
Pacific Graphics 2011

Bing-Yu Chen, Jan Kautz, Tong-Yee Lee, and Ming C. Lin

(Guest Editors)

Volume 30 (2011), Number 7

Optimized Topological Surgery for Unfolding 3D Meshes

Shigeo Takahashi1, Hsiang-Yun Wu1, Seow Hui Saw1, Chun-Cheng Lin2, and Hsu-Chun Yen3

1The University of Tokyo, Japan
2National Chiao Tung University, Taiwan

3National Taiwan University, Taiwan

Abstract

Constructing a 3D papercraft model from its unfolding has been fun for both children and adults since we can

reproduce virtual 3D models in the real world. However, facilitating the papercraft construction process is still

a challenging problem, especially when the shape of the input model is complex in the sense that it has large

variation in its surface curvature. This paper presents a new heuristic approach to unfolding 3D triangular meshes

without any shape distortions, so that we can construct the 3D papercraft models through simple atomic operations

for gluing boundary edges around the 2D unfoldings. Our approach is inspired by the concept of topological

surgery, where the appearance of boundary edges of the unfolded closed surface can be encoded using a symbolic

representation. To fully simplify the papercraft construction process, we developed a genetic-based algorithm for

unfolding the 3D mesh into a single connected patch in general, while optimizing the usage of the paper sheet and

balance in the shape of that patch. Several examples together with user studies are included to demonstrate that

the proposed approach works well for a broad range of 3D triangular meshes.

Categories and Subject Descriptors (according to ACM CCS): I.3.5 [Computer Graphics]: Computational Geome-

try and Object Modeling—Geometric algorithms, languages, and systems - mesh unfolding, topological surgery,

genetic algorithms, papercraft models

1. Introduction

Unfolding 3D meshes into 2D papercraft models allows us

to retrieve the corresponding 3D physical shapes from the

2D display to the real world. This technique would be very

useful when we prepare miniatures of 3D scenes, such as ar-

chitectural designs and urban plannings using the papercraft

models. Furthermore, regardless of the recent development

of rapid prototyping, constructing the 3D physical models

from 2D papercraft patterns is by itself an interesting enter-

tainment, especially for children and families to share pleas-

ant experiences. A variety of methods have been developed

recently for this purpose both in the fields of computational

geometry and computer graphics.

Although existing techniques are effective, they usually

decompose an input 3D model into a relatively large num-

ber of unfolded patches, including small pieces as shown in

Figure 1(a). This is a serious problem in practice because

we have to seek the correspondences between the bound-

ary edges of different patches when merging them, or even

worse, we have to fit a tiny piece, having a few faces only, to

the remaining part of a 3D papercraft model tightly enough.

Actually, facilitating simple search for the boundary edge

matching is crucial for accelerating the construction of the

corresponding papercraft model.

This paper presents a new heuristic approach for fully op-

timizing the 2D unfolding of an input 3D mesh. The key

ideas of our approach are inspired by the concept of topolog-

ical surgery, which allows us to encode the edge sequence

on the boundary of the unfolding using a symbolic repre-

sentation. Furthermore, in order to ease the papercraft con-

struction process, we have developed a genetic-based algo-

rithm for unfolding the 3D mesh into one single patch. This

formulation allows us to construct the 3D papercraft model

only through simple atomic operations for merging bound-

ary edges of the 2D unfolding, where we can always find a

pair of duplicated edges that are next to each other.

Our approach is distortion-free in the sense that we need

not stretch and shrink unfolded patterns to construct the

papercraft models, unlike most conventional approaches.

Actually, unfolding a polyhedron into a single unfolded

patch without any deformation is a well-known open prob-

lem [She75, DO05] and has intensively been studied so far

c© 2011 The Author(s)

Computer Graphics Forum c© 2011 The Eurographics Association and Blackwell Publish-

ing Ltd. Published by Blackwell Publishing, 9600 Garsington Road, Oxford OX4 2DQ,

UK and 350 Main Street, Malden, MA 02148, USA.



S. Takahashi, H.-Y. Wu, S. H. Saw, C.-C. Lin & H.-C. Yen / Optimized Topological Surgery for Unfolding 3D Meshes

(a) (b)

(c)

Figure 1: Unfolding a bunny model (348 faces). (a) A previous approach [SP05] unfolds the mesh into many patches including

small pieces. (b) Our approach converts the mesh into a single unfolded patch. (c) Steps for stitching boundary edges together

one by one for papercraft construction. The arrows of the same color indicate the correspondences between duplicated edges

together with their directions, while solid and broken lines on the patches represent mountain and valley folds, respectively.

rather from a theoretical point of view. However, to our

knowledge, the only available solution to this problem is

to check all the possible combinations of edges to be cut

over the input polyhedron until we find an acceptable so-

lution, which may lead to combinatorial explosion. On the

other hand, our genetic-based approach considerably accel-

erates the search for the overlap-free single connected patch

by adaptively sampling the search space of mesh unfoldings.

This is accomplished by classifying mesh vertices into hy-

perbolic and elliptic ones by referring to their surface cur-

vatures, which lets us instantly reject local self-overlaps be-

tween a pair of neighboring faces without actually projecting

them onto a 2D plane. As presented in Figure 1(b), our ap-

proach usually converts a 3D mesh into a single unfolded

patch for 3D meshes with up to 500 faces, which can be

considered as a size limit for hand-made papercrafts.

We assume that the input 3D mesh consists of triangular

faces only, while this is not a hard constraint because we

can easily partition a non-triangular face into a set of trian-

gles. There are no restrictions on the topological types of

the 3D meshes as long as they are orientable, which means

that topological tori and their connected sums can be suc-

cessfully unfolded without any extra cost. In our approach,

we also assume that the unfolded patches will be printed on

a single A3 sized sheet, to which the scale of the unfolded

patches is automatically adjusted to be fit compactly.

Our approach begins by partitioning a given 3D mesh into

a set of small unfolded patches. The unfolded patches are

then stitched together along boundary edges one by one us-

ing a genetic algorithm. The genetic-based optimization or-

dinarily transforms the initial set of small patches to a single

connected one, while we can optionally rearrange the config-

uration of the mesh unfolding to fully optimize the number

of unfolded patches. The boundary edges of the unfolded

patches are rendered using arrows having different colors,

so that we can easily identify the correspondence between

a pair of duplicated boundary edges together with their di-

rections as shown in Figure 1(c). In addition, mountain and

valley folds on the patches are explicitly rendered using solid

and broken lines, respectively, in our implementation.

The remainder of this paper is organized as follows: Sec-

tion 2 summarizes the previous approaches to 3D mesh un-

folding. Section 3 describes the basic ideas of the proposed

approach. The overall process is detailed from Section 4 to

Section 6, where Section 4 describes how we decompose

the input 3D mesh into a set of small unfolded patches,

Section 5 introduces an algorithm for stitching together un-

folded patches along boundary edges using a genetic algo-

rithm, and Section 6 presents an optional stage for rear-

ranging the mesh unfolding to fully minimize the number

of unfolded patches. After demonstrating several examples

of mesh unfoldings together with user studies in Section 7,

Section 8 concludes this paper.

2. Related Work

Unfolding 3D polyhedra has been intensively studied in the

field of computational geometry from a theoretical point of

view [She75]. A typical frequently asked question is whether

a polyhedron can be cut along its edges and unfolded onto a

2D plane without self-overlaps, while the only known so-

lution to this question is to try all the possible combina-

tions of edges to be cut. Readers can refer to recent surveys

(e.g. [DO05]) for further details.

From a practical point of view, on the other hand, unfold-

ing 3D models has been conducted after their shapes are fa-

c© 2011 The Author(s)

c© 2011 The Eurographics Association and Blackwell Publishing Ltd.



S. Takahashi, H.-Y. Wu, S. H. Saw, C.-C. Lin & H.-C. Yen / Optimized Topological Surgery for Unfolding 3D Meshes

vorably transformed. This type of approach has been well-

studied especially in CAD applications since 1990s [PF95,

Hos98], where the 3D shape is approximated as a set of de-

velopable surfaces that we can easily unroll onto a plane.

In computer graphics, Mitani et al. [MS04] presented a

pioneering work where they successfully approximated an

input 3D mesh with a set of triangular strips. This work

was followed by several interesting extensions, which ap-

proximate the shape of a 3D mesh using a few types of

developable surfaces [STL06, MGE07]. Mesh segmentation

techniques [AKM∗06] naturally let us unfold 3D meshes if

we can allow shape distortion to some degree according to

surface curvatures [JKS05,YGZS05]. Mesh parametrization

techniques [FH05, SPR06] also helped us convert the 3D

mesh onto a 2D plane because the techniques provide us with

a one-to-one mapping between the 3D shape and 2D plane

rather directly. In this framework, 3D meshes were flattened

onto 2D with bounded distortion by introducing seams of

minimal length [SCOGL02] and low visibility [SH02].

Distortion-free unfolding of 3D meshes is preferable in

the sense that we can avoid crumpling sheets during the pa-

percraft construction, while it still remains difficult since di-

rectly cutting out the given 3D mesh along its edges usually

results in a large number of unfolded patches due to self-

overlaps. There are several available mesh unfolding pro-

grams (e.g., http://www.javaview.de/services/unfold/) on the

Internet, while they are limited to relatively simple 3D mod-

els with a small number of faces. Straub et al. [SP05] pro-

posed an interesting approach in this category, where they

unfolded an input 3D mesh by referring to a minimum span-

ning tree (MST) that covers the dual graph of the mesh,

and then resolved the self-overlaps on the unfolded patches.

However, the resulting mesh unfolding still retains a rela-

tively large number of patches (cf. Figure 1(a)). Note that

the input meshes are usually expected to be simplified to

have up to 500 faces beforehand, so that we can construct

the corresponding papercraft model within a certain period

of time. We follow this strategy in our work by employing a

mesh simplification technique [GH97].

3. Basic Ideas

This section describes the basic ideas of the proposed ap-

proach including the overview of our algorithm.

3.1. Topological surgery

Topological surgery [Mas80] is a mathematical formulation

that allows us to classify closed surfaces according to their

topological types. This can be accomplished by cutting out

the closed surface along seams, and then encoding the ap-

pearance of its boundary edges, for example, in the counter-

clockwise order. Note that the seams consist of cut edges and

compose a spanning tree of such cut edges over the 3D mesh.

Let us define a boundary run to be a sequence of cut edges

a

bc

e
f

d =⇒

b

a -1

ac -1

b-1

c

e

d f
vs.

b

a -1

ac -1

b-1

c
d fe

e-1

-1f
-1d

(a) (b) (c)

Figure 2: Encoding the appearance of boundary runs. (a)

A tetrahedron. (b) A single unfolded patch. (c) Multiple un-

folded patches.

Type I:

Paa−1Q = PQ

P P PQ Q Q

a a -1

a a -1 a a -1

Type II:

PaQRa−1 = PbRQb−1 P

Qa

a -1

R
b

P R

Qa

b

a -1

b-1

b-1

b

a Q

P R

Figure 3: Two fundamental transformations for orientable

surfaces, where each symbol corresponds to a boundary run.

bounded by the endpoints or branches on the spanning tree.

Here, we denote the appearance of such a boundary run by

a symbol, for example a, while we assign a−1 when we en-

counter the same run in the opposite direction. Figure 2(b) il-

lustrates that the boundary of the unfolded tetrahedron is en-

coded by aa−1bb−1cc−1 when we cut the tetrahedron along

three edges a, b, and c as shown in Figure 2(a).

The formulation of topological surgery provides us with

two fundamental transformations for the encoded boundary

runs, as shown in Figure 3, if we limit ourselves to orientable

surfaces. Type II transformation involves both cut and stitch

operations for reordering boundary runs, and thus we can-

not reduce the number of such runs. In contrast, Type I

transformation monotonously reduces the number of bound-

ary runs by stitching together a pair of duplicated runs that

are next to each other while in opposite directions. Actu-

ally, this transformation is simple enough to acquire and

thus has been employed in our approach as an atomic op-

eration for composing the papercraft model. In practice, the

classification theory guarantees that, through a sequence of

the atomic operations, we can simplify the symbolic rep-

resentation of boundary runs into aa−1 for a sphere, and

a1b1a−1
1 b−1

1 · · ·anbna−1
n b−1

n for a surface with genus n. In

this approach, we draw an arrow of different color on each

boundary run so that we can easily find a pair of neighboring

runs that can be stitched together (Figure 1(c)).

3.2. Unfolding a 3D mesh into a single unfolded patch

As described earlier, restricting our stitching operations to

Type I of Figure 3 fully facilitates the construction of paper-

c© 2011 The Author(s)

c© 2011 The Eurographics Association and Blackwell Publishing Ltd.



S. Takahashi, H.-Y. Wu, S. H. Saw, C.-C. Lin & H.-C. Yen / Optimized Topological Surgery for Unfolding 3D Meshes

(a) (b)

Figure 4: Self-overlaps on the mesh unfolding: (a) a local

self-overlap and (b) a global self-overlap.

craft models. For this purpose, we should unfold an input 3D

mesh into a single connected patch, or a few patches at most.

This is clear from Figure 2(c), where the tetrahedron is de-

composed into multiple patches. In this case, we have to con-

duct different operations where we find the correspondence

between a pair of boundary runs that are distributed to two

distinct patches such as {d,d−1}, {e,e−1}, and { f , f−1}.

This usually increases the total time of papercraft construc-

tion considerably, especially for naïve users, as the number

of unfolded patches becomes larger. However, if we can un-

fold the 3D mesh into a single connected component, we can

easily construct the papercraft model through the sequence

of atomic stitching operations of Type I only.

Indeed, Taubin et al. [TR98] studied how to unfold 3D

meshes in the context of topological surgery. Nonetheless,

their purpose is quite different from ours since they explored

high compression ratio of the 3D mesh representation, by

minimizing the number of bifurcations in the spanning tree

of cut edges. Furthermore, they did not consider anything

about the self-overlaps of the resulting 2D unfolding.

3.3. Classifying self-overlaps of mesh unfoldings

Our solution to this problem is to classify self-overlaps of

mesh unfoldings into two types: a local self-overlap that

causes an intersection between a pair of neighboring faces

in the same connected patch (Figure 4(a)), and a global self-

overlap where a pair of faces that are away from each other

has a mutual overlap (Figure 4(b)). We hope to identify these

self-overlaps before actually projecting the unfolded patches

onto the 2D plane because we need geometric computation

for that projection at the expense of relatively high compu-

tational cost. Actually, this is achievable especially for the

local self-overlaps in our approach, by taking into account

the surface curvature type at each vertex together with the

number of cut edges incident to that vertex.

According to [BDE∗03], we can classify the mesh ver-

tices into hyperbolic vertices having negative Gaussian cur-

vatures (Figure 5(a)) and elliptic vertices having positive

Gaussian curvatures (Figure 5(b)). Here, the Gaussian cur-

vature at each vertex is defined as the difference of 2π (i.e.

360 degrees) and the sum of the angles spanned by adjacent

edges emanating from that vertex. It is obvious from Figure 5

that at each hyperbolic vertex we have to introduce at least

(a) (b)

Figure 5: (a) A hyperbolic vertex and (b) an elliptic vertex.

two cut edges to avoid local self-overlaps because the sum

of the corner angles around that vertex exceeds 2π, while we

just require only one cut edge for an elliptic vertex.

The above observation implies that we can generally

avoid local self-overlaps by updating the number of cut

edges at each vertex whenever we split and merge the mesh

surface. As for the global self-overlaps, there are no effec-

tive means of detecting them and thus we just transform the

unfolded patches onto the 2D plane for detecting possible

self-overlaps. However, as a preprocess, we roughly check

the possible self-overlaps using the bounding boxes of the

unfolded patches, which accelerates the necessary geomet-

ric computation significantly.

3.4. Processing pipeline

In fact, there are two extreme choices for seeking an overlap-

free mesh unfolding: the first is to expand the spanning tree

of cut edges adaptively over the 3D mesh, and the second is

to compose the mesh unfolding by iteratively merging a set

of single triangular faces. The first choice can never find such

overlap-free unfoldings because we cannot evaluate how the

current set of cut edges is close to the optimal solutions. The

work by Straub et al. [SP05] is an example of this category.

On the other hand, the second choice is unlikely to reach

the optimal solutions due to excessive degrees of freedom

in merging mesh faces. This observation suggests that we

should explore the best tradeoff between the two extreme

choices so that we can find an optimal unfolding within a

certain period of time. This is why we decompose the in-

put 3D mesh into a set of small unfolded patches first, and

then stitch them together while avoiding undesirable self-

overlaps. In practice, the success of this approach depends

on how we control appropriate degrees of freedom in com-

posing the final mesh unfolding, as will be discussed later.

Thus, the overall processing pipeline of our approach con-

sists of three stages. The first stage of the pipeline is to seek

a set of clustered faces by computing a set of spanning sub-

trees of dual edges. The clustered faces are then stitched to-

gether along boundary edges while avoiding self-overlaps

in the second stage. As the final stage, we optionally rear-

range the configuration of the unfolded patches so that we

can avoid cases where the previous switching stage cannot

fully optimize the number of connected patches. These three

stages will be detailed in Sections 4-6.

c© 2011 The Author(s)

c© 2011 The Eurographics Association and Blackwell Publishing Ltd.



S. Takahashi, H.-Y. Wu, S. H. Saw, C.-C. Lin & H.-C. Yen / Optimized Topological Surgery for Unfolding 3D Meshes

(a) (b)

Figure 6: Initial decomposition of a 3D mesh. (a) Spanning

subtrees of dual edges together with face connectivity are

drawn in different colors over the mesh. (b) The set of small

unfolded patches, where 65% of the dual edges are discon-

nected. Gray line segments indicate stitchable edges.

4. Mesh Decomposition

Our first task here is to decompose the input 3D mesh into a

set of patches having a small number of faces.

4.1. Constructing spanning subtrees of dual edges

For obtaining unfolded patches having a small number of

faces, we first extract the dual graph of the 3D mesh, and

then assign an appropriate weight to each edge of the dual

graph. Here, we borrow the minimum perimeter heuristic

from [SP05], and define the weight value for the dual edge e

as w(e) = (lmax − l)/(lmax − lmin), by referring to the length

of its corresponding primary edge l, where lmin and lmax

denote the minimum and maximum lengths of all the pri-

mary edges, respectively. Finally, we compose spanning sub-

trees over the dual mesh by employing the dual edges whose

weights are less than the predefined threshold. Note that the

minimum perimeter weight assignment seeks the minimal

total length of the seams (i.e., cut edges) over the mesh, and

thus the seams are more likely to pass around its concave re-

gions. This allows us to intuitively infer the shape semantics

of the target mesh from the layout of the seams.

Selecting the appropriate threshold for the weights of dual

edges is another important task because it controls appropri-

ate degrees of freedom in composing the final mesh unfold-

ing. Our experiments showed that we should try three dif-

ferent thresholds that disconnect 65%, 70%, and 75% of the

dual edges in producing the initial configurations of small

patches. As will be described in Section 7, we can usually

obtain satisfactory results with one of these thresholds if the

number of mesh faces is less than 500.

4.2. Resolving self-overlaps in an unfolded patch

We also would like to resolve possible global self-overlaps

contained in each decomposed patch. This is accomplished

by finding a pair of faces that intersect with each other on

the 2D plane, then tracking the path between the faces on

#0

#0

#1

#1

#2

#3

#3

#4
#4

#5

#5

#6
#6

#7

#7

#2

Figure 7: Stitchable edges (in red), which are also indicated

by gray line segments drawn from the center of the triangle.

the unfolded patch, and finally cutting the patch along some

edge on that path [SP05]. Note that this process also detects

exceptional local self-overlaps that we cannot avoid just by

counting the number of cut edges at mesh vertices. This ex-

ception occurs when the total sum of triangular corner angles

exceeds 3π (i.e., 540 degrees), or the two cut edges span

a very small angle around a hyperbolic vertex. In practice,

the number of these exceptional cases is very small and we

can usually reject the local self-overlaps by just managing

the number of cut edges at each vertex. Figure 6(b) shows

an initial set of small unfolded patches for the bunny model

(Figure 6(a)), where 65% of dual edges are disconnected.

5. Stitching Unfolded Patches

Our next task is to stitch together a pair of unfolded patches

one by one, so that we can minimize the number of unfolded

patches while avoiding any self-overlaps.

5.1. Selecting stitchable boundary edges

First, we describe how to select boundary edges along which

we try to stitch the corresponding pair of distinct patches. As

described in Section 3.3, we can instantly identify bound-

ary edges that are free of local self-overlaps by checking

the number of cut edges at the corresponding end vertices

together with their surface curvature types. We call such

boundary edges stitchable edges in this paper. Figure 7

shows an example of unfolded patches and their stitchable

edges where each edge is labeled by its corresponding ID. Of

course, the stitchable edges still cause global self-overlaps

(and a small number of exceptional local self-overlaps as de-

scribed in Section 4.2), while we still significantly limit the

number of edges for which we have to rigorously check the

possible self-overlaps. Actually, this considerably reduces

the search space for the optimized mesh unfolding, and thus

can effectively accelerate the computation.

5.2. Encoding the order of stitchable edges

Now we focus on how to select a set of stitchable edges

along which we stitch together the unfolded patches, in or-

der to form an optimized layout of mesh unfolding. In our

approach, we employ a genetic algorithm (GA) for seeking

an optimal order of stitchable edges that successfully avoids

c© 2011 The Author(s)

c© 2011 The Eurographics Association and Blackwell Publishing Ltd.



S. Takahashi, H.-Y. Wu, S. H. Saw, C.-C. Lin & H.-C. Yen / Optimized Topological Surgery for Unfolding 3D Meshes

unwanted self-overlaps. Here, at first glance, one might ex-

pect the technique of dynamic programming to give a satis-

factory solution, while a closer look reveals that various opti-

mization issues in 3D mesh unfolding fail to comply with the

so-called “optimal substructure” property in general, which

is needed for dynamic programming to be applicable. On

the other hand, the GA will provide better local search in the

neighborhoods of the current solutions in the sense that the

child solutions share good partial orders of stitchable edges

with the parent solutions. In our setup, the order of stitchable

edges is encoded as a chromosome with a sequence of edge

IDs, as shown in Figure 8(a).

In the actual computation, we prepare an initial popula-

tion of such chromosomes by generating randomly ordered

edge IDs. However, we still need to rearrange the order of

edge IDs, according to whether the corresponding stitchable

edge can actually introduce a self-overlap-free combination

of unfolded patches or not. Suppose that we have a chromo-

some as shown at the top of Figure 8(a). The edge ID in a

white box corresponds to a stitchable edge along which we

can successfully merge a pair of unfolded patches, while a

gray box corresponds to a failure case due to self-overlaps.

In our algorithm, we move the IDs of successful edges to

the head of the chromosome while we push those of the fail-

ure cases to the back, as shown at the bottom of Figure 8(a).

Rearranging the edge IDs is usually conducted when evalu-

ating the fitness of the chromosome (Section 5.3), and helps

us conduct further evolutional computation using crossover

and mutation operations (Section 5.4). Note that a stitchable

edge can become unstitchable due to local self-overlaps dur-

ing the stitching stage, while this can be easily detected by

faithfully updating the numbers of cut edges at the corre-

sponding end vertices.

5.3. Function for evaluating the fitness

Another important factor is to define an objective function

that evaluates the fitness of each chromosome. In our ap-

proach, we formulate the objective function f to penalize

several factors of mesh unfoldings and minimize it to find

the best chromosome. In practice, f is defined as:

f = λpNp +λlRl +λmRm +λbRb. (1)

Here, Np is the number of unfolded patches, Rl = Fl/Ft ∈
[0,1] where Fl represents the number of faces excluded from

the largest patch and Ft represents the total number of faces,

Rm ∈ [0,1] is the relative ratio of the exterior margin around

the mesh unfolding on the sheet, and Rb = Eb/Et ∈ [0,1]
where Eb is the average number of edges between each pair

of the duplicated boundary edges and Et is the total num-

ber of boundary edges, respectively. λp, λl , λm, and λb are

weight values for the four terms, respectively.

Since our primary objective here is to minimize the num-

ber of connected components, we first introduce the number

as the first term of f . The second term is introduced due

#5#5#5#5 #5

#5#5#5#5#4 #2 #3 #6 #7 #1 #0#5

#4 #6 #2 #5 #3 #7 #0#1

(a)

#5

#5

#5

#5

#5

#5

#5#5#5#5#0 #1 #2 #5 #3 #7 #6#4

#5#5#5 #5#4 #0 #6 #2 #5 #3 #7#1

#5#5#5#5 #5#4 #6 #0 #2 #5 #3 #7#1

#5#5#5#5 #5#6 #1 #2 #5 #3 #7 #0#4

#5#5#5#5 #5#0 #4 #1 #6 #5 #2 #3#7

#5#5#5#5 #5#4 #0 #6 #7 #5 #2 #3#1

#5#5#5#5 #5#4 #6 #0 #7 #5 #2 #3#1

#5#5#5 #5 #5#6 #4 #1 #0 #5 #2 #3#7

p1

p2

p3

p4

q1

q2

q3

q4

(b)

#5 #5

#5#5#5#5 #5

#5#5#5#4 #7 #2 #5 #3 #6 #0#1

#4 #6 #2 #5 #3 #7 #0#1

(c)

Figure 8: Operations for chromosomes: (a) Reordering. (b)

Crossover. (c) Mutation. Edge IDs in white and gray boxes

correspond to successful and failure cases, respectively.

to the observation that the computation often converges to

an equilibrium solution if multiple patches share almost the

same number of faces. (See Section 7.3 also.) The third term

is employed just for maximizing the relative area of the un-

folded patches. Note that we use the approximate bin pack-

ing algorithm [IC01] in our approach, and freely change the

scale of the unfolded patches so that we can minimize the

area of the margin. The fourth term has been introduced to

make each pair of duplicated boundary edges close to each

other along the patch boundary. This certainly facilitates our

papercraft construction since we are more likely to find pairs

of corresponding boundary edges within a small neighbor-

hood along the patch boundary. Note that we set the weight

values as λp = λl = 10λm = 100λb by default in our im-

plementation, because minimizing the number of unfolded

patches is our first priority and maximizing the coverage of

the paper sheet is the next.

5.4. Crossover and mutation operations

Having prepared the initial population, we generally synthe-

size the next population by applying crossover and mutation

operations to existing chromosomes. In our GA setup, these

two operations are specifically designed for our problem so

that we can produce better child chromosomes effectively.

Suppose that, before applying the crossover operation, we

have two chromosomes p1 and q1, where the successful and

c© 2011 The Author(s)

c© 2011 The Eurographics Association and Blackwell Publishing Ltd.



S. Takahashi, H.-Y. Wu, S. H. Saw, C.-C. Lin & H.-C. Yen / Optimized Topological Surgery for Unfolding 3D Meshes

(a) (b) (c)

Figure 9: Rearranging unfolded patches: (a) Two unfolded

patches are initially separated. (b) The two patches are

stitched regardless of self-overlaps. (c) Cut the stitched patch

along a different edge to avoid self-overlaps.

unsuccessful edge IDs have already been separated as shown

in Figure 8(b). We then extract the intersections of the two

sets of successful edge IDs, and rearrange p1 and q1 in a way

that the edge IDs contained in the intersection (i.e. {#4})

come first in the new chromosome p2 and q2 while the rel-

ative orders of edge IDs are preserved. The same can be ap-

plied to the two sets of unsuccessful edge IDs while com-

mon edge IDs (i.e. {#2,#3,#5,#7}) are pushed to the tail of

each chromosome. Now we have remaining edge IDs that

are contained neither in the successful nor unsuccessful in-

tersections, in the centers of p2 and q2, which are bounded

by green broken lines in the figure. Actually, we limit our

crossover operation to those ranges, where the starting and

ending positions for the actual crossover operation are ran-

domly chosen in our genetic algorithm. This is more likely to

produce child chromosomes that we have never encountered

before, since we replace IDs of edges whose effects are not

shared by the two parent chromosomes. In Figure 8(b), the

crossover operation is performed to the sequences bounded

by blue broken lines (from the second to third edge IDs),

where #6 in p2 is replaced with #0 in q2 and #0 in p2 is

changed into #6 accordingly. The similar process is also ap-

plied to q2 while guaranteeing that each edge ID appears

only once in each chromosome. Here, p3 and q3 respectively

represent the rearranged version of p1 and q1 to which we

have applied our crossover operation. After this step, we ap-

ply inverse reordering operations to p3 and q3 so that we can

retrieve the original order of edge IDs as in p4 and q4.

As for the mutation operation, we just randomly select one

edge ID from each of the successful and unsuccessful edge

ID sets, and then swap them as shown in Figure 8(c). This

is because we may generate chromosomes we tested before

just by swapping the edge IDs within the set of successful or

unsuccessful edges. In our computation, the population will

be updated in this way until the best score of the population

will converge. Figure 1(b) exhibits the minimized layout of

unfolded patches for the bunny model after this stage.

6. Rearranging Unfolded Patches

After a series of stitching operations based on the GA, we

can usually obtain a single unfolded patch or otherwise a

few unfolded patches at most. The reason why we may have

more than one connected component is that the GA compu-

tation cannot fully optimize the configuration of mesh un-

folding. However, the remaining unfolded patches can of-

ten be merged into a single patch by applying the local re-

merge and re-split operations. In practice, we have imple-

mented Type II operation in Figure 3 for rearranging the

partition of unfolded patches in our approach. Figure 9 il-

lustrates how such a rearrangement operation will be carried

out. First, we mark all the boundary edges as visited, which

are colored in red as shown in Figure 9(a). We then find the

boundary edge having the smallest weight value, and stitch

together the corresponding pair of unfolded patches along

that boundary edge, regardless of possible self-overlaps as

shown in Figure 9(b). Finally, we compute the path between

the faces having overlaps, cut the unvisited edge having the

largest weight value, and mark the new cut edge as visited

again, as shown in Figure 9(c). We continue this process un-

til we can reduce the mesh unfolding into a single connected

component.

7. Experimental Results

This section presents experimental results together with

statistics and timing measurements for example papercraft

models, followed by user studies and a discussion on

our proposed approach. The source code of our approach

together with a set of unfolded patterns is available at

http://www.tak-lab.org/research/unfolding/.

7.1. Results

Our prototype system is implemented on a laptop PC with an

Intel Core i7 CPU (2.67GHz, 4MB cache) and 8GB RAM,

and the source code has been written in C++ using OpenGL

and GLUT. In addition, we employed CGAL library for the

mesh representation, Boost Graph Library for computing

spanning subtrees, and GNU Scientific Library for laying out

2D unfolded patches on a paper sheet.

Figure 10 shows several examples of mesh unfoldings.

In this computation, we prepared three initial sets of small

unfolded patches for composing the final mesh unfoldings,

where 65%, 70%, and 75% of dual edges were disconnected,

respectively, as explained in Section 4.1. Table 1 shows the

corresponding statistics and timings, where input meshes

were transformed into a single unfolded patch in many cases

just through the GA-based stitching stage, and in all the

cases after the mesh unfoldings had been rearranged (cf.

Section 6), as indicated by the arrows in Table 1. In our ex-

periment, we could always find a single unfolded patch for

any model having up to 500 faces if we tried the three ini-

tial mesh decompositions at least. For composing the final

unfolded patch presented in Figure 10, we selectively em-

ployed a set of initial patches for each mesh as indicated in

red in Table 1, so as to maximize the corresponding coverage

c© 2011 The Author(s)

c© 2011 The Eurographics Association and Blackwell Publishing Ltd.



S. Takahashi, H.-Y. Wu, S. H. Saw, C.-C. Lin & H.-C. Yen / Optimized Topological Surgery for Unfolding 3D Meshes

Figure 10: Examples of mesh unfoldings: horse (312 faces), dragon (344 faces), hand (336 faces), knot (480 faces), cat (702

faces), and fish (950 faces) from top left to bottom right. In each case, cut paths over the 3D mesh are indicated on the left and

its corresponding 2D unfolding is presented on the right. See Table 1 for the corresponding initial set of unfolded patches.

Table 1: Statistics and timing. f : Number of faces. n: Number of unfolded patches. t: Time for mesh unfolding (in seconds). r:

coverage of the sheet (in percentage). The arrow means that we employed the optional rearrangement stage as a post-process.

model f
MST Ours(65%) Ours(70%) Ours(75%)

n r n t r n t r n t r

bunny 348 13 36.6 1 31.8 30.9 1 19.0 20.5 1 40.8 27.6

horse 312 12 35.2 1 14.8 23.8 1 87.9 31.8 1 24.4 23.3

dragon 344 13 27.1 1 48.6 26.8 1 16.4 20.0 1 14.2 21.1

hand 336 18 32.5 1 54.3 30.9 2→1 18.3 20.4 1 24.0 16.6

knot 480 14 22.4 1 86.5 32.2 1 42.9 13.2 1 33.7 22.2

cat 702 28 32.2 1 332.2 32.0 4→1 202.3 14.1 2→1 244.5 20.1

fish 950 31 30.7 3→1 785.5 21.4 3→1 227.4 31.3 2→1 463.4 24.4

of the sheet. In practice, we can accomplish almost the same

coverage as that of the conventional MST-based method on

average. The computation time basically increases as the

number of mesh faces becomes large, while the time also de-

pends on the variation in the surface curvature of that mesh.

For example, articulated models such as the horse, dragon,

and hand meshes are harder to unfold because they have high

negative curvatures around the joint parts. Note that in our

GA computation, each population consists of 64 chromo-

somes and, at each generation update, half of them will be

replaced with those obtained by crossover and mutation op-

erations, where the probabilities of crossover and mutation

are set to be 0.9 and 0.1, respectively.

Figure 11 exhibits some of these models assembled as pa-

percrafts by hand together with the construction times. When

compared with existing techniques, these construction times

are significantly reduced to an acceptable period of time,

with the help of a commercially available cutting plotter. We

also equipped our system with an interface for specifying

a series of edges as a seam in the final mesh unfolding by

controlling the weights of the corresponding dual edges.

c© 2011 The Author(s)

c© 2011 The Eurographics Association and Blackwell Publishing Ltd.



S. Takahashi, H.-Y. Wu, S. H. Saw, C.-C. Lin & H.-C. Yen / Optimized Topological Surgery for Unfolding 3D Meshes

bunny horse dragon hand knot

34:01 41:57 55:46 33:55 46:13

Figure 11: Hand-made papercraft models and construction

times (min:sec).

Table 2: Timing of the first user study (min:sec). “F” and

“M” represents female and male participants, respectively.

MST Ours MST Ours MST Ours

A(M) 33:55 25:52 D(M) 19:19 19:40 G(F) 18:01 14:53

B(M) 13:52 10:31 E(M) 19:54 18:15 H(M) 18:15 14:10

C(F) 17:37 15:56 F(M) 17:58 16:41

7.2. User studies

We conducted a user study to validate the effectiveness of

our approach. We asked 8 participants (Participants A-H,

aged 18-30) to construct a simplified bunny papercraft model

(128 faces). We provided 6 distinct unfolded patches ob-

tained by the conventional MST-based approach [SP05] (la-

beled “MST”), and a single unfolded patch generated using

our approach (labeled “Ours”). Table 2 shows the results of

this user study, where almost all the participants gave us

positive responses to our ideas for providing a single un-

folded patch in order to facilitate the papercraft construction,

and visualizing correspondence between a pair of boundary

edges using arrows of different colors. Note that Participants

A-D tackled the multiple patches first while Participants E-H

started with the single patch, in order to eliminate possible

influence caused by learning effects. The construction time

for the single unfolded patch was shorter than that for the

multiple patches by 171.6 seconds on average.

We also conducted an additional user study by recruit-

ing 6 additional participants (Participants I-N, aged 22-30)

and asking them to construct the bunny model from a single

unfolded patch (labeled “Ours”) and those where hints on

the order of stitching boundary edges were printed (labeled

“Hint”). In this case, we ordered boundary runs so that the

user can stitch the sharp edges at earlier stages and end by

merging flat edges. This successfully reduced the total pa-

percraft construction times by 167.7 seconds of the partici-

pants (I-N) on average as shown in Table 3, since the hints

helped them start with the ears and face of the bunny model

and then end with the back and bottom. Note that Partici-

pants I-K tackled the single patch without hints first while

Participants L-N started by following the hints again.

Finally, we asked a 9-year-old boy to construct the same

bunny model. He spent 23:53, 21:38, and 15:43 (min:sec) for

the 3 different unfoldings (“MST”, “Ours”, and “Hint”), re-

spectively. This means that our atomic operations for stitch-

Table 3: Timing of the second user study (min:sec). “F” and

“M” represents female and male participants, respectively.

Ours Hint Ours Hint Ours Hint

I(M) 20:50 17:51 K(M) 22:15 17:00 M(F) 20:59 19:22

J(M) 16:45 15:20 L(M) 14:20 10:30 N(M) 23:40 22:00

ing boundary edges together with the hints fully facilitated

the child to perform the papercraft construction.

7.3. Discussion

As described in Section 4.1, the quality of the papercraft

patterns fairly depends on the initial set of small patches.

For example, multiple patches obtained by the conventional

MST-based approach [SP05] do not provide enough degrees

of freedom in composing a single unfolded patch as shown

in Figure 12(a). We also tested different strategies such as

a weighted perfect matching [GE04], while we learned that

our scheme based on spanning subtrees of dual edges with

the minimum perimeter heuristic is the best. This is because

the heuristic naturally inserts two or more cut edges at each

hyperbolic vertex in concave regions, and thus avoids intro-

ducing unnecessary cut edges around elliptic vertices for bet-

ter control of the degrees of freedom.

Another problem is to appropriately define the objective

function that evaluates the fitness of each chromosome in

the genetic-based composition of mesh unfolding. Actually,

the second term in Eq. (1) plays an important role in our

approach. Without this term, the genetic-based optimiza-

tion is often trapped in an equilibrium state where multi-

ple patches share almost the same number of faces (Fig-

ure 12(b)). Tweaking the probabilities of crossover and mu-

tation operations is also important to stabilize the optimiza-

tion. We tested different sets of probabilities for the two

operations and learned that our choice of 0.9 and 0.1 for

the probability of crossover and mutation operations, respec-

tively, provides feasible evolutional computation in the sense

that the choice explores child chromosomes effectively in

the neighborhood of the current chromosome. In practice,

changing these two probabilities fails to compose a single

unfolded patch or degrades the coverage of the sheet at least.

Indeed, we often fail to find a single unfolded patch for a

mesh having more than 1,000 faces (Figure 12(c)), because

the degree of difficulty for unfolding 3D meshes mainly de-

pends on the number of mesh faces. A large-sized population

in GA is more likely to provide a better solution in these dif-

ficult cases while it increases the computation time on the

other hand. Adjusting such tradeoff between the population

size and computation efficiency adaptively according to the

input 3D mesh is an important technical issue. However, as

described earlier, we can basically limit the number of faces

up to approximately 500 so that we can construct the corre-

sponding papercraft model within a certain period of time.

c© 2011 The Author(s)

c© 2011 The Eurographics Association and Blackwell Publishing Ltd.



S. Takahashi, H.-Y. Wu, S. H. Saw, C.-C. Lin & H.-C. Yen / Optimized Topological Surgery for Unfolding 3D Meshes

(a) (b) (c)

Figure 12: Failure cases where each unfolded patch is drawn in a different color. (a) We cannot compose a single patch from

multiple ones obtained by the MST-based approach. (b) Our genetic-based optimization is trapped in a equilibrium state without

the second term of the objective function. (c) We fail to unfold the mannequin model (1,376 faces) into a single connected patch.

8. Conclusion

This paper has presented a new heuristic approach to trans-

forming 3D meshes into an optimized layout of 2D un-

foldings. The key ideas have been inspired by the concept

of topological surgery, which allows us to construct paper-

craft models through atomic operations of stitching together

boundary edges of the mesh unfolding. For this purpose,

we have developed a genetic-based algorithm for optimizing

the number of 2D unfolded patches together with the cov-

erage of the paper sheet and the distance between each pair

of boundary edges around the 2D unfolding. Several experi-

mental results together with user studies and a discussion on

our framework are included to justify the present approach.

Acknowledgements

We are grateful to all the participants for taking part in the

user studies. This work has been partially supported by JSPS

under Grants-in-Aid for challenging Exploratory Research

No. 23650042, NSC 98-2218-E-009-026-MY3, Taiwan, and

NSC 97-2221-E-002-094-MY3, Taiwan.

References

[AKM∗06] ATTENE M., KATZ S., MORTARA M., PATANE G.,
SPAGNUOLO M., TAL A.: Mesh segmentation - a comparative
study. In Proc. Shape Modeling and Applications 2006 (2006),
pp. 14–25.

[BDE∗03] BERN M. W., DEMAINE E. D., EPPSTEIN D., KUO

E. H.-S., MANTLER A., SNOEYINK J.: Ununfoldable poly-
hedra with convex faces. Computational Geometry Theory and

Applications 24, 2 (2003), 51–62.

[DO05] DEMAINE E. D., O’ROURKE J.: A survey of fold-
ing and unfolding in computational geometry. In Combinato-

rial and Computational Geometry. Cambridge Univ. Press, 2005,
pp. 167–211.

[FH05] FLOATER M. S., HORMANN K.: Surface parameteriza-
tion: a tutorial and survey. In Advances in Multiresolution for

Geometric Modeling, Dodgson N. A., Floater M. S., Sabin M. A.,
(Eds.). Springer, 2005, pp. 157–186.

[GE04] GOPI M., EPPSTEIN D.: Single-strip triangulation of
manifolds with arbitrary topology. Computer Graphics Forum

23, 3 (2004), 371–379.

[GH97] GARLAND M., HACKBERT P. S.: Surface simplifica-
tion using quadric error metrics. In Proc. ACM SIGGRAPH 1997

(1997), pp. 209–216.

[Hos98] HOSCHEK J.: Approximation of surfaces of revolution
by developable surfaces. Computer-Aided Design 30, 10 (1998),
757–763.

[IC01] IGARASHI T., COSGROVE D.: Adaptive unwrapping
for interactive texture painting. In Proc. Symp. Interactive 3D

Graphics 2001 (2001), pp. 206–216.

[JKS05] JULIUS D., KRAEVOY V., SHEFFER A.: D-charts:
Quasi-developable mesh segmentation. Computer Grahics Fo-

rum 24, 3 (2005), 581–590.

[Mas80] MASSEY W. S.: A Basic Course in Algebraic Topology.
Springer, 1980.

[MGE07] MASSARWI F., GOTSMAN C., ELBER G.: Papercraft
models using generalized cylinders. In Proc. Pacific Grahics

2007 (2007), pp. 148–157.

[MS04] MITANI J., SUZUKI H.: Making papercraft toys from
meshes using strip-based approximate unfolding. ACM Trans.

Graphics 11, 3 (2004), 259–263.

[PF95] POTTMAN H., FARIN G.: Developable rational Bézier
and B-spline surfaces. ACM Trans. Graphics 12, 5 (1995), 513–
531.

[SCOGL02] SORKINE O., COHEN-OR D., GOLDENTHAL R.,
LISCHINSKI D.: Bounded-distortion piecewise mesh parameter-
ization. In Proc. IEEE Visualization 2002 (2002), pp. 355–362.

[SH02] SHEFFER A., HART J. C.: Seamster: Inconspicuous low-
distortion texture seam layout. In Proc. IEEE Visualization 2002

(2002), pp. 291–298.

[She75] SHEPHARD G. C.: Convex polytopes with convex nets.
In Mathematical Proc. Cambridge Philosophical Society (1975),
vol. 78, pp. 389–403.

[SP05] STRAUB R., PRAUTZSCH H.: Creating optimized cut-
out sheets for paper models from meshes. In Proc. SIAM Conf.

Geometric Design and Computing 2005 (2005).

[SPR06] SHEFFER A., PRAUN E., ROSE K.: Mesh parameteri-
zation method and their applications. Foundations and Trends in

Computer Graphics and Vision 2, 2 (2006).

[STL06] SHATZ I., TAL A., LEIFMAN G.: Paper craft models
from meshes. The Visual Computer 22, 9 (2006), 825–834.

[TR98] TAUBIN G., ROSSIGNAC J.: Geometric compression
through topological surgery. ACM Trans. Graphics 17, 2 (1998),
84–115.

[YGZS05] YAMAUCHI H., GUMHOLD S., ZAYER R., SEIDEL

H.-P.: Mesh segmentation driven by gaussian curvature. The

Visual Computer 21, 8–10 (2005), 659–668.

c© 2011 The Author(s)

c© 2011 The Eurographics Association and Blackwell Publishing Ltd.


