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A Panel Code Suitable for

Long Distance Meter Reading

Kaito Suzuki and Jumpei Kanno Supervisor: Qiangfu Zhao

Background

In many Japanese factories, there is still a :
need to read analog meters manually. To :
replace thousands of analog meters with
digital ones is too expensive. Therefore, in a
joint research with a private company, we :
try to automate the meter reading process
to reduce both human labor and human
errors. Here, we introduce a panel code :
that can be used to encode thousands of :
meters and to identify the meters from long

distance.

The proposed

The panel code is a 2D-Code consisting of
four colored markers (ie. the finder
markers) and multiple code sections. The
four colored markers are used to correct
the image, and the code sections are used
to identify the meter by embedding the
meter information (e.g. the meter ID).

The panel code can be adjusted according
to the shape of the meter, such as
rectangular, triangular, or circular. The
color and shape of the colored markers will
also be adjusted to match the environment
for easy recognition.

Compared with QR code, the panel code is
has an advantage in reading distance and
is suitable for “normalizing” the meter
images to improve the reading accuracy.

Flow of meter reac

Image normalization

Encode and Dec

YN
.

Figure 1: Examples of panel codes

The colored markers and meter
identification numbers converted to
binary codes are placed around the
meter. The markers can be detected
using color detection or object detection
methods such as SSD. A single type of
panel code (eg. the squared one) can
be used to encode various meters.
Therefore, it is not necessary to design
many models for detecting various
meters. In addition, using homosgraphic
transformation based on the colored
markers, we can normalize the meter
images and make meter reading easier
and more accurate.

Get the meter information
by decoding the panel code
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Automatic Reading of Flow Meters

’é j(‘$ Based on Object Detection

=l

Jumpei Kanno and Kaito Suzuki Supervisor: Qiangfu Zhao

Background

Various types of analog meters are 5. Estimate the coordinate of the float by
installed in Japanese factories to monitor image processing
conditions and detect abnormalities in the : 6. Estimate the value of the flow meter
manufacturing process. Therefore, human

inspectors have to go around the factory .
and visually read the values of the meters, = Lo U gl R E T

record the data, and take proper actions if | \We performed experiments to measure
needed. This work is done manually, which C the accuracy of our reading method. We
puts a heavy burden on the inspector and - performed the reading process on 100
is prone to human error. The purpose of images of each scale (1~10) and the
this study is to automate the manual . results are shown in Table 1.
process by using deep learning models of | The error for each value is basically
object detection and image processing. . within the range [-0.2, 0.2], which is
. within  the tolerance for practical
¢ application. The brightness in the image
The Proposed Met - could cause image processing to fail and

Our proposed method consists of six | efrors to increase. Therefore, it is better

steps using the object detection method | 1O use the average or median value as
SSD (Single Shot Multi-Box Detector) and the reading result in multicle frames.
image processing. SSD is trained to detect

e . Table 1: Readi iment result
flow and float. Image processing is used to | T oadng experiment resu

. 1 0.99509 0.09689  0.02392 000589  0.00096
reading accuracy. . i 209011 0.15242 009252 0.10631 0.01020
Below are the basic steps for automatic : 3 304961 0.14007 006852 0.06596  0.00593
reading (see Fig. 1): 4 4.03442  0.13864  0.05850 0.05069  0.00453
1. Detect the flow meter using SSD Ps 5.00306 0.16627 004311 001757  0.00313
2 Image normalization L6 593219 0.19298 007418 0.05133  0.00871
3 Detgction of flow meter scale range by 7 6.98281 021068 004376 0.00362  0.00395
- ! : 8 7.92566 0.28974  0.08971 0.07806  0.01168
image processing ‘9 898525 022726  0.06038 0.01034  0.00525

4. Detect the float using SSD i 10 10.0087 0.17091  0.09072  0.04698 0.00942

Schematic diagram of the pr
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Fig.1.Reading flow
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Generative Model-Based Anomaly Detection
for Symmetric Industrial Products

Shota Nakada and Takumi Meguro Supervisor: Qiangfu Zhao

Background

At factories or manufacturing sites, visual
inspections are conducted to ensure the
quality of industrial products. In recent
years, various deep learning-based
methods have been investigated for
anomaly detection. In this research, we
study anomaly detection for symmetric
products. Using the symmetric property of
the product images, we propose several
image ” normalization” methods that are
useful to reduce the diversity of the data
and obtain more effective generative deep
learning models for anomaly detection.

The Proposed Met

Our proposed anomaly detection method
consists of five steps using generative
models such as variational auto-encoder
(VAE) and generative adversarial network
(GAN). Below are the basic steps for our
anomaly detection method.

1. Image rotation. Rotate the images to
make them “orientation invariant” .

2. Image translation. Shift the images
parallel to the x-axis and/or y-axis to
make them “position invariant” .

3. Creating models. Train the models only
for “edges” and “corners” .

Schematic diagram of the |

AutoEncoder | rgconstructed  difference binarized

image image image
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Fig.1.Binarization

© 4. Binarization. Create black-white image
. from the difference image.

i 5, Connected component  extraction.
: Calculate the size of “defect” .

Experimental Res

We trained VAE and GAN using 3000
normal images. Then we tested our
anomaly detection method using 64
abnormal images and 500 normal
images. Table 1 shows the results of the
proposed method. Compared with
existing method, these results are much
better. However, in product anomaly
detection, It is important to get Recall
close to 100%. From Table 1 we can
see that the proposed method is still not
good enough for practical use. We are
investigating methods to improve the
performance.

Table 1: Anomaly detection results. Threshold
means the size of defect.

threshold 3 4 5 6
gt 56 56 53 52
FN 8 8 11 12
FP 19 15 8 3
TN 481 485 492 497
Precision | 74.7 | 78.9 | 86.9 | 94.5
Recall 87.5 | 87.5 | 82.8 | 81.2

naive method

o

Fig.2.Creating models

T

model
for corner

Learn what is good, and know what is bad!
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Product Defect Detection Based on
Multi-Class Classification

Takumi Meguro and Shota Nakada Supervisor: Qiangfu Zhao

Background

In  anomaly detection tasks, missing
anomalies is a problem that must be
avoided as far as possible. It has very
serious conseguences for companies that
manufacture products if products with
anomalies are delivered to the users. On
the other hand, we should also minimize
the over-detection rate while keeping the
number of missed anomalies to zero or
almost zero. To achieve these objectives,
we propose an image-based multi-class
classification method that can not only
detect but also localize the anomalies.

The Proposed Method

The proposed method can pay more
attention to the anomalies, images of the
normal parts will provide a less negative
effect on the performance. Interestingly, by
setting a proper threshold for one of the
outputs, we can separate normal and
abnormal data more clearly compared with
the straightforward two-class approach.

Fig. 1. How to label

- Label : 1100

Schematic diagram of the proposal

Object
detection

Whole image

Experimental Results

The following table shows the results
of the existing and proposed methods,
where FN indicates a missed anomaly
and a threshold value should be used to
set FN to O.

Comparing the two results, the
proposed method is able to reduce FN
to zero while suppressing over-
detection. In addition, the number of
rejections is very small. It can be said
that the proposed method clearly
distinguishes abnormal data from
normal data.

Table 1: Prior method result
0.9 0.99 0.999 23 24 25

Table 2: Proposed method result

77 135 135 135 135 ™ 131 131 131 i
™ 1096 1076 956 586 w 1098 1088 1080 1066
FP 4 4 4 4 FP 2 2 2 2
N 17 7 2 0 g @ 5 i ”
Reject : 5 150 522 . 54 i "
Accuracy 0.987  0.9%0 0994 0.994 g e T 66 b
Precision 0.971 0971 0.971  0.971 SeuTy: % : ¢ J
Precision  0.984 0.984 0.984 0.984

Recall 0.986 0.950 0.985 1.0
Recall 0.891 0.984 0.992 1.0

We speculate that two factors contributed

: to the above results. The first is that the
: rise in the relevant class caused a large
¢ difference in the output of the normal class
. between normal and abnormal data. The
i second is that the training was conducted
© using

: resulted
i normal and abnormal data in the feature
. space.

multi-class classification, which
in a large difference between

This was confirmed when
dimensionality reduction was performed.

Classification Model

partial image

Ml

e znxn

model

classification

Multi class model

|

Partial image

Look closer and we can gain more!
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You Only Look at Interested Cells —
An Efficient Way for Detecting On-road Risks

Kai Su Supervisors: Yoichi Tomioka and Qiangfu ZHAO

Background

On-road risk detection is one of the
prevailing applications in object detection
and recognition, and it is also a crucial part
of the driving assistance system. Only a
tiny amount of research has recently been
conducted to create a lightweight road risk
detection system for low-cost vehicles
such as mobility scooters. However, road
risk  detection tasks require  strict
requirements for real-time and high
detection accuracy. Furthermore, most of
the detection methods in use today need
expensive computational power. Therefore,
this is necessary to find a more efficient
and effective way to solve the above
problems.

Our proposal

Our proposed approach is called You
Only Look at Interested Cell (YOLIC). The
detection model leverages both bounding
box and semantic segmentation methods.
In this way, a detected object can be
represented by one or more small cells (or
blocks) instead of one big bounding box
or pixel area where each cell will focus on
the different parts of the object. Fig. 1
illustrates interested cells for on-road risk
detection. The main idea is to focus on
road and traffic signal cells. The cell sizes
can be different depending on the
distances and other factors.

Traffic sign
Detection Area

On-road risk
detection
Area

0.5 M

| On-road risk detect

i In our on-road risk detection system, a
- depth camera is used and mounted on a
i mobility scooter. Based on the scooter
- speed and the human response time, we
‘ regard the road within 6 meters from the
- mobility scooter as the detection area. As
- shown in Fig. 1, the first three rows (e,
. cells 1 to 32) are the notification area.
. The danger area is the last four rows (ie.
: cells 33 to 96). The white tapes on the
- floor are the reference lines. We set 96
- cells to detect on-road risks and eight to
i detect traffic signs.

Experimental Resu

- In our experiment, we have defined 11
. types of objects. The following results can
- be obtained if we use MobileNet v2 as
i the backbone network for detection. To
 know the detection performance more
- directly. Please scan the QR code to see
: an actual test demo.

catbgoiies _ MobileNet v2
Precision  Recall Fl-score

Bump 0.9267 0.9487 0.9376
Column 0.8750  0.8645 0.869
Dent 0.8817 0.8887 0.8852
Fence 0.9227 0.9465 0.9345
Creature 0.8772 0.9199  0.8980
Vehicle 0.8960  0.9496  0.9220
Wall 0.9440  0.9567  0.9503
Weed 0.9342 0.9615 0.9476
Zebra Crossing 0.9695 0.9819  0.9756
Traffic Cone 0.8762 0.8752 0.8757
Traffic Sign 0.8415 0.7464  0.7911
Normal 0.9922 0.9875 0.9898
All Risks 0.9420  0.9633  0.9526

Figures to illustrate the proposed

Traffic sign detection range: 13M-22M

Road risk detection demo

Fig. 1: Interested cells for on-road risk detection

Pay attention to important things!
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Modular selective neural
network (Takahashi)

Image annotation based on
unsupervised learning (Ogata)

Deep learning-based Automatic
documentation (Hasegawa)

Attention recognition (L1ao)

Deep learning-based Chinese
painting generation (Wang)

Deep learning-based X-
recognition (Hamauzu)



My research

e Conditional computation:

— NNTree: Neural network trees
(combination of specialist neural
networks using a tree structure)

— MS-Net: Modular selective neural
networks (combination of
specialist neural networks using a
generalist network)

* Awareness computation:

— Sensor array-based situation
awareness -> senior-care

— Three-value logic-based
awareness -> sparse computing.
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