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Abstract

Topological volume skeletonization is a novel approach for automating transfer function design in
visualization by extracting the topological structure of a volume dataset. The skeletonization process
yields a graph called a volume skeleton tree, which consists of volumetric critical points and their
connectivity. The resultant graph provides critical field values whose color and opacity are accentuated
in the design of transfer functions for direct volume rendering. Visually pleasing results of volume
visualization demonstrate the feasibility of the present approach.

1 Introduction

Visualizing large-scale 3D datasets has become a challenging problem due to the recent developments
of computer hardware and measurement equipments for scientific applications. While direct volume
rendering is one of the popular tools for visualizing complicated inner structures of such large-scale
datasets, it suffers from the lack of interactivity for adjusting visualizing parameters to generate
informative images. The key to comprehensible volume rendering lies in the design of transfer functions
(TFs), which map physical field values of given volume samples to optical properties such as color and
opacity. However, the design requires excessive human interactions especially in the case of unknown
large-scale 3D datasets because of the need to explore their involved features. Volume data mining
(VDM) introduced by Fujishiro et al. [10, 11] is one of the concepts which allows us to extract such
volume features effectively along with judicious design of TFs.

In recent years, several data-centric methods have been proposed for designing TFs semi-automatically
for effective volume rendering [3, 16, 6]. Although these algorithms succeed in visualizing the features
of volume datasets in some practical cases, they do not capture the associated global structures in-
volved in volume datasets explicitly.

This paper, therefore, presents a novel approach for automating the TF design by explicitly ex-
tracting a rigorous volumetric structure even from an unknown volume dataset. Here, the volumetric
structure means an abstract graph called a volume skeleton tree (VST), which represents the splitting
and merging of isosurfaces of a varying scalar field value. The key idea in this approach is to extract
the VST that symbolizes isosurface evolution over the domain of the field values, and then to empha-
size significant isosurfaces having topological transitions in the design of TFs. Figure 1 illustrates such
an example where two isosurfaces emerge and grow to adjoin each other. Tracing isosurface changes
of each connected component produces a VST as shown on the right of Figure 1. The VST represents
critical field values (CFVs) by its nodes, where significant topological changes occur in the isosur-
face evolution. In Figure 1, voxels around adjoining isosurfaces should be emphasized for informative
volume rendering.

In this paper, we present a robust algorithm for constructing such VST even when handling noisy
discrete volume samples. Since the definition of the VST is based on singularity theories on surfaces
embedded in 4D hyper-space, it is well-defined in a mathematical sense, and offers a sound mechanism
for analyzing the global structure of the volume dataset. The principle of our VST-based TF design
is also provided with visually-appealing results of rendered images.
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critical points

Figure 1: Isosurface evolution and its corresponding volume skeleton tree.

Although the fundamental concept has already presented in our previous papers [9, 10, 11], the
present method is quite different from the previous one in that it analyzes topological structures
directly from given volume datasets while the previous method employed a two-step process. Our
previous method first extracts a series of isosurfaces at some discrete scalar field values, and then
constructs a topological skeleton called a Reeb graph (RG) for every isosurface. The method extracts
the CFVs by comparing the RG of an isosurface with its neighbor along the axis of the scalar field
value. Actually, these extracted RGs are associated with this axis to construct a hierarchical graph
representation called a Hyper Reeb graph (HRG). While this method produces good results, it takes
a great deal of computation time because it seeks all the CFVs by using the bisection method to
sample the domain of the scalar field value [11]. On the other hand, our new method reduces this
computational cost considerably. This is enabled because our method directly extracts volumetric
critical points by comparing the field value of each voxel only against those of its local neighbors.
In addition, our method offers more advantages. The first advantage is that we can detect all the
critical points embedded in the input volume so that they maintain the mathematical integrity, while
we may miss some critical points when using our previous bisection-based method. Furthermore, we
can discriminate significant CFVs from minor ones by considering the global structure of isosurface
changes because, in this framework, we can directly trace the isosurface evolution over the domain of
scalar field values. The present method also identifies the type of each topological change in isosurfaces,
which allows us to take into account such types when emphasizing the significant isosurfaces in volume
rendering.

This paper is organized as follows: After briefly reviewing previous work related to ours in Section 2,
we present a robust algorithm for extracting the VST from a discrete volume dataset in Section 3.
Section 4 describes a principle of TF design based on the VST, and presents a feasibility study of the
proposed scheme by applying it to simulated and practical datasets. Finally we conclude this paper
with related future extensions in Section 5.

2 Related Work

For convenience, we classify related work into two categories: level-set analysis and transfer function
design.

2.1 Level-Set Analysis

Primary level-set analysis for topological skeletonization has been studied for discrete surface samples
such as digital elevation models (DEMs). Such surface skeletons are represented by graphs, which are
denoted as “contour trees” or “Reeb graphs,” and well studied in the field of geographical information
systems by Kweon and Kanade [19] and Takahashi et al. [29]. Lazarus and Verroust proposed an
algorithm for constructing such structures from general polyhedral objects [20]. Another interesting
framework for such topological analysis is proposed by Edelsbrunner’s group [4], where they presented
an algorithm for partitioning DEMs into topological primitives called Morse-complexes and introduced
geometric measures [5] to control their multiresolution representations. The method seems to have the
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potential for handling one-dimensional higher cases, i.e. volume datasets, after some sophistications,
but it is still limited to surface cases.

On the other hand, several authors addressed methods for extracting similar skeletons from volume
datasets. For example, Itoh et al. [14, 15] used an extrema graph to find starting points for isosurface
propagation. While the graph is very efficient to accelerate such isosurface extraction, it only captures
maxima and minima and discards saddles that play an indispensable role in the TF design. Bajaj’s
group developed an efficient algorithm for calculating such volume skeletons (i.e., contour trees) that
also capture the changes in the number of connected isosurfaces [32], and then used them to explore
feature isosurface transitions for efficient volume visualization [1]. The computational complexity
of this algorithm was further improved by Tarasov and Vyalyi [30]. Furthermore, as an extension
of the algorithms, Carr, Snoeyink, and Axen [2] developed an excellent algorithm that computes
such topological skeletons from objects of any dimension. While these algorithms are elegant from a
computational point of view, they do not pursue the change in topology (i.e., genera) of isosurfaces
with respect to the scalar field value, and hence they cannot maintain the topological consistency of
the extracted features.

More recently, Pascucci et al. [25] developed the algorithm in [2] so as to exactly identify the
topology (i.e. genus) of an isosurface at any point of the skeleton graph. However, their algorithm still
does not care about the topological consistency because they did not resolve degenerate singularities
that are likely to be involved in the noisy large-scale datasets of limited precision.

On the other hand, the present algorithm retains this topological consistency by resolving all the
possible degeneracies. Another difference from the conventional methods is that we fully identify the
types of critical points including the isosurface embeddings in 3D space around them. This is why our
method enjoys the global configuration of isosurface transitions with respect to the scalar field value
without suffering from minor troublesome noise.

2.2 Transfer Function Design

Several methods for semi-automating TF design are in the literature, and these may be divided into
the two major categories: image-centric and data-centric.

An image-centric method presents a broad selection of TFs and generates the corresponding visu-
alization images so that a user can pick up the best one. The method then seeks the most suitable
TF by iteratively refining the image selection according to the user’s evaluation. He et al. [12] used
stochastic algorithms to iteratively evolve the previous generation of TFs into the next one, while
Marks et al. [21] introduced a special metric to locate the visualization images in the parametric space
to calculate an optimal set of perceptually different images all at once. However, these image-centric
methods do not take into account the meaning (i.e. significant features) involved in target volume
datasets.

On the other hand, a data-centric method tries to find the best TF by rigorously analyzing such
features of the input volume dataset. Castro et al. [3] presented a TF design method that is specific
to medical data. They first segment a medical volume dataset into several components such as bones
and muscles, and then assign a basis TF to each of the components so that they can obtain the final
TF as a weighted sum of the basis TFs. Fang et al. [6] applied a sequence of 3D image processing
procedures to an input volume in order to directly visualize the processed data with ordinary TFs.

One of the most outstanding work was recently reported by Kindlmann and Durkin [16], where
they formalized a data structure called a histogram volume in a 3-dimensional space that is spanned
by a scalar field value f and its first and second directional derivatives f ′ and f ′′. They used this
data structure to design TFs that efficiently emphasize boundaries between different materials in the
volume data. Kniss et al. [17] sophisticated this idea as a multi-dimensional TFs, and implemented
a rich set of intuitive tools for designing such TFs efficiently. Hladuvka et al. [13] also proposed a
similar method that employs the maximum and minimum principle curvatures of the volume function
for defining such multi-dimensional TFs. Another generalization of the histogram volume can be
found in the work by Tenginakai et al. [31]. They used a statistical model based on central moments
of volume data, which are actually higher-dimensional versions of the histogram volumes.

The approach presented herein can be regarded as a novel one in this second category, since it
relies heavily on the volume field topology delineated by the topological skeleton, which stretches a
network over critical points in a volume. While the previous data-centric approaches are effective,
they may all suffer from gentle gradients of scalar field values because they are sensitive only to local
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sharp features. On the other hand, the present method extracts a global structure in the volume data
as well as its local features. While Weber et al. [33] recently sophisticated our previous work [10] by
developing the direct extraction of critical points from volume datasets, they considered only local
features around the critical points and did not take into account its associated global connectivity.

3 Topological Skeletonization Algorithm

The topological skeleton provides us with key insights for visualizing the global structure of a large-
scale 4D volume dataset. This section describes an algorithm for finding such a topological skeleton
from a volume dataset that is represented as samples of a 4D hyper-surface. While our algorithm is
an extension of the previous one for 3D surface cases [29], it has been newly developed for volumes
because the behavior of 3D isosurfaces involved in the volume is much more complicated than that of
2D isocontours for 3D surfaces. This means that we have to detect changes in the topological type
(genus) of each isosurface when skeletonizing a given volume data. The algorithm will select candidate
field values to be emphasized in the design of TFs, hence it helps us generate comprehensible rendering
of unknown volume datasets. Note that, in this paper, we always consider isosurface transitions as
the scalar field value decreases.

The following is a list of steps in the algorithm:

1. Extract volumetric critical points that represent the positions of topological transitions of iso-
surfaces such as isosurface appearance (at maxima), merging, splitting, (at saddles) and disap-
pearance (at minima).

2. Trace voxel flow lines from saddle critical points until maxima and minima to obtain a voxel flow
network (VFN).

3. Convert the obtained VFN into a VST.

4. Simplify the VST in order to find the significant field values of the volume dataset.

Each step of the algorithm will be described in detail below.
Before going into details, we assume that a volume dataset is represented by sample points of a

single-valued function,

w = f(x, y, z), (1)

where x, y, and z represent ordinary 3D coordinates and w its corresponding scalar field value. This
lets us to classify isosurfaces evolving in a volumetric domain into two categories: solid isosurfaces
whose interior samples are larger in the field value than those on its boundary, and hollow isosurfaces
whose interior is smaller. The same notation is used in [28] for surface cases. Here, we also assume
that outermost solid isosurfaces of a decreasing field value always expand (i.e. non-shrinking) in 3D
space defined by the volume dataset. This assumption is reasonable because we can consider the
reverse ordering of the field values when the assumption is violated. Recall that we always decrease
the field value when considering the topological changes of isosurfaces. In the remainder of this paper,
we consider the following analytic volume function as an example:

f(x, y, z) = 4c2
(
(x−R)2 + (z −R)2

)
−
(
(x−R)2 + y2 + (z −R)2 + c2 − d2

)2
+

4c2
(
(x + R)2 + (z + R)2

)
−
(
(x + R)2 + y2 + (z + R)2 + c2 − d2

)2
, (2)

where 0 < d < c and c2 + d2 ≥ 6R2.

3.1 Definition of Critical Points

Cutting a volume dataset at different field values will produce topological changes of isosurfaces,
including isosurface splitting and merging. A critical point will appear at a contact point between
such isosurfaces when they split and merge. Figure 1 illustrates three critical points, where the upper
two points activate isosurface growth and the lower one merges the two isosurfaces.

A more precise definition is stated as follows. A critical point p of the field function (1) is defined
to be a point that satisfies:

∂f

∂x
(p) =

∂f

∂y
(p) =

∂f

∂z
(p) = 0. (3)
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Figure 2: Isosurface changes at a maximum and a minimum. The arrows indicate the isosurface changes
when the scalar field value decreases.

From Equation (3), for example, we can derive the following five critical points of the function (2):

p1,2 :

(
∓

√
c2 + d2 − 2R2

2
, 0,±

√
c2 + d2 − 2R2

2

)
,

p3,4 :

(
∓

√
c2 + d2 − 6R2

2
, 0,∓

√
c2 + d2 − 6R2

2

)
, (4)

p5 : (0, 0, 0) ,

and their corresponding CFVs:

f(p1,2) = 8c2d2,

f(p3,4) = 8c2d2 − 16R2(c2 + d2 − 4R2), (5)

f(p5) = −2(c2 − d2)2 + 8R2(c2 + d2 −R2).

Here, note that a smaller subscript corresponds to a larger CFV.
The Morse lemma [8] claims that an infinitesimal neighborhood around a critical point of Equa-

tion (1) has a local coordinate where f has one of the following quadratic forms:

f =


−x2 − y2 − z2 maximum (index 3)
−x2 − y2 + z2 saddle (index 2)
−x2 + y2 + z2 saddle (index 1)

x2 + y2 + z2 minimum (index 0).

(6)

Here, the index represents the number of negative eigenvalues of the Hessian matrix at the critical
point. As shown in Equation (6), critical points of the volume dataset are classified into four types: a
maximum (index 3), a saddle (index 2), a saddle (index 1), and a minimum (index 0). In this paper,
we use the symbols C3, C2, C1, and C0 to represent the above four types of critical points, where each
subscript represents the corresponding index.

Figure 2 shows isosurface changes around a maximum (C3) and a minimum (C0) of the function (6)
when the scalar field value decreases. At a maximum, a new topological sphere appears in 3D space.
Conversely, an existing sphere disappears at a minimum.

At a saddle of index 2 two isosurfaces merge while an existing isosurface splits at a saddle of
index 1 when the corresponding field value goes down. For such saddles, in particular, the topological
changes become more complicated when we take into account spatial configuration of isosurfaces, i.e.,
isosurface embeddings in 3D space. Figure 3 classifies such changes in isosurfaces depending on their
embeddings in 3D space. This classification is one of our contributions that discriminate the present
work from our previous ones. This classification has a close relationship with the work by Shinagawa
et al. [28] for the case of 3D surfaces.

Furthermore, the previous assumption of the non-shrinking property of outermost solid isosurfaces
restricts isosurface changes at saddles as shown in Figure 3. Here, solid isosurfaces can follow only the
four paths indicated by thick arrows because they expand as the field value decreases, while hollow
isosurfaces the four paths indicated by outlined arrows.

The isosurfaces of the volume function (2) evolve as shown in Figure 4. Here, two isosurfaces
appear at p1 and p2 first, and then they meet at p3 and p4 to become a torus. Finally, the hole of
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Figure 3: Classification of isosurface changes at saddles depending on the embedding in 3D space. The
arrows indicate the isosurface changes when the scalar field value decreases. Thick arrows correspond to
changes of solid isosurfaces while outlined arrows hollow isosurfaces.

the torus is filled at p5, which makes the isosurface a sphere again. This isosurface evolution suggests
that the critical points p1 and p2 are of index 3 (i.e. C3), p3 and p4 are of index 2 (i.e. C2), and p5 is
of index 1 (i.e. C1).

By adding a virtual minimum to the volume function (1), a volume dataset becomes a topological
3D sphere S3. The Euler-Poincaré formula states that the critical points of a 3D sphere S3 must
satisfy the following formula [22]:

#{C3} −#{C2}+ #{C1} −#{C0} = 0, (7)

where #{Ci} represents the number of critical points of index i. In Figure 4, p6 represents such a
virtual minimum. In our framework, this representation is used to check the validity of the extracted
critical points from a discrete volume dataset, which is also one of the main contributions of this paper.

3.2 Critical Point Extraction

The volume skeletonization begins with the extraction of critical points from discrete samples of a field
function (1). For later analysis, the extracted critical points must be correct in the sense that they
satisfy the Euler-Poincaré formula (7). Therefore, it is necessary to interpolate between the samples
before extracting critical points. For this purpose, our algorithm fills tetrahedra into 3D grid samples
to establish linear interpolation. This is because the tetrahedralization serves as the most reasonable
method for volume interpolation in such a way that triangulation does for surface interpolation. If
higher-order interpolants are used here, they may cause unpleasant oscillation that results in a number
of uninvited critical points.

One simple way to fill tetrahedra is to decompose a cube confined by eight corner grids into five
tetrahedra as shown in Figure 5(a). This is used by default in our algorithm, while the decomposed
cube of Figure 5(a) and its rotated one are placed alternatively to avoid unmatched triangle faces
between neighboring cubes. However, our scheme decomposes a cube differently if the cube has an
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Figure 4: Critical points of the function (2) and voxel flows in between.

(a) (b) (c)

Figure 5: Cube decomposition: (a) decomposition by default, (b) decomposition when the front face is
ambiguous, and (c) decomposition when all the faces are ambiguous.

ambiguous face where isocontours cannot be determined uniquely from its four corners. In such
a case, we partition the ambiguous quadrilateral face with two diagonals in order to simulate the
asymptotic decider [23]. Figure 5(b) illustrates a volume cube whose front face is ambiguous. The face
is partitioned like a letter “X” and a new vertex is added so that its (x, y, z)-coordinates are identical
with the center of the face. The field value of the new vertex, however, comes from the intersection
between the two asymptotes of hyperbola defined by the four corner grid samples of the ambiguous
face. This assures that our scheme can generate isosurface evolution topologically equivalent to that
obtained by the asymptotic decider. Figure 5(c) shows the decomposition of a volume cube if all of
its faces are ambiguous. Another scheme of tetrahedralization for this purpose is available from [33].

Extracting correct critical points requires careful handling of boundary sample vertices when filling
tetrahedra into volume grids. For this reason, we connect all the boundary samples with the virtual
minimum so that we can fill the gap with additional tetrahedra between the triangular faces on the
volume boundary and the virtual minimum. Figure 6 gives a rough idea of this process. Here, we turn
our attention not to the geometric position of the virtual minimum but to its topological connectivity
with boundary samples. Actually, our algorithm only refers to the field value of each voxel and
its associated connectivity in the tetrahedralization when extracting critical points; it ignores their
geometric coordinates. Note that this process also allows us to regard the entire volume dataset as a
3D sphere S3, and to extract critical points that satisfy the Euler-Poincaré formula (7).

Let us assume first that all the critical points in the dataset are non-degenerate, which means that a
critical isosurface has no more than one topological change in itself. In the tetrahedral decomposition,
each vertex has its adjacent vertices that constitute a triangulated sphere surrounding the original
vertex. This can be easily constructed by putting together the tetrahedra incident to the current
vertex, and then eliminating its incident edges. On the sphere, we define two classes of vertices; a plus
vertex whose field value is larger than that of the original vertex, and a minus vertex whose value is
smaller. This classification divides the sphere into several plus and minus connected regions by linking
neighboring vertices of the same class. The process of extracting critical points proceeds by checking
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Figure 6: Connecting boundary samples with the virtual minimum.

(a) (b) (c) (d)

Figure 7: Plus and minus connected regions on the surrounding spheres and isosurfaces for (a) C3, (b) C2,
(c) C1, and (d) C0.

whether each vertex meets the following criteria:

N+ = 0, N− = 1 for C3

N+ = 2, N− = 1 for C2

N+ = 1, N− = 2 for C1

N+ = 1, N− = 0 for C0.

(8)

Here, N+ and N− are the numbers of the plus and minus connected regions on the surrounding sphere.
Figures 7(a), (b), (c), and (d) show the surrounding spheres and associated isosurfaces of C3, C2, C1,
and C0, respectively. Note that at the saddles of indices 1 and 2, as shown in Figures 7(b) and (c),
two cone-like parts of isosurfaces are in contact at the corresponding critical points.

A volume dataset usually contains degenerate critical points as well as non-degenerate ones. Such
unusual critical points are classified into two categories: multiple saddles and level field clusters.

A multiple saddle is a vertex where three or more isosurfaces merge or one existing isosurface splits
into three or more isosurfaces simultaneously. In this case, we count the multiplicity of the degenerate
saddle point by decomposing it into non-degenerate ones. For example, the degenerate saddle having
three isosurfaces in contact is considered to be a point where two isosurfaces adjoin first and another
isosurface comes later. This means that the corresponding multiplicity becomes 2. In order to take
into account these multiple saddles, the criteria (8) are rewritten as N+ = n+1 for C2 and N− = n+1
for C1, where n represents the multiplicity of the corresponding saddle point.

On the other hand, a level field cluster is defined to be a group where two or more neighboring
vertices are at the same field value in the tetrahedral decomposition. The key idea of our approach
is to introduce another ordering in addition to the primary ordering with respect to the scalar field
value. This implies that two vertices having the same scalar field value are compared using the second
ordering newly introduced. As the second ordering, our algorithm uses the lexicographical ordering
with respect to the (x, y, z)-coordinates, which amounts to slightly distorting the scalar field values of
the vertices in the level field cluster.

Note that in our framework we keep the connectivity of the tetrahedral mesh when resolving the
degeneracy for simplicity, while we can further subdivide the mesh to actually split a degenerate saddle
point into non-degenerate ones. Readers can find such examples for surface cases in [30, 4].
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Figure 8: VST components around critical points.

3.3 Voxel Flow Network

Before finding the skeleton in a volume dataset, our algorithm constructs a graph called a voxel flow
network (VFN) that works as an intermediate representation for the overall skeletonization process.
Constructing the VFN begins with tracing voxel flows emanating from each saddle critical point. As
shown in Figure 7, a saddle of index 2 has two plus regions and one minus region on its surrounding
sphere, while that of index 1 one plus region and two minus regions. In each plus region, our algorithm
selects a vertex of the largest field value as its representative. In the same way, a vertex having the
smallest field value in a minus region is elected to be its representative. These representative vertices
serve as the starting points for tracing the voxel flows in the tetrahedral volume dataset.

The process of tracing voxel flows is as follows. From each representative vertex of a plus region, we
traverse from point to point by moving to the highest adjacent vertex in the tetrahedral decomposition.
This tracing process terminates when reaching a maximum. Conversely, the representative vertex of a
minus region leads us to a minimum through a descent tracing process. The VFN is then introduced
to capture the field configuration between the critical points. Here, each node of the VFN represents
a critical point and its link a voxel flow in between. Figure 4 shows the VFN of the analytic volume
function (2). This VFN will provide enough information to construct a VST for later use.

3.4 Volume Skeleton Tree

A volume skeleton tree (VST) is defined as a graph that represents the splitting and merging of
isosurfaces with respect to the field value, and effectively delineates the transition of such evolving
isosurfaces. Each node of the graph represents a critical point, and its link one connected component
of a varying isosurface in between. The VST is constructed by assembling components as shown in
Figure 8, where each component contains one critical point. Here, we arrange these critical components
so that the corresponding field value decreases from top to bottom in the figure. A C3-type node has
only one downward link, while a C0-type node only one upward link. A C2-type node has either of
the two components: a “Y”-shaped branch if the corresponding critical point merges two separate
isosurface components, or a simple joint if it makes a hole of a torus on an isosurface. For a node C1,
these components are turned upside down because its paths of isosurface evolution are the reverse of
those of C2. This argument is readily verified from Figures 2 and 3. In this paper, these four patterns
of saddle components are denoted by 3-C2, 2-C2, 3-C1, and 2-C1, according to the degree (valence) of
each saddle point, as shown in Figure 8.

In our framework, an algorithm for converting a VFN into a VST can be developed as an extension
of the previous algorithm [29], which is used for topological analysis of a 3D surface such as DEMs.
However, the volumetric version of the algorithm must be more sophisticated because an isosurface
can become either a topological sphere or connected tori for 4D volumes while an isocontour is limited
to a topological circle for 3D surfaces. This implies that the VST cannot fix the degree of its saddle
node uniquely only from its type. Nevertheless our algorithm can construct a VST since the VST
becomes a tree (i.e., the VST has no cycle in itself) due to the assumption that the volume dataset
has a form of a single-valued function (1).

Our algorithm determines the VST from its extreme components to its center. Figure 9 illustrates
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Figure 9: Process of constructing the VST of Equation (2): VFNs on the left and VSTs on the right. The
critical points are arranged from top to bottom according to their scalar field values.
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the VFNs of the analytic function (2) (on the left)1 and its corresponding VSTs (on the right) in the
conversion process. Here, a smaller subscript represents a critical point having a larger field value.
Figure 9(a) gives the initial states of the VFN and VST.

The first node to be handled is a critical point of C3 or C0 because it always becomes a leaf in a
VST. In Figure 9(a), our first target is the node p1. As its adjacent node in the VST, our algorithm
selects the node p3 since it has the largest field value of all the nodes adjacent to p1 in the VFN. In
addition, in the VFN, the link p1p3 is removed and the links emanating from p1 are modified so that
their endpoints become p3 instead. Note that the VFN does not accept a new link if it already has an
identical one. After this process, the node p1 in the VFN is marked as finished because its incident
link in the VST is now fixed. The resultant graphs are shown in Figure 9(b), where the finished nodes
are indicated by outlined figures. The same process can be applied to the node p2 of C3 and the
similar process will be done for the virtual minimum p6 (Figure 9(c)).

After having processed all the maxima and minima, we turn our attention to saddles of degree
3 (i.e. 3-C2 and 3-C1) that already have two fixed links in the VST and some links in the VFN. In
Figure 9(c), the point p3 is the case where it has two fixed links in the VST and some links in the
VFN. Here, the saddle has either upward or downward links in the VFN as it seeks an upward or
downward link in the VST. Since p3 has only downward links in the VFN, it looks for the adjacent
point having the largest field value in the VFN in order to find its adjacent node in the VST. This
process for the saddles of 3-C2 and 3-C1 is repeated until we cannot find any saddles having two fixed
links in the VST. Figure 9(d) shows the states of the two graphs after this process.

If the VFN still has links at this point, there exist saddle points whose degrees are 2 (i.e. 2-C2

and 2-C1) in the VST. Such saddle points definitely appear as leaves in the determined parts of the
VST, which means that such saddle points must have either the largest or smallest field value of all
the undetermined nodes. In Figure 9(d), p4 and p5 are the cases. After having fixed the links of the
saddles of 2-C2 and 2-C1 in the VST, the algorithm will be back to the previous stage where it again
seeks nodes of C2 and C1 having two fixed links in the VST. In this case, however, the conversion
process terminates when the link p4p5 is added to the VST as shown in Figure 9(e).

In the previous stage, it is possible to confuse a saddle of degree 2 (i.e. 2-C2 and 2-C1) with a
saddle of degree 3 (i.e. 3-C2 and 3-C1) having only one fixed link in the VST. Our algorithm avoids
this problem by tracing the incident links of the target saddle in the VFN. This means that, if the
saddle point has one fixed link in the VST and only downward links in the VFN, we trace its links in
a direction that reduces the scalar field value until reaching nodes having no downward links in the
VFN. If the number of nodes we have reached is 1, the corresponding saddle is definitely a saddle of
degree 2 (i.e. 2-C2 or 2-C1). Otherwise, we will skip and come back later to check the saddle again in
the algorithm, because it may have three incident links in the VST (i.e., it may be a node of either
3-C2 or 3-C1). In the previous case, the tracing process finds the saddle p4 to be of degree 2 (i.e. 2-C2)
because it finds only p5 as its corresponding end of such a tracing process.

In this way, our algorithm successfully converts the VFN into the VST.

3.5 Skeleton Tree Simplification

Although the VST effectively captures the topological skeleton of a volume dataset, it may suffer from
a large number of minor critical points because the input data involves high-frequency noise in some
practical cases. Such minor critical points always hide an important global skeleton of the volume
dataset. In order to extract the global structure, our algorithm simplifies the constructed VST by
removing the noisy minor critical points. The resultant graph will offer important field values for the
TF design by checking its remaining nodes.

Figure 10 shows three VST patterns to be removed in the simplification process. The patterns
contain a (C3, 3-C2) branch, a (C0, 3-C1) branch, and a (2-C2, 2-C1) pair of joints. Note that the
two nodes in the third pattern can have other nodes in between on the VST, while those in the
former two branches are immediate neighbors each other. In the simplification process, our algorithm
computes the difference in scalar field value between the two nodes of all the patterns, and then
selects one pattern to be removed by finding the pair of nodes having the smallest difference. The
number of simplification steps is controlled by a threshold that limits the acceptable difference. This
simplification process is done one by one until no pattern cannot satisfy the given threshold.

1Note that the two links between p5 and p6 in Figure 4 are replaced with a single link in Figure 9(a).
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Figure 10: VST patterns to be eliminated in the simplification process.

Through this simplification process, we can distinguish a global skeleton of the volume dataset by
cutting off unimportant parts. Note that the simplified VST still satisfies the Euler-Poincaré formula
(7) because all the patterns in Figure 10 do not violate this topological consistency. This simplification
process successfully reduces the number of CFVs on which we have to focus our attention in designing
TFs.

4 Transfer Function Design

Although direct volume rendering can produce semi-transparent images of the entire volume dataset
for us to peer inside of, the resultant images generally suffer from their obscure appearance, which
stems intrinsically from the self-occluded volumetric projection of resamples along a viewing direction.
One of the most significant factors for improving the “visual clarity” of such a volume-rendered image
is the transfer function (TF), which maps physical fields of a given volume dataset to optical properties,
such as color and opacity. In this section, we try to take advantage of the VST-based volumetric field
topology description in order to design appropriate TFs semi-automatically for comprehensible volume
rendering. See Section 2.2 for a survey of relevant TF designs.

4.1 Principle

The basic idea of our VST-based TF design principle is to accentuate the topological change in volume
fields in terms of both color (hue) and opacity. The major premise is that emphasized rendering of
characteristic isosurfaces can make the “meaning” of volume rendered images more apparent to the
viewer. The good and intuitive analogy can be found in traditional computer-aided design [18], where
a variety of design-oriented edges, for example, highlights and outlines, are devised for parameterizing
the design quality of surfaces. Our idea can be interpreted as a 3D extension of this.

Although multiple candidates for TF design principles could be proposed, a common principle
adopted hereafter will be described below. This common principle helps us emphasize topological
transitions contained in isosurfaces of CFVs, which are called critical isosurfaces in this paper. Recall
that, in our framework, a sequence of non-shrinking isosurfaces can be obtained in a decreasing order
of field values.

The color to be assigned in our principle is taken from the top of the HSV hexcone. The color
TF is designed so that the rate of change in hue in [ 4

3
π, 0] is uniform for all normalized field values,

except for a constant jump δh at each CFV wi (i = 1, . . . , m), where m represents the number of
CFVs except for the virtual minimum. Let w0 and wm+1 be 0 and 1, respectively (Figure 11(a)).
On the other hand, the opacity TF is designed to be elevated stepwise by some amount at each CFV
wi (i = 1, . . . , m). The minimum and maximum base opacity values are given by αmin at w0, and
αmax, at wm+1, respectively. The height of hat-like accentuation at each CFV can also be changed.
The minimum and maximum height are given by δomin at w1 and δomax at wm, respectively, while
their half-width is set to constant ωo (Figure 11(b)).

Actually, we tested other design principles as described in our previous work [9, 10, 11]. For
example, as presented in the references, the color TF can be designed to have steep linear slopes
around CFVs and constant values elsewhere. While this is also effective, it may obscure isosurface
transitions because the same color is assigned to isosurfaces of field values between neighboring CFVs.
On the other hand, the present color TF has gaps around CFVs that are useful for visually grasping
topologically-equivalent sub-volumes since the Gestalt similarity rule [7] is considered to hold in the
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Figure 11: Design principle of accentuating TFs.

above color (hue) assignment. The opacity TF could also have a different principle where the hat-like
elevations are replaced with stepwise elevations. While this would track topological transitions of
isosurfaces around CFVs more clearly, it would not fit to the color TF if we allow the constant gaps in
color at CFVs. It should be noted here that what distinguishes this design principle from our previous
ones [9, 10, 11] lies in the stepwise elevation in the opacity TF, whose purpose is to clarify topological
changes in deeper positions. According to the assumption we made in Section 3, the VST makes it
possible to detect isosurface embeddings without further manual examination of volumetric structure,
which results in a keen field accentuation in the final visualization images.

We are now in a right position to apply the above TF design principle to visualizing the analytic
volume function defined in Equation (2). For the volume skeletonization, we use our volume analysis
and TF design tools that have been implemented on an ordinal PC environment (CPU: Pentium IV,
2GHz, RAM: 1GB). For the purpose of volume rendering, we use AVS/Express 5.1 running on an SGI
O2 (CPU: R5000, 180MHz, RAM: 192MB). All the experiments throughout the paper were performed
on the same environments.

Figure 12 shows how the isosurfaces evolve in conjunction with the analyzed VST in the case of
Equation (2) with c = 0.60, d = 0.50, R = 0.20. The volume dataset has 128× 128× 128 voxels while
its size was reduced to 64×64×64 in constructing the VST. Note that, in this case, only five out of the
six critical points are commonly displayed, and that a C0-type node p6 corresponding to the virtual
minimum lies outside in the lower right direction (see Figures 4 and 9). Here, two C3-type nodes p1

and p2 are colored in red, two C2-type nodes p3 and p4 in yellow, and a C1-type node p5 in orange. The
two isosurfaces appear at p1 and p2 at the CFV (w = f(p1,2) = 8c2d2 = 0.7200), and meet at p3 and p4

to become a torus at the CFV (w = f(p3,4) = 8c2d2− 16R2(c2 + d2− 4R2) = 0.4320). The hole of the
torus is filled at p5 (colored in orange) with the CFV (w = f(p5) = −2(c2−d2)2 +8R2(c2 +d2−R2) =
0.1582) (See Equation (5)).

Figure 13 compares volume rendered images of the analytic volume function (2) with different
designs of TFs. The volume rendered image with accentuated TFs in Figure 13(b) captures the inner
structures of the volume much more clearly than the case with the naive TF (a linear color TF and an
opacity TF with constant α) in Figure 13(a), which exactly reflects the isosurface evolution shown in
Figure 12. Note that the scalar field values of the function (2) are normalized to a unit interval [0, 1]
in Figure 13.

Furthermore, there is no need to restrict our attention solely to critical isosurfaces. In place of
such critical isosurfaces, we can also emphasize representative isosurfaces at a field value lying in each
interval between two neighboring CFVs, which may be exactly the middle field value in the interval.
This can be archived simply by replacing the CFVs with the above representative field values in our TF
design principle. These representative isosurfaces reveal stepwise changes in the topology of connected
isosurfaces rather than their evolutionary topological transitions around critical points. Figure 13(c)
represents such a case where representative isosurfaces of the function (2) are accentuated in place.

Especially, the existence of even croissant-shaped twin isosurfaces occluded by outer thick sub-
volumes is understood visually thank to the definition of the stepwise opacity TFs for Figures 13(b)
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(a) w = 0.5606 (b) w = 0.4320

(c) w = 0.3117 (d) w = 0.1582

Figure 12: VSTs and evolving isosurfaces: Analytic volume function. (a) Twin isosurfaces, (b) Twin
isosurfaces merging into a torus, (c) A torus, (d) Filling a torus into a sphere.
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and (c).

4.2 Applications to Real Datasets

In order to empirically prove the feasibility of the present TF design method, we try to design
topologically-accentuated TFs for rendering comprehensibly three different types of volume datasets
taken from quantum science and medical science. In all of these datasets, the field values are mapped
affinely to the range [0, 1], and critical isosurfaces will be accentuated to clarify isosurface behavior
around significant critical points.

For analyzing the fairly complex volume topology using the ordinal PC, we downsized the dataset
by simple subsampling.

4.2.1 HIPIP

The first is a well-known testbed volume dataset called HIPIP (High Potential Iron Protein) [24],
whose resolution is 64 × 64 × 64. For analyzing the volume field topology, we downsized the dataset
into 32× 32× 32 voxels. The VST generation process yielded 1, 268 critical points, and followed VST
simplification reduced the number into 24 (#{C0} = 7, #{C1} = 6, #{C2} = 5, #{C3} = 6), which
appears to satisfy the Euler-Poincaré formula in Equation (7).

Figure 14(a) shows TFs which are accentuated on the basis of 17 CFVs, except for 0.5. Figure 14(b)
uses the TFs to volume render an HIPIP in a topologically-accentuated manner, where 3D structures
of positive and negative wave functions can be seen.

4.2.2 Proton – hydrogen atom collision

The next target is a large-scale 4D dataset, which consists of data for 61× 61× 61 volumes over 104

time-steps for simulated intermediate-energy collisions of a proton and a hydrogen atom [10]. In this
case, volume data at each time step is smooth enough to analyze its original resolution (i.e., 613)
directly.

The simulation deals with a fundamental ion-atom collision problem, and is very important in
that the problem has a wide spectrum of applications such as nuclear fusion, material sciences, and
radiology. The purpose here is to investigate how the positive charge of an incident proton affects the
behavior of an electron around the target hydrogen atom (Figure 15). A comprehensible illustration
of the collision is obtained by visualizing the 3D distorted electron density distribution.

Figure 16 shows two typical volume-rendered snapshots before and just after the collision. Each
snapshot was generated with its own TFs accentuated by the VST analysis, and allows us to under-
stand more clearly the inner structures of the distorted electron density distribution. In particular,
it appears from Figure 16(b) that a topologically enhanced TFs succeed in capturing an interesting
arm-shaped electron density flux connecting the two topological spheres around the hydrogen nuclei,
which suggests that the ionization occurs at the timing. This easy-to-miss phenomenon is not visible
from an animation that renders the volume at each time step by using the same TFs over the entire
time interval.

4.2.3 Tooth

The last example is a medical CT-scanned dataset, called Tooth hereafter, which consists of data for
128×128×80 voxels with 8 bits. The original dataset (256×256×161, 16 bits) was used as one of the
three target datasets in an exciting panel in Vis2000 [26, 34]. The dataset suffers from high-frequency
noises, and being downsized into 16× 16× 10 voxels for VST generation.

Topological analysis of the tooth volume is characterized by its semi-automaticity, involving three
types of manual operations. Since a complete simplification of VST separated only the enamel and
pulp materials from the tooth volume, we decided to interrupt the simplification process, producing
16 critical points and 11 CFVs. This effectively allows us to distinguish 4 anatomical regions (cement,
enamel, dentin, and pulp) from the tooth. Figure 17(a) shows a tooth image which was volume
rendered with the resulting TFs.

Figure 17(b) shows another comprehensible tooth image [11], which was volume rendered with
TFs designed by the Kindlmann method [16]. The method relies on a field derivative analysis, and
provides a robust and promising way to design boundary-reinforced opacity TF for medical volume
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Figure 13: Visualization results: Analytic volume function. (a) With default TFs (α = 0.005), (b) Critical
isosurfaces with accentuated TFs ( δh = 0.25, αmin = 0.005, δomin = 0.05, αmax = 0.01, δomax = 0.05,
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Figure 14: Visualization result: HIPIP. (a) Accentuated TFs (δh = 0.05, αmin = 0.005, δomin = 0.1,
αmax = 0.005, δomax = 0.1, ωo = 0.004), (b) Volume rendered image.
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Figure 16: Visualization results: Hydrogen ion-atom collision. (a) Before collision and (b) just after
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data. Indeed, the method won the first prize in the TF competition in the panel [26]. Comparing
these images, it turned out that our method can detect almost the same material boundary structures
of the tooth volume from the viewpoint of differential topology.

It should be noted here that semi-automatic TF design coupled with a priori domain-specific
knowledge about target datasets deserves to be incorporated into the image-centric TF design frame-
work [12, 21], because it can avoid the combinatorial explosion of organized sampling for preparing
initial designs, and provides the user with the drastically improved serendipity.

4.2.4 Discussions

Computational costs Reasonable computing cost of the present method should be reported. In-
deed, our tool installed on the fore-mentioned PC-based environment can usually analyze the volume
topology and design accentuated TFs in a few minutes if we control the resolution of the given volume
datasets appropriately.

Downsizing effects The algorithm extracts more critical points than expected when handling
volume datasets having higher resolution and more complicated inner structures. In such a case,
we used the datasets downsized through simple subsampling in place of original ones for the volume
topology analysis, in order that we can limit the required amount of memory. It is thought that the
detailed information of the dataset is lost with downsizing. However, we can still find significant CFVs
of the volume dataset because the VST retains its global structure even after the data is downsized.
Actually we applied our algorithm both to the original volume datasets and its downsized ones, and
we could not find any information loss in most cases if we carefully control the resolution of downsized
datasets because the corresponding VST will be simplified to capture the global structures of the
datasets at last. Please note that the volume datasets with original resolution are used for rendering
while downsized ones are used for analysis, and there are no fatal mismatches between them in our
experiments.

It seems that we can alternatively apply some smooth pre-filtering such as Gaussian filtering,
median filtering, or any anisotropic diffusions, before the topological analysis, in order to smooth
out local noise that results in minor critical points. However, in our experiments, we confirmed that
these pre-filters sometimes produce spurious critical points, which may hide the global structure of
the volume data. This is why we simply downsize the volume data and reduce its resolution.

Justification for our TF design principle Topologically-accentuation of critical isosurfaces
does not always produce the best TFs for arbitrary volume datasets. For example, the analysis of
scalar fields that characterize an underlying flow fields, such as velocity, pressure, and helicity, requires
their detailed behavior relatively far from the critical points. In such a case, our visualization system
will alternatively accentuate representative isosurfaces instead of critical ones so that we can infer
flow behavior around the critical points. In this way, the topological analysis provides us with a good
initial guess, which can reduce the number of re-specification of TFs, and thus making the subsequent
visual exploration process more efficient.

Another possibility of improving our design principle lies in judicious hue assignment for color
(hue) TFs and its automatic computation. One of the keys to solving this problem is psychological
factors of color science. Actually, in our implementation, we take advantage of the psychological
fact that warm colors (e.g. red) advance while cold colors (e.g. blue) recede, because we clarify
the inner structure of a given volume by assigning warm colors to inner isosurfaces while cold colors
to outer isosurfaces. Although the hue assignment here has been commonly used for contemporary
volume visualizers, this indeed takes into account the spatial configuration of isosurfaces derived from
our volume skeletonization framework. A similar idea can be found in the work by Rheingans and
Ebert [27], where they established a systematic color assignment in their non-photorealistic volume
rendering schemes.

Comparison between results of different data types In general, volume datasets are classi-
fied into three categories according to the types of objects involved: simulated, acquired, and modeled
datasets. Since the present method is distinguished by its ability to extract global topological skeletons
robustly, it is most suitable to the simulated datasets where we cannot extract their significant features
only by using local derivatives (See Figures 14 and 16). On the other hand, the acquired datasets
usually contain much noise that is likely to hide the global structures embedded inside. However, our
method still works well for this type of data because it can extract global transitions of isosurfaces by
simplifying the obtained VST (See Figure 17). The modeled datasets are the most unsuitable of these
three types because they involve many degenerate parts such as voxel clusters having the same scalar
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Figure 17: Visualization results: NLM Tooth volume. (a) Our method. With accentuated TFs (δh = 0.05,
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field values, i.e., level field clusters (See Section 3.2). These clusters yield many unimportant critical
points in the topological analysis of the volume datasets. Although our method is resistant to this
type of volume dataset, it usually requires more memory storage and computation time. We are now
investigating the multiresolution control of volume datasets that sophisticates our present framework.

5 Conclusions

This paper has presented a new data-centric approach to semi-automatic TF design for comprehensible
volume rendering. The key idea of the approach is to extract a VST that characterizes the topological
changes of isosurfaces varying over the domain of the scalar field value. Our contributions also in-
clude a robust algorithm for constructing a VST even from volume datasets with noise and restricted
precision. The VST-based TF design successfully enhances our visualization capability by accentu-
ating significant topological changes in volume fields using information about the global structure of
isosurface evolution and its spatial embeddings.

When accentuating the color (hue) and opacity of TFs at CFVs, our scheme equally emphasizes
voxels around isosurfaces associated with the corresponding CFVs. This sometimes obscures the clarity
of rendered images because our scheme also exposes isosurfaces unrelated to the target topological
changes. The VST allows us to differentiate connected components of isosurfaces associated with the
topological change from unrelated ones because it explicitly describes how each individual isosurface
evolves at different field values. It is also important to elaborate the simplification process of the VST
to capture the global skeleton of volume fields. Automatic selection of a threshold must be developed
so that it can control the simplification process by considering local field behavior in the dataset.
Another advantage of the VST is that it can find the noisy field intervals where numerous topological
changes occur in isosurfaces. This leads us to a concept of volume-skeleton-based smoothing that
replaces the field values in such noisy field interval with those obtained using trilinear interpolation in
the volume dataset. Our future extension also contains a sophisticated model to handle degeneracy
especially involved in modeled volume datasets. This will require multiresolution control of VSTs,
which is absolutely important for the analysis of large-scale volume datasets and their out-of-core
visualization implementation.
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