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Abstract. In recent years, neuromorphic computing systems have taken
a range of design approaches to exploit known computational principles
of cognitive neuro-biological systems. Profiting from the brain’s event-
driven nature modeled in spiking neural networks (SNN), these systems
have been able to reduce power consumption. However, as neuromor-
phic systems require high integration to ensemble a functional silicon
brain-like, moving to 3D integrated circuits (3D-ICs) with the three-
dimensional network on chip (3D-NoC) interconnect is a suitable ap-
proach that allows for scalable designs, lower communication cost, and
lower power consumption. This paper presents the design and evaluation
of an energy-efficient spike-based scalable neuromorphic architecture.
Evaluation results on MNIST classification, using the K-means-based
multicast routing algorithm (KMCR), show that the proposed system
maintains high accuracy with a small spike arrival window over various
configurations.

Keywords: Spiking Neural Network · Scalable Architecture · Energy-
efficient · Next-generation AI

1 Introduction

Spiking neural network (SNN) has gradually gained awareness by reason of its
ability to process and communicate sparse binary signals in a highly parallel
manner similar to that of the biological brain. Spike-based neuromorphic sys-
tems have leveraged this to exhibit rapid event-driven information processing
and low power consumption. SNNs are modeled after the biological informa-
tion processing of the brain, where information is communicated via spikes, and
the processing of these spikes depends on their timing and the identity of the
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synapses used in communicating them. In contrast to multi-layer perceptrons
where all neurons communicate by firing at every propagation cycle, SNN com-
munication takes place only when the membrane potential of neurons are stim-
ulated beyond a threshold [19]. Various ways can be employed when encoding
information as spikes in SNN, and some of them include rate coding, population
coding, and temporal coding [25]. There are various models of spiking neurons,
and they describe the dynamics of a biological neuron at different levels. Some
models which are broadly used include: the integrate and fire (IF) model [9],
leaky integrate and fire (LIF) [9], and Hodgkin Huxley (HH) [14]. In general,
their operation can be summarized as integrating currents from arriving spikes
and the generation of new spikes whenever a threshold is exceeded. Typical spikes
irrespective of their amplitude and shape are handled as similar events, and from
the outset to finish, they last about two milliseconds [1] traveling down axonal
lengths. The IF and LIF neuron models can easily be found in neuromorphic
systems because of their simplicity and ease of implementation. However, the
HH neuron model is not usually employed because its complexity makes it less
suitable for large-scale simulation and hardware implementation.

SNN has successfully been used for tasks that range from vision systems [15]
to brain-computer interfacing [27]. Performing software sim-ulation of SNN has
shown to be a flexible approach to exploring the dynamics of neuronal sys-
tems. However, as SNNs become deeper, simulating it in software becomes slow
and consume more power, making it less suitable for large scale and real-time
SNN simulation. As an alternative approach, Hardware implemen-tation (neuro-
morphic system) provides the potential for rapid parallel real-time simulation of
SNN, and holds an edge of computational acceleration over software simulations.
Moreover, multi-neurocore neuromorphic systems can leverage the structure,
stochasticity, parallelism, and spike sparsity of SNN to deliver rapid fine-grained
parallel processing with low energy cost.

Over the years, Neuromorphic processors such as Loihi [7], MorphIC [11] and
TrueNorth with two-dimensional (2D) architecture have been proposed. Loihi is
a manycore 14-nm processor with on-chip learning capability. It occupies a silicon
area of 60-mm2 and communicates off-chip in a hierarchical mesh manner using
an interface. MorphIC [11] is a quad-core processor with 512 LIF neurons per
core and 528k synapses. It conducts learning using its on-chip stochastic spike-
driven synaptic plasticity learning module. TrueNorth is the largest of these
processors, with one million neurons and 256 million 1-bit synapses.

For three-dimensional (3D) architectures, the works in [31] and [30] both
proposed multi-core 3D architectures, achieved by stacking several Stratix III
FPGA boards. Inter-neuron communication was implemented using tree-based
topology. This architecture, however, is not suitable as ASIC implementation,
and because of the drawbacks of its topology, it seldom gets deployed in embed-
ded neuromorphic systems [8].

The complexity of neural networks have increased over the years to inculcate
multiple layers, each of which are expressed in 2D. These layers, when considered
together, form a 3D structure. Mapping such structure on a 2D circuit generally



Title Suppressed Due to Excessive Length 3

results in several lengthy wires occurring between layers, or the occurrence of
congestion points in the circuit [4, 5, 28]. 3D packet-switched NoC (3D-NoC),
however, enables such structure to be mapped efficiently with communication
between layers enabled via short through-silicon vias (TSVs). 3D-NoC also allows
SNN to be scaled and parallelized in the third dimension by combining NoC and
3D ICs (3D-ICs) [2].

In designing a neuromorphic architecture that will support such deep SNN
with many synapses, some challenges require attention. First, there is a need for a
densely parallel multicore architecture with low-power consumption, light-weight
spiking neuro processing cores (SNPCs) with on-chip learning, and efficient neu-
ron coding scheme. Another major challenge that requires attention is on-chip
neuron communication. Furthermore, we need to keep in mind that the number
of neurons to be interconnected is immensely larger than the number of cores
that require interconnection on recent multicore systems on chip platforms [12].
These challenges make the design of such a neuromorphic integrated circuit (IC)
a demanding task [3].

This paper presents the design and evaluation of an energy-efficient spike-
based scalable neuromorphic architecture. An extended version of this paper
with fault-tolerant support and real hardware design is presented in [22]. The
rest of this paper is organized as follows: Section II describes the architecture of
the system’s main building blocks. In section III, we present the evaluation, and
in section IV, we present the conclusion and future work.

2 System Architecture

Fig. 1: High Level View of the System Architecture: (a) System architecture
illustrated in a 4 × 4 × 4 configuration.

A high-level view of our proposed 3D-NoC-based neuromorphic architec-
ture [29] in a 4 × 4 × 4 configuration is presented in Figure 1. This architecture
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integrates several nodes in a 3D-NoC interconnect to provide a scalable neu-
romorphic architecture. Each node consists of a spiking neuron processing core
(SNPC) [23], Network Interface (NI), and a multicast 3D router (MC-3DR). The
nodes are arranged in two-dimensional (2D) mesh layers stacked to form a 3D
architecture. Communication between layers is enabled via through-silicon-vias
(TSVs).

2.1 Spiking Neuron Processing Core (SNPC)

Fig. 2: Architecture of the SNPC Comprising of the Synapse Memory, Synapse
Crossbar, LIF Neurons, Control Unit, and STDP learning module

The architecture of the SNPC is described in Figure 2. It is composed of a
core controller, synapse Crossbar, Synapse memory, 256 LIF neurons, and STDP
learning module. The SNPC multiplexes the state of all 256 neurons onto a sin-
gle bus of 256 bits, each bit signifying the presence or absence of a spike event
with 1 or 0, respectively. A total of 65k synapses are represented at the synapse
crossbar. Spike processing operation on the SNPC is carried out in response to
the core controller’s control signals. The SNPC assumes an initial default state
of idle. At the arrival of a presynaptic spike array which is preceded by a spike
arrival signal, it downloads the presynaptic spike array to the synapse crossbar.
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At the synapse crossbar, the presynaptic spike array is checked for the pres-
ence of spike events. If present, the crossbar determines the postsynaptic neuron
and the synapse memory address of the associated synapses. This is done by
performing one hot operation on the presynaptic spike array. When the synapse
memory addresses are determined, the synapse weights stored at those addresses
are fetched from the synapse memory and sent to the postsynaptic neurons for
update. At the LIF neuron described in Figure 3, the synaptic weights received

Fig. 3: Illustration of the Leaky Integrate and Fire Neuron Design.

from the synapse memory are accumulated as the membrane potential. At the
end of the accumulation, a leak operation that causes slight decay in the mem-
brane potential value occurs. After that, the value of the membrane potential is
compared with the neuron threshold value. If it exceeds the threshold, an output
spike is fired. If not, no spike is fired. In the event of an output spike, the mem-
brane potential value is reset to zero, and the neuron enters a refractory period
that lasts a few time steps. While in the refractory period, the neuron cannot
accumulate synaptic weights but resumes accumulation once the refractory pe-
riod is over. The output spike array from the postsynaptic neuron is sent to the
NI to be encoded into packets. The SNPC design enables the 256 neurons to be
updated in one cycle. The accumulation of synapse weights by the LIF neuron
is described in equation 1 as:

V l
j (t) = V l

j (t− 1) +
∑
i

wij
∗xl−1i (t− 1) − λ (1)

where V l
j is the membrane potential of a LIF neuron j in layer l at a time-

step t. wij is the synaptic weight from neuron i to j, λ is the leak and xl−1i is
pre-synaptic spike from previous layer l − 1.

On-chip learning in each of the 65k synapses of the SNPC is achieved with
an efficient implementation of the trace-based spike-timing-dependent plasticity
(STDP) Learning rule [24]. As described in Figure 4, the STDP module requires
16 presynaptic spike trace arrays, and the presence of postsynaptic spike ar-
rays to carry out a learning operation. After an output spike array from the
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Fig. 4: Architecture of the STDP Learning Module.

LIF neurons has been sent to the MC-3DR, the SNPC checks if learning con-
ditions have been met. If met, learning begins, if not, learning is skipped, and
the SNPC returns to the idle state. The presence of 16 presynaptic spike traces,
and postsynaptic spike trace arrays are verified to begin learning. If present,
the presynaptic spike trace arrays are grouped into two, 8 Before and 8 After,
based on their arrival time relative to the postsynaptic spike trace array(s). An
OR operation is further performed on the groups to obtain two arrays. Using one
hot operation and the postsynaptic spike trace array, the associated synapses’
memory addresses are obtained from the two arrays. The corresponding synapse
values are then fetched from the synapse memory, increased for the Before
spike events, decreased for the After spike events, and then written back to
the synapse memory. The trace-based STDP design utilizes 256 adders, which
enables parallel update of synapses.

2.2 Neurons Interconnect

The MC-3DR is responsible for spike communication among SNPCs in the 3D
architecture. As described in Figure 5, it has 7 inputs and 7 output ports. Four
of those ports connect to neighboring routers in the east, west, north, and south
direction, two connect to the neighboring routers in the layers above and below,
and the last connect to the local SNPC. The MC-3DR routes packets using four
pipeline stages: buffer writing (BW), routing calculation (RC), switch arbitration
(SA), and crossbar traversal (CT) [6]. It begins the first pipeline stage BW by
storing the packet in the input buffer when it receives a packet from the NI
or other routers. When BW is complete, the second pipeline stage RC begins.
The packet’s source address is obtained from the packet itself, and the next
destination is calculated to arbitrate the right output port. After the right output
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Fig. 5: Multicast 3D Router (MC-3DR) [29] Architecture, Illustrating its Ports
and Internal Modules

port has been determined, the third pipeline stage begins. In this stage, the
switch arbiter grants permission for the output port to be used. In the final
stage, the packet is sent to the right output port through the crossbar.

The architecture of the NI is described in Figure 6. It is made up of two
modules: Encoder and Decoder. The architecture of the encoder is described
in Figure 6a, and its task is to pack spike arrays received from the SNPC into
packets and send them to the router for transmission. The encoder packs spikes
into flits of packet using an 81-bit flit format. The first two bits indicate the
′′Type′′ of the flit: ”00” for configuration and ”11” for the spike. The next 9-bits
(3-bits each for X, Y, and Z dimensions) are used to represent the address of
the source neuron. The following 6-bits are a record of the time in which the
source neuron fired the spike. The last 64-bits are used for the spike array from
presynaptic neurons. In contrast to the encoder, the decoder, which is described
in Figure 6b unpacks packets that are received from the router into spike arrays
before sending them to the SNPC.

To ensure efficient operation, we adopt and explore the shortest path k-means
based multicast routing algorithm (KMCR) presented in [29]. In routing pack-
ets, the KMCR first partition destination nodes into subgroups, and from these
subgroups, nodes with the least mean distance to other nodes in the subgroup
are chosen to act as centroids. When the centroids have been chosen, the packets
are routed from source node to the centroids, and then from the centroids to the
destination nodes using a spanning subtree.
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(a) (b)

Fig. 6: Diagram of the Network Interface modules: (a) Encoder: packs presynap-
tic spikes into flits before routing to the destination SNPC, (b) Decoder: decodes
flits received from source SNPCs into presynaptic spikes.

3 Evaluation Results

The proposed system was designed in Verilog-HDL, and synthesized with Ca-
dence Genus. The NANGATE 45nm open-cell library [20] was used as the stan-
dard cell, the system memory was generated using OpenRAM [13], and TSV
from FreePDK3D45 [21] was employed for inter-layer connection. To explore
the efficiency of our proposed system, we evaluate it by carrying out MNIST
data set [18] classification with on-chip and off-chip learning using SNN size
of 784:400:10 and 784:100, respectively. The MNIST benchmark which contains
60K training and 10K testing images was used for evaluating the system because
it is widely used, and therefore provides a basis for comparison with existing
works.

3.1 Performance Evaluation

We evaluate the system performance by classifying MNIST dataset. The classifi-
cation was done on our proposed system using 3 different network configuration
sizes of 3×3×3 with a layer-based mapping scheme described in Fig. 7. The input
layer of 784 neurons is mapped to the first layer of the system. The hidden layer
of 400 neurons is also mapped onto the second layer. Finally, the output layer of
10 neurons is mapped to the third layer. The evaluation focused on classification
accuracy and average classification time (ACT) on different configurations us-
ing the KMCR and the XYZ-UB algorithms, over various spike arrival windows
(SAWs). The ACT is the average time taken to classify one MNIST image, and
the SAW is the number of cycles allowed for all flits (spikes) from source SNPCs
to arrive destination SNPC. After the first flit arrives, the SAW starts counting
down till zero, and flits that do not arrive by the end of the countdown are not
decoded. When the SAW countdown is over, the flits that arrived before the end
of its countdown are decoded and sent to the destination SNPC, and it’s value
is reset.
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Fig. 7: SNN mapping for MNIST classification on 3×3×3, 4×4×3, and 5×5×3
configurations: The first layer of 784 neurons without neural computation is
mapped to Layer one, the second layer of 400 neurons is mapped to layer 2, and
the third layer of 10 neurons is mapped to layer 3).

The accuracy and ACT of the evaluated system configurations over various
SAWs are described in Fig. 8. For the 3×3×3 configuration described in Fig. 8a
and Fig. 8b, the KMCR shows better accuracy from SAW of 10 to 14 with
24.8%, 5.2%, and 9.9% better accuracy. However, as the SAW reaches 16, both
algorithms reach same accuracy 98.2%. This is because the KMCR algorithm
is able to service more spikes at lower SAW compared to the XYZ-UB, which
reflects in the ACT, where the KMCR is lower than the XYZ-UB from SAW
10 to 12, due to the increased time taken by the KMCR to process more spikes
that arrived within the SAW.

For the second configuration of 4 × 4 × 3 described in Fig. 8c and Fig. 8d,
the KMCR and XYZ-UB show similar accuracy at SAW 46, 54 and 62. This is
because the similar number of spike packets were able to reach the destination
SNPC for both algorithms. However, a slight difference can be seen in SAW 50
and 58, where the KMCR was able to utilize the little timing difference between
it and the XYZ-UB, to deliver more spikes, which resulted in better accuracy
compared to the XYZ-UB. However with more spike delivered at SAW 50 and
58, KMCR utilized more classification time compared to XYZ-UB. At SAW of
62, when the accuracy of 98.2% was reached, the KMCR utilizes 2.3% less ACT
compared to XYZ-UB.

In the third configuration of 5 × 5 × 3 described in Fig. 8e and Fig. 8f, both
the KMCR and the XYZ-UB show similar performance in Accuracy and ACT
over all the SAWs. It was observed that the performance of both algorithms
gradually becomes similar as the size of system configuration increases.

With the SNPC able to update all neurons in parallel, the time taken to
update neurons given same SNN size and number of spikes across the utilized
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(a) (b)

(c) (d)

(e) (f)

Fig. 8: MNIST classification (with off-chip learning) on different system con-
figurations over various SAW: using the KMCR and XYZ-UB algorithms. (a)
Accuracy on a 3× 3× 3 system configuration. (b) Average classification time on
on a 3×3×3 system configuration. (c) Accuracy on on a 4×4×3 system config-
uration. (d) Average classification time on on a 4 × 4 × 3 system configuration.
(e) Accuracy on on a 5 × 5 × 3 system configuration. (d) Average classification
time on on a 5 × 5 × 3 system configuration.
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system configurations are the same. The difference in the ACT and accuracy
among the configurations result from the time taken to route spike packets, and
the number of packets delivered to the destination SNPCs. As can be observed
in Fig. 8, the 4 × 4 × 3 and 5 × 5 × 3 configurations requires 3.5 and 5.8 times
more SAW respectively, compared to the 3 × 3 × 3.

In conclusion, we evaluated different configurations of the proposed system
system by classifying MNIST hand written digits. We show that with off-line
training, the system can successfully deliver reasonable accuracy across different
configurations with increased SAW and ACT.

A comparison of the architecture and evaluation result of our proposed sys-
tem and some existing works [10, 17, 26] is also performed. Compared to other
works, our system utilizes a scalable 3D architecture which helps to provide
increased parallelism and reduced communication cost. Also, the SNPC design
utilizes parallel neuron and synapse update approach rather than the serial ap-
proach employed in other works. This enables all neurons to be updated in one
cycle and synapses in two.

At an on-chip STDP learning accuracy of 79.4% on the MNIST dataset
classification, our system achieved a higher accuracy than Seo et al. [26]. The
higher accuracy is a consequence of the higher synapse precision utilized by our
system. ODIN [11] and Kim et al [16] nonetheless achieved a higher accuracy,
but employed some form of supervision and image pre-processing, to achieve it.

Table 1: Comparison between the proposed system and existing works.
Parameters/Systems Kim et al. [16] ODIN [10] Seo et al [26] This work

Accuracy (%) 84 84.5 77.2 79.4

Neurons / core 64 256 256 256

Neuron Model IF LIF and Izh. LIF LIF

Neuron Update serial serial serial parallel

Synapses /core 21k 64K 64k 65k

Synapse Precision 4, 5, 14 4-bit 1-bit 8-bits

On-chip Learning Rule Stoch. grad. desc. Stoch. SDSP STDP STDP

Memory Technology SRAM SRAM SRAM SRAM

Interconnect 2D 2D 2D 3D

4 Conclusion

In this work, we presented architecture and evaluation of an energy-efficient
spike-based scalable neuromorphic architecture for next-generation cognitive AI
computing systems. The proposed approach immensely benefits from the scal-
ability, high parallelism, low communication cost, and high throughput advan-
tages that 3D-NoC provides. Leveraging these benefits, our system can support
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large-scale SNN with an enormous amount of synapses. Evaluating with MNIST
dataset classification, our method achieved 98.2% and 79.4% accuracy with off-
chip and on-chip learning, respectively. The evaluation results show that with
different configurations, our system can maintain high accuracy. Although the
energy merit cannot be clearly seen in this evaluation due to the type and size
of the used benchmark, we expect a higher energy efficiency and accuracy when
the proposed system is benchmarked with large biological application.
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