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Abstract. Interpolating diffusion tensor fields is a key technique to visualize the

continuous behaviors of biological tissues such as nerves and muscle fibers. How-

ever, this has been still a challenging task due to the difficulty to handle possi-

ble degeneracy, which means the rotational inconsistency caused by degenerate

points. This paper presents an approach to interpolating 3D diffusion tensors in

2D planar domains by aggressively locating the possible degeneracy while fully

respecting the underlying transition of tensor anisotropy. The primary idea behind

this approach is to identify the degeneracy using minimum spanning tree-based

clustering algorithm, and resolve the degeneracy by optimizing the associated ro-

tational transformations. Degenerate lines are generated in this process to retain

the smooth transitions of anisotropic features. Comparisons with existing inter-

polation schemes will be also provided to demonstrate the technical advantages

of the proposed approach.

1 Introduction

Recent development of visualization techniques for tensor fields has provided an ef-

fective means of understanding biological tissues especially in medical applications.

Diffusion tensor magnetic resonance imaging (DT-MRI) is such an example where the

associated tensor fields are obtained by measuring the motion of water molecules.

In general, a tensor field is obtained as a grid of tensor samples, and thus requires

appropriate interpolation of such discrete samples to explore the structures of underly-

ing features. For interpolating diffusion tensor fields, it is important to retain the smooth

transition of anisotropic features inherent in the given tensor fields, especially around

degenerate points, where at least two of three eigenvalues are equivalent [1]. Zheng et

al. [2] proved that degenerate line, which connects degenerate points (the detail will be

introduced in Section 4), is the most stable topological structure for 3D tensors, while

degenerate points are unstable. However, existing interpolating schemes cannot obtain

these degenerate lines to retain the smooth transition of anisotropic features. Figure 1

describes such limitations. Figure 1(a) presents a diffusion tensor field containing two

degenerate points, and a degenerate line is obtained using our scheme, as shown in

Figure 1(e). However, in Figures 1(b) and (c), we cannot observe such degenerate line

while discontinuities appear in Figure 1(d). Note that the color of each ellipsoid indi-

cates the anisotropy of the corresponding tensor value, which is represented by the FA

value (Eq. (4)) of the tensor.
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Fig. 1. Interpolating a diffusion tensor field containing two degenerate points. (a) Original tensor

samples. Results with the (b) component-wise, (c) Log-Euclidean, (d) geodesic-loxodrome, and

(e) proposed interpolation scheme.

This paper presents an approach to interpolating diffusion tensor fields by locating

degenerate points and generating degenerate lines. The main idea is to cluster discrete

tensor samples with similar anisotropy and orientation using a minimum spanning tree

strategy, in order to locate degenerate points, which are connected by degenerate lines.

Figure 1(e) presents the result that a degenerate line is obtained between the two degen-

erate points, which is the primary advantage of the proposed method over the existing

interpolation schemes. In this paper, we introduce our method to interpolate 3D tensors

in 2D planar domain, which is an initial step of our research in 3D tensor fields.

The remainder of this paper is organized as follows: Section 2 introduces several

mathematical prerequisites for diffusion tensors, and then provides a brief survey on

related work. Our approach for interpolating tensor fields is detailed first for 1D do-

main in Section 3, and then for 2D cases even with tensor degeneracy in Section 4.

The effectiveness of the proposed approach is presented through the comparison with

existing interpolation schemes in Section 5, followed by the conclusion of this paper in

Section 6.

2 Related Work

A 3D diffusion tensor can be represented by three real eigenvalues λ1 ≥ λ2 ≥ λ3 > 0,

together with the corresponding eigenvectors e1,e2, and e3 that form an orthonormal

basis, which can be visualized as an ellipsoid as shown in Figure 2(a). The shape of the

ellipsoid depends on the eigenvalues, which are defined as tensor anisotropy. Several

metrics for evaluating such anisotropy have been proposed [3], which include linearity

(Cl), planarity (Cp), sphericity (CS), and Fractional Anisotropy (FA) as follows:

Cl = (λ1 −λ2)/(λ1 +λ2 +λ3), (1)

Cp = 2(λ2 −λ3)/(λ1 +λ2 +λ3), (2)

Cs = 3λ3/(λ1 +λ2 +λ3), (3)

FA =

√
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where λ̄ = (λ1 +λ2 +λ3)/3. (4)
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Fig. 2. Sign ambiguity of eigenvectors. (a) A tensor can be represented by an ellipsoid. The di-

rections of the coordinate axes are represented by the arrows. Different colors are assigned to the

axes for representing the magnitudes of eigenvalues. (b) Three other possible definitions of the

tensor in (a).

Note that Cl +Cp +Cs = 1 and 0 ≤Cl ,Cp,Cs,FA ≤ 1.

As described in the literature [4], the history of tensor interpolation methods started

with naı̈ve schemes as usual, including component-wise interpolation of tensor matri-

ces. These methods, however, incur undesirable change in the tensor anisotropy, and

cannot generate degenerate lines between degenerate points, as seen in Figure 1(b). In

addition, positive-definiteness of the tensor matrix may not be preserved since the linear

interpolation has been applied to each component of the tensor matrix in this scheme.

To alleviate this problem, Batchelor et al. [5] defined a distance function so that we

can interpolate the tensors by tracking the corresponding geodesic path on a nonlin-

early curved space. Their approach still incurs undesirable transition of the anisotropic

features along the interpolated tensors when the associated rotational angle is relatively

large. Furthermore, Fletcher et al. [6] modeled the space of diffusion tensors as a Rie-

mannian symmetric manifold and introduced a framework for the statistical analysis of

that space. However, their methods suffer from high computational costs because the

geodesic path invokes long iterative numerical computations.

Recently, Arsigny et al. [7] developed a Riemannian metric called Log-Euclidean to

provide a faster computational algorithm. This has been accomplished by transforming

tensor samples into their matrix logarithms so that we can perform the tensor interpo-

lation using Euclidean operations. However, it still incurs unnecessary change in the

anisotropy of the interpolated tensors, as shown in Figure 1(c). Kindlmann et al. [8]

presented a novel tensor interpolation method called the geodesic-loxodrome, which

discriminates between the isotropic and anisotropic components of the tensors first and

then interpolates each component individually. This accomplishes high quality interpo-

lating results, however, at the cost of longer computation times again. The method may

also incur undesirable discontinuity over the domain when its boundary has redundant

rotation of the tensor orientation, as shown in Figure 1(d).

Any of the aforementioned approaches tried to transform tensor matrices to some

specific nonlinear space and perform the interpolation by finding an optimal transition

path between the tensors in that space. However, less attention has been paid to the

eigenstructures of the tensor matrices. Merino-Caviedes et al. [9] developed a method

for interpolating 2D diffusion tensors defined over the 2D planar domain, where they

constitute a 3D Euclidean space spanned by the two eigenvalues and the angle between

the primary eigenvector and the x-axis of the 2D domain. Hotz et al. [10] presented a so-



Fig. 3. Interpolating a 1D diffusion tensor field.

phisticated model based on the eigenstructures of the 2D diffusion tensors. In this work,

they linearly interpolated between each pair of the eigenvalues and the corresponding

pair of eigenvectors component-wise separately. They also located degenerate points

over 2D triangulated domain. Readers can refer to a more complete survey in [11].

3 Interpolating 1D Tensor Fields

3.1 Eigenstructure-based Tensor Representation

In this paper, an approach to interpolating diffusion tensors by employing an eigenstructure-

based representation is proposed. Nonetheless, such interpolation scheme has not been

fully tackled so far, because it cannot provide a unique description of a tensor.

This comes from the fact that each tensor has sign ambiguity in its eigenvector direc-

tions since both Aei = λiei and A(−ei) = λi(−ei)(i = 1,2,3) hold simultaneously, where

A represents the matrix representation of the tensor. Thus, even when we suppose that

the three eigenvalues suffice the condition λ1 ≥ λ2 ≥ λ3 > 0, and the associated eigen-

vectors are all normalized to unit vectors to form a right-handed coordinate system, we

still have four different representations for a single tensor, as shown in Figure 2.

For interpolating 1D tensor fields, we first establish the correspondence between

each adjacent tensor samples, and then individually interpolate between each pair for

seeking the smooth transition of tensor anisotropy values and its associated orientations.

3.2 Optimizing correspondence between tensors

Suppose that we have two tensor samples DS and DT , while their normalized eigenvec-

tors are represented as {eS
1,e

S
2,e

S
3}, and {eT

1 ,eT
2 ,eT

3 }, respectively. The rotation matrix R

that transforms between DS and DT can be formulated as:

R = (p1eT
1 , p2eT

2 , p3eT
3 )(eS

1,e
S
2,e

S
3)

−1, (5)

where pi(i = 1,2,3) is defined to be the sign of each eigenvector ei, in such a way that

pi = ±1(i = 1,2,3) and ∏3
i=1 pi = 1. The rotation angle θ between DS and DT is given

by:

θ = arccos |(trR−1)/2|, (6)

where trR is the trace of R. We assume θ ∈ [0,π/2], to remove redundant rotation.



3.3 Interpolation using eigenvalues and eigenvectors

Having fixed the eigenvector directions of two tensor samples, we interpolate their cor-

responding eigenvalues and eigenvectors individually. Suppose that we calculate the

interpolated tensor DM at the ratio of t : (1− t) in the range [0, 1] between DS and

DT , as shown in Figure 3. We calculate the three eigenvalues λ M
i (i = 1,2,3) of DM

by linearly interpolating between the eigenvalues of DS and DT , and three eigenvectors

eM
i (i = 1,2,3) by linearly interpolating the associated rotation angle between them as:

λ M
i = (1− t)λ S

i + tλ T
i , and (7)

(eM
1 ,eM

2 ,eM
3 ) = Rt(eS

1,e
S
2,e

S
3). (8)

4 Interpolating 2D Tensor Fields

In order to extend the previous formulation to 2D planar domains, we need to handle

the following two important technical issues:

1. In 2D cases, the rotational transformation depends on two parameters that define

the parameterization of the 2D planar domain. We have to take care of the order of

applying the rotation matrices since the rotations do not commute with each other.

2. We need to remove the rotational inconsistency around degenerate points.

4.1 Combination of rotations for 2D cases

For the noncommutative multiplication of rotation matrices, we alleviate the problem by

employing Alexa’s formulation on linear combination of transformations [12], which

enables us to handle the multiplication of rotation matrices as their linear sum. For

example, in the square region confined by the discrete tensor samples D00,D01,D11,

and D10, where the region is defined as a 2D parametric domain (s, t) ∈ [0,1]× [0,1]
(Figure 4). If we denote Alexa’s commutative multiplication operator by ⊕, we can

define the tensor D at parametric coordinates (s, t), using the bilinear interpolation as:

R = R
s(1−t)
x ⊕R

(1−s)t
y ⊕Rst

xy, (9)

where, Rx, Ry, and Rxy represent the rotation matrices between D00 and D01, D00 and

D10, and D00 and D11, respectively. Now the eigenvectors of D can be obtained by

applying R to those of D00.

4.2 Locating tensor degeneracy

For 3D diffusion tensors, a tensor is defined as a degenerate point if at least two of three

eigenvalues are equivalent [1]. Zheng et al. [2] proved that the most stable topological

structure for 3D diffusion tensors is a degenerate line which connects degenerate points

in tensor fields. We define the square containing a degenerate point as a degenerate cell.

We will introduce how to locate the position of degenerate points. Since each de-

generate point is contained in some degenerate cell, we can locate degenerate cells



Fig. 4. Interpolating a 2D diffusion tensor field.

instead of degenerate points. A minimum spanning tree (MST)-based clustering algo-

rithm is employed so that we can group tensor samples (or clusters) that share similar

anisotropic values and their associated orientations. This is accomplished by introduc-

ing the following dissimilarity metric that evaluates the proximity between the neighbor

tensor samples:

d(DS,DT ) = α|Cl
S −Cl

T |+β |Cp
S −Cp

T |+ γ(|θS,T |/(π/2)), (10)

where, Cl
S and Cl

T represent the Cl values of the two tensor samples DS and DT , and Cp
S

and Cp
T are the corresponding Cp values. In addition, θS,T is the minimal rotation angle

between the right-handed coordinate systems defined by the two sets of eigenvector

directions. This is calculated by selecting one representation for each tensor (Figure 2).

This metric satisfies the fundamental axioms for metric spaces, and tries to evaluate

both the differences in the anisotropy and the rotational angle between two tensors. Our

experiments suggest that the parameter setting α = 4, β = 2 and γ = 1 is reasonable

for this purpose because we are more likely to group high anisotropic tensor samples in

earlier stages of this clustering process. Figure 5(a) shows such an example, where we

find the most similar pair of samples among the candidate adjacent pairs and connect the

pair with MST-based clustering. We continue this process until all the tensor samples

fall into a single cluster as shown in Figure 5(b).

After finishing this process, we can identify the pair of adjacent tensor samples as

a degenerate pair if their rotation angle is more than π/2. By counting the number of

degenerate pairs, we can locate degenerate cells. This is because a degenerate cell con-

tains an odd number of degenerate pairs (Figure 6). Figure 5(c) shows such an example,

where two degenerate points are located. However, from the interpolated result in Fig-

ure 5(d), we find that the rotational inconsistency exists just on the degenerate pairs

between the two degenerate points. Therefore, we should introduce degenerate lines to

remove the rotational inconsistency and connect the degenerate points.

4.3 Rotational inconsistency around degenerate points

The main idea of resolving the rotational inconsistency is to transform aforementioned

degenerate pairs into non-degenerate ones. For this purpose, we optimize the rotational
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Fig. 5. MST-based clustering in tensor field: (a) Original tensor samples (b) The final MST that

covers all the tensor samples. (c) Degenerate points (green points) and degenerate pairs (blue

lines) obtained through the MST-based clustering algorithm. (d) Interpolated result obtained

through the MST-based clustering algorithm only.

Fig. 6. Configurations of degenerate pairs in a unit square. A pair of tensor samples is drawn in

blue if it is degenerate, and the square is shaded in red if it contains a degenerate point.

transformation between the two end tensor samples. This is achieved by selecting one

of the two tensors, and changing the order of its eigenvectors to minimize the rotational

angle in between.

Figure 7 illustrates this process. We focus on a degenerate pair indicated by the red

segment in Figure 7(a), and try to transform it into non-degenerate one. We basically

select one of the two tensors (circled by a broken circle in red in Figure 7(a)) as the one

that has not been visited yet, while the tensor with low anisotropy is more likely to be

selected if both are unvisited. The order of its eigenvectors is then rearranged in order

to minimize the rotational angle between these two tensors where the first and second

eigenvectors are exchanged in this case. Finally, we label the adjusted tensor as visited,

and check the incident pairs as represented by the yellow segments in Figure 7(b),

because the change in the tensor representation may transform the neighbor pairs into

degenerate ones. Now we select another degenerate pair and repeat this process, as

shown in Figure 7(c), until all the degenerate pairs are resolved into non-degenerate

ones.

Actually, our method tries to introduce isotropic tensors in the region between the

neighbor degenerate pairs, and these isotropic tensors constitute of degenerate lines.

This has been finished by optimizing the rotational angle between the two end tensors on

degenerate pairs. Therefore, our method is able to remove the rotational inconsistency

by generating degenerate lines, as shown in Figure 7(d).

Furthermore, degenerate lines do not affect the anisotropy of the region without

degenerate pairs. The reason is that the orders of the eigenvalues of all the tensors in

such region change at the same time. For example, there is no degenerate pairs in the
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Fig. 7. Generating degenerate lines by resolving degenerate pairs of tensor samples: (a) Find one

of the remaining degenerate pairs in red, and transform it into non-degenerate one. (b) Check if

the pairs around the selected tensor sample have redundant rotations. (c) If they exist, select them

and transform them into non-degenerate ones. We continue this process until all the remaining

degenerate pairs are resolved. (d) Result after rotational inconsistency has been resolved, where

a degenerate line is generated between the two degenerate points.

rightmost and bottommost cell in Figure 7(a). Before we transform the degenerate pairs

into non-degenerate ones, all the orders of their eigenvalues are {λ1, λ2, λ3}. After we

finish transforming the degenerate pairs into non-degenerate ones, all the orders of their

eigenvalues are changed into {λ2, λ1, λ3}. Therefore, the anisotropy of interpolated

tensors in such region will not be affected, as shown in Figure 7(d).

5 Results and Discussions

In this section, we demonstrate the effectiveness of our approach in the 2D tensor fields

without degenerate points and with degenerate points, respectively. We also compare

the results of our approach with those obtained by other existing schemes.

Figure 8(a) presents a 2D case where 6×6 discrete tensor samples guide the under-

lying “X”-like shape. No degenerate points are included in this dataset. Figures 8(b),

(c), and (d) show interpolated tensor samples obtained using the component-wise, Log-

Euclidean and our schemes, respectively. The two conventional schemes unexpectedly

incur low anisotropic features around the crossing of the two anisotropic line features,

while our method can still maximally preserve the underlying anisotropic structures.

Figure 9 shows results of interpolating a real human brain DT–MRI dataset (256×
256× 30). Figure 9(a) is the 17th axial slice of the original dataset, which is down-

sampled into 128× 128, and Figure 9(b) is the zoom-up view of the region boxed in

a square in Figure 9(a) where two fibers intersect with each other. To interpolate the

tensor samples in this region, a degenerate line should be obtained to separate these two

fibers. Figures 9(c), (d), (e), and (f) show the interpolation results with the component-

wise, Log-Euclidean, geodesic-loxodrome, and our schemes, respectively. The results

show that our scheme can produce a degenerate line composed by lower anisotropic ten-

sors, which separates these two fibers, and our scheme can also respect the anisotropic

features of the two fibers. However, neither of the component-wise or Log-Euclidean

schemes can respect the underlying anisotropic features of the left fiber appropriately.

The geodesic-loxodrome scheme can fully respect the anisotropy of the two fibers. Un-



(a) original samples (b) component-wise (c) Log-Euclidean (d) our scheme

Fig. 8. Interpolating a 2D diffusion tensor field. (a) Original tensor samples. Results with the (b)

component-wise, (c) Log-Euclidean, and (d) our interpolation schemes.

fortunately, all these three schemes cannot generate the degenerate line to separate the

two fibers.

6 Conclusion

An approach to interpolating diffusion tensor fields through the analysis of the asso-

ciated eigenvalues and eigenvectors has been presented in this paper. Compared with

other existing interpolation schemes, the present approach can maximally respect the

underlying anisotropy of the given dataset, especially in the tensor fields containing

degenerate points. In our method, degenerate points can be connected by degenerate

lines, which are the most stable topological structure for 3D tensors, by employing

MST-based algorithm. We also solve the non-commutative property of matrix compo-

sition by taking advantage of Alexa’s linear combination of transformations [12].

However, the present approach may not be able to effectively handle noisy datasets,

where such anisotropic features are rather scattered over the data domain. We are cur-

rently working on extending our 2D scheme to 3D so as to enable ones to perform

detailed analysis of complex fiber structures.
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