the first quadrant. Given a point P(z,y) in the first quadrant, the

14
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Figure 13: Geometric relations between the parameters of the circular approxi-
mation with the bounding band in zone II.

value d of F at P is given by:

ZhiE(bidme)’? e a1 # 0 and P in zone I, B

2a
—a if a; = 0 and P in zone I, B
~ Y if P in zone I, A
FP)=d=( =« if P in zone I, C
2 0.5
W if P in zone II, and inside the bounding band
y if P in zone II and below y =2 — R
T if P in zone II and above y = x + R
where a; = cotan?(a) + 2 cotan(a) — 1 = 7, by = —2 (z +y) cotan(a) =

—d(x+y),cr=22+y% aa=2,bp=22—-2y+4 Rand co = 2% + ¢y —
22 R—2y R+ R%

3.1.2 Approximate min: quadrant III

We consider now the same approach to approximation of the min function
with the bounding band in the third quadrant. The intersections of the two
parallel bounding band lines, y = z + R and y = « — R, with the lines parallel
to the axes © = —R and y = —R, result in two points: A3(—2 R,—R) and
A4(—R,—2 R), as shown in Fig. 14. These points are connected by the circular
arc (z + R)? + (y + R)? = R2. This makes a natural boundary, that splits the
third quarter into two zones III and IV, for applying the two different approaches
to approximation (see Fig. 14).

Zone IIT Zone III corresponds to the set of points P(x,y) for which x > —R
ory>—Ror(x>-2Randy > -2 Rand (x+ R)?+ (y + R)? < R?), see Fig.
14. In this zone, the circular approximation described above is applied. In this
case, the bounding lines for the angle 0 are:

e L1: O — Ay, where O is the origin (0,0),

15



Zone TV

y=u+R & —2R

Zone IV

¥y<0

Figure 14: The third quadrant is divided into two zones. The circular approxi-
mation is applied in zone III, whereas we introduce a fixed radius approximation
with the bounding band in zone IV.

L] LQI O*Ag.

and the angle « is defined by cotan(a) = 2. We remind the expression of the
smooth approximation F' = d for the min function, in the third quadrant:

W if a # 0 and P in zone E
if a =0 and P in zone E
if P in zone F
if P in zone D

F(P)=d=

8 < o |

where a = tan?(a) + 2 tan(a) —1 = 1, b =2 (z 4+ y) tan(a) = (z + y) and
c=x?+ 9>

Zone IV In zone IV, we switch to a fixed radius approximation with the
bounding band. Outside the bounding band, we take F' = min(x,y). Inside the
bounding band, we start from the equation of the circle: (z —z0)?+ (y —yo)? =
R?, where xg, 1o are parameters that can be expressed using the radius R and
the distance d, which is the searched value of F.

Fig. 15 shows these different parameters and their geometric relations. It
is obvious that |xg| = |yo| = d + R. Replacing xy and gy, in the equation of
the circle, the following quadratic expression of the unknown d is obtained:
2 +d 22 +2y—4 R +(@*+y*—22x R—2y R+ R?)) = 0. The
solution for the unknown d gives the value d = —M, where a = 2,
b=2zx+2y—4Randc=22+y>—22 R—2y R+ R? are the coefficients of
the quadratic equation.

The expression for F in zone IV becomes:

~ —M inside the bounding band
F(P)=d=< y below y =x — R
x above y =x+ R

16



y=1+R

y=<0

Figure 15: Geometric relations between the parameters of the circular approxi-
mation with the bounding band in zone IV.

wherea =2, b=22+2y—4Randc=2%2+9y>-22 R—2y R+ R

Final expression for the SARDF intersection in the quadrant III We
give the final expression for the SARDF intersection F approximating the min
function in the third quadrant. Given a point P(z,y) in the third quadrant, the
value d of F at P is defined as:

%W if a; # 0 and P in zone III, E
if a; = 0 and P in zone III, E
if P in zone III, F
if P in zone III, D
if P in zone IV, and inside the bounding band
if P in zone IV and below y = x — R
T if P in zone IV and above y = x + R

B <o |

_ —bat(b3—dazcs)®®
2&2

<

where a; = tan?(a) + 2 tan(a) =1 = 1, by = 2 (z + y) tan(a) = (z + y),
o =22+y% a0 =2,y =22+2y—4 Randcy =22 +y’—22 R—2y R+ R%

3.2 SARDF union
3.2.1 Approximate mazr: quadrant I

The intersections of the two parallel bounding band lines, y = x + R and y =
x — R, with the lines parallel to the axes, z = R and y = R, result in two points:
A1(2 R,R) and A3(R,2 R), as shown in Fig. 16. These points are connected
by the circular arc (z — R)? + (y — R)? = R?. This makes a natural boundary
that splits the first quarter into two zones I and II, for applying two different
approaches to approximation (see Fig. 16).

Zone I Zone I corresponds to the set of points P(z,y) for which z < R or
y<Ror(zx<2Randy<2Rand (z— R)?+ (y — R)? < R?), see Fig. 16.
In this zone, the circular approximation described in 2.2.1 is used. In this case,
the bounding lines for the angle 8 are:
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Zone 1T

. Zone 1l

Zone L'C

Fote 1 B

.
S y=x+R

Zonel A

——
o

Zone L R ] 30

Figure 16: The first quadrant is divided into two zones. The circular approxi-
mation is applied in zone I, the fixed radius approximation with the bounding
band is applied in zone II.

e L;: O— Ay, where O is the origin (0,0),
] L22 O — AQ.

and the angle « is defined by cotan(a) = 2. We remind the expression of the
circular approximation G = d for the max function in the first quadrant:

—bE(b?—4ac)™® if a # 0 and P in zone B

2a
~ —c if @ =0 and P in zone B
G(P)=d= b !
(P) T if P in zone A
y if P in zone C
where a = tan?(a) + 2 tan(a) — 1 = 1, b= =2 (z +y) tan(a) = —(z + y) and

c=12%+y°

Zone II In zone II, the fixed radius with the bounding band is applied to get
the approximate function G of the maz function. Outside the bounding band
lines y = 2 + R and y = 2 — R, we take G = maxz(z,y). Inside the bounding
band, we start from the equation of the circle: (z —x¢)?+ (y—1yo)? = R?, where
To, Yo are parameters that can be expressed using the radius R and the distance
d, which is the searched value of G.

Fig. 17 displays these different parameters and their geometric relations.
It is obvious that g = yo = d — R. Replacing xy and yg in the equation
of the circle, the following quadratic expression of the unknown d is obtained:
2 +d (22 —2y—4R)+ (2 +y*+22 R+ 2y R+ R?) = 0. The solution
for the unknown d, gives the searched value for the smooth approximation to
max: d—M witha=2,b=-22—-2y—4Rand c=2?+1y%+
2z R+2y R+ R2 belng the coefficients of the quadratic equation.
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y=0 &

y=u+R

Y

x>0

Figure 17: Geometric relations between the parameters of the circular approxi-
mation with the bounding band in zone II.

The expression for G in the zone II becomes:

B W inside the bounding band

GP)=d=<¢ ¢ below y =z — R
Y above y =2+ R

wherea =2,b=-2r—-2y—4Randc=2>+9y*+22x R+2y R+ R%

Final expression for the SARDF union in the quadrant I We give
the final expression for the approximation G of the maxz function in the first
quadrant. Given a point P(z,y) in the first quadrant, the value d of G at P is:

%W if a; # 0 and P in zone I, B
—2—1 if ag =0 and P in zone I, B
R T if P in zone I, A
GP)=d=1 y if P in zone I, C
7b2i(b§74a202)0'5 f P . . . .
—— %4, i Pinzone II, and inside the bounding band
x if P in zone IT and below y = x — R
y if P in zone IT and above y =2 + R

where a; = tan®(a) + 2 tan(a) — 1 = 1, by = =2 (z + y) tan(a) = —(z +y),
cp=224+y% ay =2, by = —22-2y—4 Rand ¢y, = 22+9y*+22 R+2y R+ R%

3.2.2 Approximate mazr: quadrant 111

We apply here the approximation of the bounding band to the maz function in
the third quadrant. The intersections of the bounding band lines, y = « + R

19



and y = z — R, with the lines parallel to the axes, = —R and y = —R, result
in two points: As(—2 R, —R) and A4(—R,—2 R), as shown in Fig. 18. These
points are connected by the circular arc (z +2 R)? + (y + 2 R)? = R2. This
makes a natural boundary, that splits the third quarter into two zones III and
IV, for applying two different approaches to approximation (see Fig. 18).

y=x+R °
A
x<0 —2R R~ Zonelll -~
¥y=x-R
S Zofie 1] -R
Zone IV & ; 3
. o
Zonelv &
v
Zone TV

Figure 18: The first quadrant is divided into two zones. The circular approxi-
mation is applied in zone III, the fixed radius approximation with the bounding
band is applied in zone IV.

Zone IIT Zone III corresponds to the set of points P(z,y) for which © > —R
ory>—Ror(z>-2Randy>—-2Rand (z+2 R)?>+ (y+2 R)? > R?), see
Fig. 18. In this zone, the circular approximation described in 2.2.2 is applied.
In this case, the bounding band lines are:

o Ly: O— Ay, where O is the origin (0,0),
o LQI O — A3.

and the angle « is defined by cotan(a) = 2. We remind the expression of the
circular approximation G = d for the max function, in the third quadrant:

M if a # 0 and P in zone E
if a =0 and P in zone E
if P in zone D
if P in zone F

G(P)=d=

8 L ln |

where a = cotan?(a) + 2 cotan(a) — 1 =7, b =2 (z +y) cotan(a) = 4 (x + y)
and ¢ = 22 + y2.

Zone IV In zone IV, we switch to the fixed radius approximation with the
bounding band in order to get the approximate function G of the max function.
Outside the bounding band lines y = x + R and y = = — R, we take G =
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maz(z,y). Inside the bounding band, we start from the equation of the circle:
(r —10)? + (y — y0)? = R?, where zq, yo are parameters that can be expressed
using the radius R and the distance d, the searched value of G.

Fig. 19 displays these different parameters and their geometric relations.
It is obvious that |z¢| = |yo| = d + R. Replacing zp and yo in the equation
of the circle, the following quadratic expression of the unknown d is obtained:

2d°+d (2 2+2 y+4 R)+ (22 +y*+2 2 R+2y R+ R?) = 0. The solution for the

2 0.5
unknown d, gives the searched value for the approx1mat10n d=— M

witha=2,b=22+2y+4Randc=2?>+9y>+22 R+2y R+ R? bemgthe
coefﬁments of the quadratic equation.

<0

y=x+R

Figure 19: Geometric relations between the parameters of the circular approxi-
mation with the bounding band in zone IV.

The expression for G in the zone IV becomes:

~ —W inside the bounding band

GP)=d=1( =z below y =z — R
y above y =2+ R

wherea =2, b=2z+2y+4Randc=2?+y>+22 R+2y R+ R?.

Final expression for SARDF union in the quadrant III We give the
final expression for the approximation G of the max function in the third quad-
rant. Given a point P(z,y) in the third quadrant, the value d of G at P is given
by:

—%W if a1 # 0 and P in zone III, E
% if a3 = 0 and P in zone III, E
~ x if P in zone III, F
GP)=d=< y if P in zone III, D
—bo+(b2—4ascy)"® EP . I .
——— 4, ——— ifPinzonelV, and inside the bounding band
x if P in zone IV and below y =z — R
Y if P in zone IV and above y =x + R
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where a; = cotan®(a) + 2 cotan(a) —1 =7, by =2 (z +y) cotan(a) = 4 (z+y),
ca=22+y% a0 =2,by=22+2y—4 Randcp =22 +y?’+22 R+2y R+ R

4 Examples

4.1 Intersection and union of two half planes

We present the results of applying the proposed SARDF intersection and union
(C?! continuous approximations of the min and max functions) of the half planes
fi==x, f1 >0and fo =y, fo > 0 (see Fig. 20 bottom and Fig. 21 bottom). We
also present for comparison purposes the contour maps for the min and max
approaches (see Fig. 20 top left and Fig. 21 top left) and for the R-Function
intersection and union (see Fig. 20 top right and Fig. 21 top right).

10,07 10,07
8,07 8,07
6,07 6,07
4,07 4,07
2,0 2,0
0,07 0,07

00 .o 60 -do 20 00 20 40 60 80 10 0000 60 -60 -40 -Z0 00 20 40 60 80 10

3.0

295 E 1o 3l

Figure 20: Contour lines of (Top left) the min function, (Top right) the R-
Function intersection and (Bottom) the SARDF intersection, of two half spaces

flzm,fleandfgzy,fQZO.

It is easy to see that both in the case of the SARDF intersection (see Fig. 20
(bottom)) and union (see Fig. 21 (bottom)), the circular arc shape is growing,
until reaching the given threshold for the radius, then stops growing and is
confined inside the bounding band.

The contour lines for the intersection and the union of the two half spaces
using the min and mazx functions (see Fig. 20 (top left) and Fig. 21 (top left))
show the C'! discontinuity in each contour lines, whereas the SARDF approach
(see Fig. 20 bottom and Fig. 21 bottom) has a C! discontinuity only in the
origin.

The contour lines for the intersection and the union of the two half spaces
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Figure 21: Contour lines of (Top left) the maz function, (Top right) the R-
Function union and (Bottom) the SARDF union, of two half spaces f; = z,
f120andf2:y, fQZO

using the R-Function intersection and union (see Fig. 20 (top right) and Fig.
21 (top right)) show that such functions do not provide distance values (neither
exact nor approximate to some bounded error) and suffer from an exponential
function value growth.

4.2 Examples with two disks

We apply the SARDF operators to describe union, intersection and difference of
two disks in the plane. Note that the difference between f; and f; is obtained
by the SARDF intersection of f; and — fs.

The union is illustrated by the contour map of the resulting function in Fig.
22, the intersection is illustrated by Fig. 24, and the difference by Fig. 23. See
how in each case, the sharp feature is conserved for the 0 isovalue, whereas the
other contours are smoothed by the proposed approximation.

5 Estimation of the distance error for SARDF
operations

5.1 Upper limit of the distance error for a single SARDF
operation

The upper limit of the distance error for a single SARDF operation is reached
in the band area, where the traditional operation (min/max) is replaced by an
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17,07
15,0]
13,0
11,0

9,0]
7.0
5,07
3,07
1,0]
1,0
-3,0]
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-7,0]
-9,0]

-11,07]

13,07

+15,07]

701,080 7050501 ,62,07.05,03,61,01.03.05,07,09,011,03,09,0 7,09,0

Figure 22: Contour map of SARDF union of two disks.

17,0r]
15,00}
13,01
11,01}
9,01}
7,0]
5.0r]
3,00]
1,0]
1,0
-3,0r]
-5,07]
7.0
9,0
-11,07]
-13,07]
-15,07]

17.%1,09.07 050301, 807,05,63,61,0103/0507,09,011,03,03,07,0d,0

Figure 23: Contour map of SARDF difference of two disks.

17.0:
15,01
13,07
11,0
9,0
7,0]
5,0]
3,0
1,07
1,0]
-3,0r]
-5,07]
7.0
9,0
-11,07]
-13,07]
-15,07]

1751 0907 05a5a1,8807,05,62,6-1,0103,0507,09,011,03,09,0 7,04

Figure 24: Contour map of SARDF intersection of two disks.
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arc of circle of fixed radius R. For reason of symmetry, the upper limit error
for the SARDF intersection and union is the same in absolute value in all the
quadrants, so only one case needs to be studied. Let us consider the SARDF
intersection in the first quadrant. Fig. 25 reminds the configuration of the first
quadrant, with the smooth approximation and the different zones.

ZoneIL

y=x+R

Zone Il

Zone I1

y=x+R .*

.

Zone 1 R 2R

Figure 25: The first quadrant is divided into two zones. The circular approxi-
mation is applied in zone I, whereas we introduce a fixed radius approximation
with the bounding band in zone II.

The error made at one given point (x, y), when using the SARDF intersection
instead of the min itself in the circular shape area (it can be both in the Zone
I,B or in the zone II) is shown in Fig. 26. Let (x,y) be one point for which
the distance approximation to the intersection of the two half-planes x > 0 and
y > 0 is computed. Outside the angle zone used for the circular approximation
(zone I,B in Fig. 25) and outside the bounding band (zone II, in Fig. 25), the
error is 0. An error is introduced only in the zones of the smooth approximation:
zone I.B and zone IT (Fig. 25). One upper limit error can be computed in the
zone II, inside the band. Fig. 27 shows this area, with the distance error at
different points in dashed line. The upper limit for the distance error is reached
at the point P defined by = = y.

For that particular point, the error is exactly e = y = z; P(z,y) being a
point of the circular arc shape of radius R, its coordinates follow the equation:
(r — R)?> + (y — R)?> = R2. Since = = y, it follows that: 2 2> —4 Rz + R? = 0,
for which the two solutions can be easily obtained. One of this solution can
be discarded, since it does not respect the condition x < R, therefore only

T = @;)R remains. This value is an upper bound for the distance error
made when using SARDF.

In the case of the SARDF union operator, the absolute value of the error
should be subtracted to the computed approximate distance, in order to have the
correct distance value; whereas in the case of the SARDF intersection operator,
the absolute value of the error needs to be added to the computed approximate
distance in order to get the correct distance value.
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v=0 A

error = abs{ d’ —d )

d @

exact distance approximate distance

\j

=0

Figure 26: Exact distance, computed approximate distance and error at a given
point (z,y).

{O.R)

(0.0

— — - distance ecror

Figure 27: Distance error (in dashed lines) at different points in the band zone
(zone II), and max error reached for x = y.
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5.2 Algorithm for the exact distance error evaluation

The distance error can be evaluated exactly at any point with the following
steps:

1. Evaluate the approximate distance using SARDF operations in the con-
structive tree nodes;

2. Replace in the constructive tree all the occurrences of the SARDF inter-
section and union, by min and max functions;

3. Evaluate the exact distance function by traversing the tree with the re-
placed nodes;

4. The distance error is the difference between the two above computed val-
ues.

Note that the distance error can be zero depending on the given point position
and the operations applied in the construction.

6 Comparison of time efficiency between SARDF
and the min/max operators

Because the SARDF intersection and union are more complicated than the min
and max functions, they require more time for their execution. Therefore, we
looked at their time efficiency and checked that the overhead in time, compared
to the min/max functions but also to the R-Function intersection and union,
remains reasonable and does not forbid a practical use of these functions.

Time (in sec.)
Subdivisions SARDF min | R-Function | SARDF | max | R-Function
intersection intersection union union
1001 % 1001 0.05 0.01 0.02 0.05 0.01 0.02
10001 % 10001 5.29 1.42 2.52 4.97 1.38 2.56
20001 * 20001 21.18 5.65 10.09 19.59 5.53 10.07
30001 % 30001 47.47 12.66 22.75 44.07 12.46 22.72

Table 1: Time efficiency for 1001*1001, 10001*10001, 20001*20001 and
30001*30001 evaluations of SARDF intersection, SARDF union, min, maxz,
R-Function for the intersection and R-Function for the union.

In order to measure the time efficiency, a square was considered in the z —y
plane, starting from (—10,—10) and going to (10, 10); this square is regularly
subdivided along the = and y axis; let n, and n, be the number of subdivisions
along the = and y axis respectively. Then, for each of the functions, the time
taken for evaluating these n, x n, points in the square is considered. The results
of these evaluations for different subdivisions and all the functions (SARDF
intersection and union, min and maz, R-Function intersection and union) is
given in Table 1.
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The overhead in time between the SARDF intersection, min and the R-
Function intersection in one hand, and between the SARDF union, maz and
the R-Function intersection in the other hand are shown in Fig. 28 and Fig.
29 respectively. In our test, we found a factor of approximately 4 between the
SARDF operators and the traditional min/maz, and a factor of approximately
2 between the SARDF operators and the R-Function.

All the functions considered in the tests were implemented in ANSI C and
compiled with the optimization flags turned on, the time results were obtained
on a Pentium 4 processor, with 256 MBytes of RAM.

Time {in sec.
ha
(=]

1000110001 20001*20001 30001%30001
E sardr{niarsetion) Number of function evaluations
[ R-Function{intcrses-
tion)

Figure 28: Time comparison between SARDF intersection, min and R-Function
intersection for different number of function evaluations.
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10001*10001 20001720001 30001+30001
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W max

] R-Function {union)

Time

Figure 29: Time comparison between SARDF union, maz and R-Function union
for different number of function evaluations.
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7 Conclusion

In this document, we provide a new set of functions defining set-theoretic oper-
ations for constructive modeling. Under the condition that the primitives being
used for modeling are defined by exact distance functions, the proposed set of
functions provides for a good approximation of the real distance value. Fur-
thermore, the upper boundary of the error in the distance calculation can be
exactly determined.

The proposed operations are first defined for two half planes as > 0 and
as y > 0 in each quadrant of a two-dimensional space. While in quadrants 11
and IV they are equal to min/max functions, in quadrants I and IIT we use a
circular min/max approximation with an additional bounding band to control
the distance function error. The resulting signed approximate real distance
functions (SARDF) are at least C'* continuous, with the exception of the point
(0,0).

The SARDF operations have several applications, such as rapid ray-tracing,
metamorphosis, blending and others. In our future research, we will apply the
proposed functions to heterogeneous object modeling. A heterogeneous object
is an object composed of several different materials with variable distribution.
The SARDF provide a real approximate distance, and thus should allow one
first to define easily the distribution of a given material in an object, but also
to control it precisely.
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