
To appear in an IEEE VGTC sponsored conference proceedings

Applying Manifold Learning to Plotting Approximate Contour Trees

Shigeo Takahashi, Member, IEEE, Issei Fujishiro, Member, IEEE, and Masato Okada

(a) (b)

Fig. 1. A variant of an manifold learning technique allows us to extract contour trees: (a) The 3D distribution of the Swiss roll dataset
(left) is elongated onto the 2D plane (right) through conventional nonlinear dimensionality reduction. (b) 3D scattered samples of a
surface with two peaks and one pit (left) can be transformed into an approximate contour tree (right) using our approach. Different
colors are assigned to the samples where the color of each axis represents the associated correspondence with their coordinates.

Abstract—A contour tree is a powerful tool for delineating the topological evolution of isosurfaces of a single-valued function, and thus
has been frequently used as a means of extracting features from volumes and their time-varying behaviors. Several sophisticated
algorithms have been proposed for constructing contour trees while they often complicate the software implementation especially
for higher-dimensional cases such as time-varying volumes. This paper presents a simple yet effective approach to plotting in 3D
space, approximate contour trees from a set of scattered samples embedded in the high-dimensional space. Our main idea is to
take advantage of manifold learning so that we can elongate the distribution of high-dimensional data samples to embed it into a
low-dimensional space while respecting its local proximity of sample points. The contribution of this paper lies in the introduction
of new distance metrics to manifold learning, which allows us to reformulate existing algorithms as a variant of currently available
dimensionality reduction scheme. Efficient reduction of data sizes together with segmentation capability is also developed to equip
our approach with a coarse-to-fine analysis even for large-scale datasets. Examples are provided to demonstrate that our proposed
scheme can successfully traverse the features of volumes and their temporal behaviors through the constructed contour trees.

Index Terms—Contour trees, manifold learning, time-varying volumes, high-dimensional data analysis.

1 INTRODUCTION

Extracting meaningful features from volumes and their temporal be-
haviors has been a key problem in scientific visualization, due to its
ability to provide appropriate visualization parameters for a clear un-
derstanding of the input data. Among several representations of such
features, contour trees have played an important role because they al-
low us to transform an input data into a skeleton-like tree, which de-
lineates the topological evolution of isosurfaces according to the scalar
field value. Several sophisticated algorithms have been proposed for
constructing such contour trees together with application to several
specific research topics in physics and biochemistry.

Formally speaking, existing algorithms can handle datasets of any
dimension, while the input dataset is assumed to be samples of a
single-valued function s = s(p) = s(x1, . . . ,xn), where s represents a
scalar field value and p = (x1, . . . ,xn) indicates the coordinates of a
n-dimensional data point. This function represents typical datasets
such as terrain samples (n = 2), volume samples (n = 3), and its time-
varying version (n= 4). These algorithms, however, generally compli-
cate the associated software implementation especially when handling
high-dimensional cases (n ≥ 4). In addition, extracting contour trees
from far higher-dimensional datasets has not been sufficiently tackled.

This paper presents a simple yet effective approach to extracting
contour trees even from higher-dimensional datasets, by taking ad-
vantage of manifold learning. The manifold learning is a well-known
dimensionality reduction scheme based on nonlinear transformations,

• Shigeo Takahashi and Masato Okada are with the University of Tokyo,

E-mail: takahashis@acm.org, okada@k.u-tokyo.ac.jp.

• Issei Fujishiro is with Keio University, E-mail: fuji@ics.keio.ac.jp.

which allows us to elongate the curvy distribution of the sample points
and project it into a low-dimensional space, as shown in Fig. 1a. In
our framework, the contour tree can be extracted just as a projection
of point clouds into 3D space, without any complicated implemen-
tation except for introducing an available eigensolver. Thus, this is
an approximate representation of the contour tree, while it is still ex-
pected to serve as an effective interface for exploring hyper-isosurfaces
in the given high-dimensional dataset. For brevity, Fig. 1b shows a 2D
result obtained through the use of our prototype system, where the cor-
responding portion of a 2D scalar (height) field (with two peaks and
one pit) is highlighted by manually picking a point on the computed
contour tree.

The overall process of the proposed approach consists of three pri-
mary computational steps (Fig. 2). First, we introduce a kernel-like
neighborhood to each sample to seek the manifold proximity over the
whole dataset. We then derive a dissimilarity matrix from the dis-
tance between every pair of sample points along the corresponding
shortest path, in order to retrieve the underlying global structure of the
manifold. Finally, we embed the manifold into the 3D space while
respecting the calculated mutual distances among the samples. This is
achieved by introducing a simple modification to an existing manifold
learning technique while the associated results demonstrate that our
approach is effective enough to explore the inner structures in multi-
dimensional volumes. See Section 4 for details.

Since our framework relies on a numerical eigensolver, the size of
the associated dissimilarity matrix should remain moderate. To make
our framework scalable in terms of cardinality and dimensionality, we
introduce hierarchical representations of the given samples. Starting
from the original samples at the bottom level, we construct an interme-

1

diate level by adaptively merging two samples (or clusters) into a new
cluster according to the closeness with respect to our new proximity
metric. This amounts to adaptively redistributing a specific number of
samples in the data domain using a minimum spanning tree strategy,
while retaining the associated local proximity of the sample points.
We then select a small number of landmark samples as the top level so
that they are uniformly distributed according to the geodesic distance
metric, which is also newly introduced to our framework for captur-
ing the global structure of the underlying contour tree representation.
In this respect, the present work allows us to extract the meaningful
features at a visually-plausible resolution level even from the large-
scale dataset. Moreover, interactive segmentation of the input data
through the approximate contour tree can provide users with closeup
shots of its minor topological structures. This capability is beneficial
especially for analyzing high-dimensional cases because our approach
eventually provides an interface for directly manipulating such invis-
ible structures of the given datasets through the constructed approxi-
mate contour tree in an abstract low-dimensional space.

The remainder of this paper is organized as follows: Section 2 pro-
vides a brief survey on related research topics. Section 3 shows the
overview of our approach, which is followed by the description of a
basic algorithm for plotting approximate contour trees using a mani-
fold learning technique in Section 4, and hierarchical representations
for handling large-scale datasets with a currently available eigensolver
in Section 5. Section 6 shows enhancements of the present approach
for increasing its usability in a visualization environment. Section 7
presents several results generated by our prototype system, together
with a discussion of features and limitations of the approach. Sec-
tion 8 concludes this paper and refers to possible future extensions.

2 RELATED WORK

Our work has been inspired by recent advancements in contour tree
representation and manifold learning techniques.

2.1 Contour Trees

A contour tree is a special case of a Reeb graph [22], which represents
a topological skeleton of a scalar function. Shinagawa et al. [25] orig-
inally introduced the concept of Reeb graph into the CG community
for shape description purposes. Formally, a Reeb graph of a scalar
function s= s(x) is defined as a quotient space obtained by identifying
different sample points if they belong to the same connected compo-
nent of level sets s−1(C) where C is some scalar value. A contour
tree is defined to be a Reeb graph that is free of cycles, and effectively
captures the transitions of level sets when s(x) is single-valued.

Contour trees [3] were initially invented for the analysis of ter-
rain shapes in GIS applications to extract the topological transitions
of the cross-sectional contours according to the height, and several
algorithms for this computation have been presented [28] while their
use was still limited. Bajaj et al. [1] introduced the contour trees to the
scientific visualization community, as a truly attractive tool to visually
explore the topological transitions of isosurfaces. The contour trees
were further applied to several related problems including isosurface
tracking [4], transfer function design [37, 30, 36], LoD control [29, 7],
and spatial embedding analysis [31, 38].

For an algorithmic viewpoint, van Kreveld et al. [33] developed an
optimal algorithm for 2D cases and a practical algorithm for 3D cases.
Carr et al. [6] presented in his excellent algorithm, the state of the art
in the contour tree construction for datasets of any dimension. Such
algorithms had been limited to the extraction of the change in the num-
ber of connected components of level sets, until Pascucci et al. [19]
presented an effective algorithm for detecting the change in their topo-
logical types such as the isosurface genus. High-order interpolants [5]
have been tackled also for this purpose.

On the other hand, extracting a Reeb graph poses more complicated
problems since it may contain cycles in itself. Shinagawa et al. [26]
presented an initial algorithm for constructing a Reeb graph by identi-
fying the correspondence between cross-sectional contours along the
height axis. Cole-McLaughlin et al. [8] first presented an optimal al-
gorithm for this purpose while the input data is limited to 2D manifold

shapes. Recently, Pascucci et al. [21] presented the most sophisticated
on-line algorithm for extracting the Reeb graph from a set of non-
manifold simplicial decompositions.

Although existing algorithms are theoretically proven to extract
contour trees (or Reeb graphs) from sample points of any dimension,
the associated data structures are likely to become complicated es-
pecially for handling high-dimensional cases including time-varying
volumes, due to severe limitations caused by the curse of dimension-
ality. Actually, existing methods [12, 17, 27, 16, 13] tackle the time-
varying volumes by extracting a sequence of contour trees from their
temporal snapshots and then tracking the transitions of the contour
trees, since they rely on the premise that the sequence of isosurfaces
at time steps is more informative than the hyper-isosurface of the orig-
inal time-varying data. Note that Edelsbrunner et al. [11] presented
a theoretical analysis of time-varying data by taking account of the
coherence in Betti numbers.

However, computing contour trees directly from multi-dimensional
volumes can still allow us to effectively identify their global structures
at first glance. Our approach solves this problem by first analyzing a
manifold structure induced by the distribution of sample points, and
then elongating its curvy embedding in the data domain to find its pro-
jection into a low-dimensional space. In this aspect, our approach is
similar to Weber et al.’s work [35] on finding a metaphor of volume
topology as a topographic configuration. However, our approach dif-
fers in that it has high potential to overcome the curse of dimension-
ality through an effective coarse-to-fine analysis, while its associated
implementation remains to be fairly simple even when handling high-
dimensional datasets. Our approach can also be applied to the extrac-
tion of Reeb graphs, while our focus in this paper is basically on the
contour tree extraction for the analysis of volumes and their temporal
behaviors. Simple examples of higher-dimensional data analysis and
Reeb graph construction will be exhibited in Section 7.

2.2 Manifold Learning

Manifold learning is a nonlinear dimensionality reduction scheme
and has been intensively studied in recent years. The technique ex-
tracts manifold proximity inherited from the arrangement of the sam-
ple points embedded in a high-dimensional space, by constructing a
proximity matrix among the samples in order to flatten the possible
twisted embedding of the manifold in a low-dimensional space. Ba-
sically, manifold learning techniques are classified into two groups:
local methods and global methods. The local methods first construct
a similarity matrix by evaluating the closeness between each pair of
samples, and then find their embeddings into a low-dimensional space
by calculating the few smaller eigenvalues and their corresponding
eigenvectors of the Laplacian matrix derived from the similarity ma-
trix. This class of methods includes Laplacian eigenmaps [2] and local
linear embedding [23]. On the other hand, the global methods employ
a dissimilarity matrix instead, by estimating the distance between a
pair of samples. Isomap [32] employs the geodesic distance along the
shortest path between the samples in this context and retrieves the in-
duced manifold proximity using multidimensional scaling (MDS) [9].

For calculating an approximate contour tree from the given samples,
our approach employs the dissimilarity-based global scheme. This is
because the contour tree is a quotient space obtained by identifying
points in the same connected component on each level-set, and thus
we have to plot different sample points at the same position on the con-
tour tree in the projected space. However, the similarity-based scheme
cannot represent such identity appropriately since we have to set some
entries of the similarity matrix to be infinity in that case, which in-
curs severe problems in actual numerical computations. Indeed, our
approach is a sophisticated variant of Isomap where the metrics for
evaluating local proximity and global geodesic distances are replaced,
in order to effectively represent a quotient space such as a contour tree.

3 OVERVIEW

Suppose that we try to extract an approximate contour tree from a
given set of sample points (Fig. 2a). Our process for plotting the con-
tour trees consists of six steps, which can be summarized as follows:

2

To appear in an IEEE VGTC sponsored conference proceedings

Primary: ⇒ ⇒

(pi,s(pi)) (pj,s(pj))

⇒

O

pi

pj

u

v
s

(a) Initial state (c) After Step 2 (e) After Step 4 (g) After Step 6

Optional:

⇑ ⇑ ⇑

(pi,s(pi))

(pj,s(pj))

(b) After Step 1 (d) After Step 3 (f) After Step 5

Fig. 2. Process for plotting approximate contour trees. (a) Initial samples. (b) A downsampled version (optional). (c) Manifold proximity constructed
over the samples. (d) Hierarchical clusters of sample points (optional). (e) Accumulated difference in scalar field value along the shortest path. (f)
Selection of landmark samples (optional). (g) An approximate contour tree embedded in 3D space. The upper row represents the primary flow of
our approach while the bottom row depicts the optional steps for introducing hierarchical representation of data samples.

1. (Optional) Downsample the given set of sample points with re-
spect to the data domain (Fig. 2b);

2. (Primary) Construct local manifold proximity of input sample
points (Fig. 2c);

3. (Optional) Adaptively merge sample points to find a specific
number of representative clusters of sample points (Fig. 2d);

4. (Primary) Calculate the distance (i.e. dissimilarity) between ev-
ery pair of the sample points along the corresponding interpoint
shortest path (Fig. 2e);

5. (Optional) Select a small number of landmark samples that are
spaced uniformly over the underlying contour tree (Fig. 2f);

6. (Primary) Project the landmark samples into 3D space first and
then locate the remaining samples by referring to the arrange-
ments of projected landmark samples (Fig. 2g).

Note that Steps 2, 4, and 6 in the above process correspond to the
primary three steps in the original Isomap framework, while Steps 1,
3, and 5 are optional ones that we newly introduced to construct the
hierarchical representation of data samples for efficient computation.
In what follows, without loss of generality, we explain our algorithm
with an example of a height field in Fig. 2, and describe the primary
steps in Section 4 and optional steps in Section 5, respectively.

4 PLOTTING APPROXIMATE CONTOUR TREES

For plotting a given set of data samples to delineate the underlying
contour tree in the Isomap framework, we have to evaluate the dis-
tance between each pair of samples by tracing the intermediate short-
est path over the contour tree to be constructed. In our approach, we
accomplish this by dividing the shortest path at intervening samples
and accumulate the difference in scalar field value along the path, as
shown in Fig. 2e. This is reasonable because we can locate any sample
on the contour tree by referring to its relative position with respect to
the other samples. This means that we can implement the above idea
just by modifying the metric for evaluating geodesic distance between
every pair of samples in the Isomap algorithm. Indeed, this is the core
idea of this paper that faithfully follows the definition of the contour
trees (Section 2.1). Furthermore, we also introduce a new metric for
constructing the overall manifold proximity over the samples that al-
lows us to contract the distribution of data samples effectively to a
skeleton-like structure in the context of contour tree construction.

4.1 Constructing Proximity of Sample Points

Our first task is to retrieve the local proximity of the underlying low-
dimensional manifold induced by the distribution of given sample
points. Here, a manifold is thought of as a topological space which
is locally flat. However, the overall shape of the manifold induced by
the given samples is often curved intricately in the higher-dimensional
data domain, and thus must be globally flattened out by tracking its
local proximity over the sample points.

Suppose we have a set of m points {p1, . . . , pm}, where pi ∈ R
n(i=

1, . . . ,m) and its corresponding value of the scalar function s(pi) ∈
R(i = 1, . . . ,m). This means that we take (n+ 1)-dimensional vec-

tors (pi,s(pi)) ∈ R
n+1 (i = 1, . . . ,m) as the input samples. For finding

the local proximity, we introduce a kernel-like neighborhood to each
sample point (Fig. 2c), and then construct a graph structure where its
vertices represent the samples and an edge corresponds to the extracted
proximity between some pair of the samples. The extracted proximity
plays an important role in the next steps where we calculate the dis-
tance between sample points over the induced manifold. Note that we
have no need to limit ourselves to the proximity derived from simpli-
cial decomposition in this case; we can rather employ arbitrary prox-
imity as shown in Fig. 2c.

For seeking adjacent points for each sample, we collect its first k-
closest samples as adjacent points. However, for evaluating the close-
ness between a pair of samples, we do not use the ordinary Euclidean
metric but employ the following new distance metric:

a|pi− p j|
α +b|s(pi)− s(p j)|

β
. (1)

Here, we have decided to set α = 1 and β = 2 while a= b(= 1) empir-
ically, after having tried several combinations of parameters. This is
reasonable in the sense that we can easily discriminate between sample
points if they have different scalar field values since the above metric
is more sensitive to the difference in the scalar field value. In our com-
putational scheme, this new metric effectively contracts sample points
having similar scalar values to a single point on the approximate con-
tour tree. Searching for the first k-closest samples is also appropriate
because we can still construct the local proximity robustly over the
sample points even when their distribution is not uniform within the
data domain. Note that we can choose the number k arbitrarily, while
we explore a relatively small number for k that expands the proxim-
ity graph over all the given samples with the help of our prototype
system. Especially for grid samples, we can use k = 8,26, and 80
for samples on 2D, 3D, and 4D data domains as its upper limit, re-
spectively, as described by the work on contour tree extraction from
digital images [18]. Basically, k should be larger as the corresponding

3

distribution of samples become more irregular. The choice of these
parameters for constructing local proximity will be further discussed
in Section 7.

4.2 Calculating Differences Between Sample Points

Having obtained a proximity graph over the sample points, we eval-
uate the difference between every pair of samples as their distance.
For successfully elongating the manifold induced by the local proxim-
ity, we should calculate the geodesic distance along the correspond-
ing shortest path passing over the induced manifold, rather than the
simple Euclidean distance between the samples in the data domain.
Recall that we employ Isomap [32] for this purpose, so that we can
calculate the geodesic distance by accumulating the local interpoint
distances along the corresponding shortest path. As described earlier,
our distance metric for this purpose is just an accumulated difference
in scalar field value along the shortest path. For example, suppose that
the sequence of (k+1) sample points pi, pσ(1), . . . , pσ(k−1), p j consti-

tutes the shortest path between pi and p j, where σ represents some
mapping to the IDs of sample points. The resultant geodesic distance
between pi and p j can be obtained as the summation of the absolute
interpoint differences in scalar field value:

|s(pi)− s(pσ(1))|+ · · ·+ |s(pσ(k−1))− s(p j)|. (2)

Note that the shortest path between every pair of samples can be easily
identified by applying Dijkstra’s shortest path finding algorithm to the
proximity graph obtained in Step 2.

4.3 Embedding Samples into 3D Space

The above definition of the distance metric enables us to evaluate the
relative positions of any pair of samples on a contour tree to be con-
structed. This means that we can embed the contour tree into a 2D
plane while respecting such relative positions of every pair of sam-
ples, because the contour tree is a tree that can be embedded in a 2D
plane without any self-intersections in nature. In the Isomap frame-
work, we achieved this transformation using multidimensional scaling
(MDS) [9] algorithm that fits the distribution of high-dimensional data
samples into a low-dimensional space by optimizing the associated
distortion in a least-square sense.

The MDS algorithm begins with constructing an m×m matrix D
called a squared-distance (i.e., dissimilarity) matrix, where its (i, j)-
entry Di j represents the square of the geodesic distance from pi to
p j(1 ≤ i, j ≤ m). The projection of the samples can be preformed
by transforming D to its normalized version called an inner product
matrix B through the double-centering formula:

B = −
1

2
CDC⊤

, C = Im−
1

m
1m1m

⊤
, (3)

where Im is an m×m identity matrix and 1m is an m×1 column vector
of m 1’s. The projected coordinates of each sample are obtained by
solving the eigenvalue problem of the normalized matrix B while we
only need the first and second largest eigenvalues λ1 and λ2 and their
corresponding eigenvectors e1 and e2. Actually, we can transform the

sample pi to its 2D coordinates: (ui,vi) = (
√

λ1e1i,
√

λ2e2i), where
e ji represents the i-th entry of the j-th largest eigenvector e j.

While this is sufficient to find the projected coordinates of the sam-
ple pi (i = 1, . . . ,m), we also associate the scalar field value s(pi) with
the projected coordinates (ui,vi) as its third coordinate in our approach
as shown in Fig. 2g. This makes it possible to intuitively identify
the topological transitions of hyper-isosurfaces according to the scalar
field value. In this way, our sophisticated version of Isomap can suc-
cessfully contract the distribution of the sample points in order to de-
lineate the skeleton-like structure of the contour tree in the 3D space.

5 HIERARCHICAL REPRESENTATIONS

Since we have to solve the eigenvalue problem of the squared-distance
matrix in the last primary step as described in the previous section,
we like to keep the number of samples for calculating the matrix to

be moderate without sacrificing too much accuracy. This idea is also
justified by the fact that we cannot visually identify too detailed in-
formation obtained from a large number of samples. For the efficient
computation even from a large number of samples, we introduce three
optional hierarchical representations over the given samples, to enable
adaptive sampling of the underlying contour tree.

5.1 Downsampling the Data Domain

Data samples for a time-varying volume often exceed the available
capacity of memory space on a standard PC. Since every detail of
the large dataset cannot be visually revealed on an ordinary com-
puter display, we first reduce, as Step 1, the original number of time-
varying samples with respect to the data domain (i.e., R

n) if neces-
sary (Fig. 2b). This can be easily realized using iterative pyramid-like
downsampling of data domain by a factor of 2 along each axis for
grid samples, and random downsampling for scattered samples. This
works well together with interactive segmentation of data samples to
be equipped with in our system (cf. Section 6.2), since we can auto-
matically restore the original density of samples through the coarse-
to-fine analysis. In our implementation, we progressively reduce the
number of samples until it becomes smaller than the predefined thresh-
old, where we judged the threshold 160,000 is a good trade-off be-
tween the computation time and accuracy.

5.2 Hierarchical Clustering of Samples

After having obtained the underling manifold proximity of data sam-
ples as a graph structure, we can introduce, as Step 3, different re-
duction of data sizes that adaptively samples over the underlying con-
tour tree as the second hierarchical representation. In our approach,
we implemented this hierarchy by referring to the progressive mesh
scheme [15], where the edges of the mesh are iteratively contracted
according to their weight values.

In our implementation, the weight for an edge should be defined to
be the distance between the pair of two samples over the contour tree.
Thus we employ the same metric as that for evaluating the geodesic
distance, i.e., the difference in scalar field value (cf. Eq. (2)). Due to
the definition of contour trees in Section 2.1, the metric will help us
effectively contract sample points to a single point if they have almost
the same scalar field values and stay spatially close to each other.

For the actual clustering of sample points, we first sort the list of
edges in the proximity graph according to their weights in ascending
order and fetch the edge at the top of the list. We then merge the cor-
responding two endpoints to create a new sample point as their cluster,
and calculate its position as the barycenter of the contracted sample
points (Fig. 2d). Successive application of these merging operations
will provide a hierarchical clustering of sample points based on a min-
imum spanning tree strategy. In our implementation, the reduced num-
ber of clusters can be arbitrarily given by users, while it has been set
to be 32,768(= 215) by default, which appears to be again an optimal
trade-off between speed and loss of detail in our experiments.

5.3 Selecting Landmark Samples

As described in Section 4.3, we have to solve an eigenvalue problem
to obtain the projection of contour tree in Step 6 of our process. This
suggests that we can further reduce the computation time by restrict-
ing the size of the matrix to be as small as possible even when we
utilize an available numerical solver for this problem. In our frame-
work, this has been implemented as Step 5 by introducing the third
hierarchical representation to the samples. In practice, we introduce a
new hierarchical representation to select a specific number of sample
points as the landmarks of the overall distribution of the given sam-
ples. Nonetheless, for better approximation of the underlying contour
tree, the landmark samples should be arranged uniformly by referring
to the relative geodesic distances obtained in Step 4.

Suppose that we have 8 samples together with the table of geodesic
distances as shown in Fig. 3a, for example. Let us select #1 as the first
landmark sample, while this can be arbitrarily chosen in this process.
Geodesic distances from #1 to the other samples can be obtained just
by referring to the first row of the above table, as shown in the top

4

To appear in an IEEE VGTC sponsored conference proceedings

#1 #2 #3 #4 #5 #6 #7 #8

#1 0 5 8 5 7 3 1 6

#2 5 0 7 10 2 2 6 5

#3 8 7 0 13 9 5 9 2

#4 5 10 13 0 12 8 4 11

#5 7 2 9 12 0 4 8 7

#6 3 2 5 8 4 0 4 3

#7 1 6 9 4 8 4 0 7

#8 6 5 2 11 7 3 7 0

#1 #2 #3 #4 #5 #6 #7 #8

#1 (0) 5 8 5 7 3 1 6

d1 - 5 8 5 7 3 1 6

#3 (8) 7 (0) 13 9 5 9 2

d2 - 5 - 5 7 3 1 2

#5 (7) 2 (9) 12 (0) 4 8 7

d3 - 2 - 5 - 3 1 2

#4 (5) 10 (13) (0) (12) 8 4 11

d4 - 2 - - - 3 1 2

(a) (b)

Fig. 3. Selecting landmark samples that are uniformly distributed over
the contour tree. (a) The table of relative geodesic distances between
8 samples. (b) The updates of the distance of each sample from its
closest landmark sample.

row of Fig. 3b. Let di denote the list of geodesic distances of each
sample from its closest landmark sample after the i-th landmark selec-
tion. This means that d1 is equivalent to the list of geodesic distances
from #1 (Fig. 3b). According to this result, we select #3 as the sec-
ond landmark sample because it is the most distant sample from the
previous landmark sample #1. We then seek the list of distances from
#3 by referring to the third row of the table in Fig. 3a, and compose
the list d2 in such a way that each of its entry represents the distance
from the closest landmark sample(s). This can be obtained by compar-
ing the corresponding entries of d1 and d2, and choosing the smaller
distance for each sample (Fig. 3b). In the same way, we can obtain
#5 as the next landmark sample. Repeating this process allows us
to collect a specific number of landmarks, while the number can be
specified again by users and has been set 256(= 28) empirically by
default in our implementation. Note that we have no need to update
the distances once the corresponding samples have been elected as the
landmarks (Fig. 3b).

When we employ Step 5 to select the landmark samples, our pro-
cess of projecting samples into 2D plane becomes two-fold: we first
project the landmark samples into 2D plane, and then calculate the 2D
positions of the remaining samples by referring to the 2D distribution
of the projected landmarks. This is accomplished by employing the
landmark MDS [10], which is computationally more efficient than the
original MDS algorithm. Readers may refer to [10] for more details.

6 USABILITY ENHANCEMENT

This section focuses on several enhancements of the present approach
especially for increasing its usability in a visualization environment.

6.1 Direct Volume Rendering

A given set of samples is appropriately projected into the 3D space
(u,v,s) in the sense that two samples are geometrically close to each
other in that space if they are topologically close also on the corre-
sponding contour tree. This leads us to an idea that we assign opti-
cal attributes such as color and opacity to the samples according to
their geometric positions in that space, so that we can visually rec-
ognize how different the given two samples are by referring to their
resultant colors. This naturally results in the accentuation of the topo-
logical structure of the given dataset for better analysis of its con-
tent, and allows us to equip our framework with a simple yet effec-
tive way of designing transfer functions in the phase of direct vol-
ume rendering, when compared with the existing sophisticated design
schemes [31, 36]. In our implementation, we employ the RGYB color
geometry [34] to the horizontal uv-square region where the red-green
and yellow-blue color axes are aligned along the two diagonals. We
further assign the opacity channel to the vertical axis s to make sample
points of larger scalar field values more visible in the rendered images.

Fig. 4 shows a visualization result of the “neghip” dataset, where
the spatial probability distribution of the electrons in a high potential
protein molecule is simulated. We employed point splatting for our
rendering scheme where each point is rendered as a Gaussian texture,
and assigned different colors to the samples according to the above

Fig. 4. Direct volume rendering of the “neghip” dataset (653 samples)
with point splatting (left) and its corresponding approximate contour tree
(right).

(a)

(b)

Fig. 5. Interactive segmentation with an approximate contour tree for
LoD analysis: (a) Specifying a subvolume with the contour tree, and (b)
a more detailed analysis of the segmented subvolume in red in (a).

setting of optical attributes. Note that, in the figure, the color legend
of the cubical frame on the right indicates the correspondence between
the position of a plot in the cube and the color to be assigned.

6.2 Interactive Segmentation

The adaptive sampling efficiently limits the size of the eigenvalue
problem to be moderate while we cannot extract local details of the
contour tree since MDS is likely to identify the global structure of the
given data in nature. This implies that closeup analysis of the con-
tour tree will be helpful in finding its local branching structures at an
appropriate level of detail (LoD). For this purpose, our prototype sys-
tem makes it possible to segment the given set of sample points by
interactively specifying the region of the contour tree.

Fig. 5 shows how we can carry out such segmentation of volume
data in our system. First we specify a partial region of the contour
tree we are interested in as shown in Fig. 5a, and then conduct the
segmentation. The sample points involved in the segmented region
can be further analyzed to find the local details of the contour tree as
shown in Fig. 5b. Note that this segmentation is still possible even
with the aforementioned hierarchical representations since our system
retains the mapping from a representative plot on the contour tree to
the original sample points. This closeup operation compensates for the
loss of the local details in our approximate representation of contour
trees, and further provides an effective LoD capability especially for
the analysis of large-scale datasets.

5

(a)

(b)

(c)

Fig. 6. Proton and hydrogen-atom collision (803 × 16 samples): (a)
Global analysis with a contour tree, (b) the segmented time-varying vol-
ume, and (c) its temporal behavior. The interaction between the proton
and hydrogen-atom has been successfully identified.

7 RESULTS AND DISCUSSIONS

This section provides several experimental results in order to demon-
strate the capability of our approach. Our prototype system has been
implemented on a laptop PC with Intel Core2Duo T9500 CPUs run-
ning at 2.60GHz and 4GB RAM. All the experiments presented here
were conducted on this computational environment. Note that in our
implementation we employed Boost Graph Library for representing
proximity graphs and a numerical library SLEPc [14] to solve the
eigenvalue problems. To search for the nearest neighbors, we em-
ployed a kD-tree data structure in our implementation.

7.1 Results

We tested our approach with two time-varying volume datasets. Fig. 6
shows the result of a time-varying volume dataset where the proton
and hydrogen-atom collision is simulated [30]. Since a time-varying
dataset usually contains a large number of samples, our system sub-
sampled the original resolution 803×16 to 203×16 in Step 1 (cf. Sec-
tion 5.1) while the system automatically increases the resolution up to
the original once feature subvolumes have been specified in the anal-
ysis. Fig. 6a shows a snapshot where the global analysis of the time-
varying volume was conducted with an approximate contour tree. By
segmenting the branch of the tree, we can further examine the details
of the segmented volume that corresponds to the interaction between
the proton and hydrogen-atom as shown in Fig. 6b. Tracking the tem-
poral behavior of this subvolume provides us with significant features
of this time-varying dataset as shown in Fig. 6c, where the positive
charge of the proton significantly influences the behavior of an elec-
tron around the hydrogen-atom.

Fig. 7 exhibits the other example where the implosion in laser fu-
sion is simulated [24]. Here, the corresponding time-varying data con-
tains 643× 16 voxels. Again, in this example, the system reduced its
size to 163×16 in Step 1 while it automatically retrieves the original
resolution again when the user goes into the analysis of local details.

(a)

(b)

(c)

Fig. 7. Implosion in laser fusion (643×16 samples): (a) Global analysis
with a contour tree, (b) the segmented time-varying volume, and (c)
its temporal behavior. Complicated temporal behavior of the contact
surface between the inner fuel and outer pusher has been detected.

In this example, it is important to track the temporal behavior of the
contact surface between the inner fuel ball and outer pusher during the
stagnation phase. In the global analysis of the given volume (Fig. 7a),
we can locate the contact surface at a top branch in the constructed
approximate contour tree. By extracting a subvolume corresponding
to the branch (Fig. 7b), we can identify the timing of implosion be-
tween the third and fourth snapshots through the temporal transition
(Fig. 7c).

We also analyzed the scattered samples of the 7D blobby function

f : R7 → R, which consists of a weighted sum of Gaussian functions
and has two maxima and two minima in the target 7D data domain as
shown in Fig. 8a1. Even from this high-dimensional samples, we can
successfully extract the approximate contour tree as shown in Fig. 8b,
which reveals the potential of the present approach.

Table 1 tabulates the computation times required for the analysis of
the datasets used in our experiments.

7.2 Discussions

Correctness of approximate contour trees: Our approach to con-
tour tree construction is simple to implement as compared with any
other existing approaches, and yet powerful enough to analyze high-
dimensional cases including time-varying datasets. Indeed, in Fig. 9,
the “neghip” (Fig. 9a) and “nucleon” (Fig. 9b) datasets were chosen
to demonstrate that our manifold learning-based approach can extract
the approximate contour trees, which are substantially identical to
those extracted by Carr’s graph-based approach [6] except for a small
number of minor details. Note that the graph-based representations
were obtained in a fine-to-coarse fashion in that all the local features
were extracted first, and then the global skeleton was obtained through
graph simplification process [7, 20, 29].

1The formula of this function appears as a supplemental material.

6

To appear in an IEEE VGTC sponsored conference proceedings

Table 1. Computation times. (in seconds)

Dataset Dim. # of samples k
Step 1 Step 2 Step 3 Step 4 Step 5 Step 6

Total
Downsample Proximity Cluster Distance Landmark Project

Nucleon 3D 68,921(= 413) 14 NA 5.44 4.21 14.09 3.74 1.82 29.30

Neghip 3D 274,625(= 653) 26 NA 42.54 82.17 23.27 2.79 1.21 151.98

Collision 4D 8,192,000(= 803×16) 64 8.57 48.68 639.38 24.24 5.54 1.20 727.63

Implosion 4D 4,194,304(= 643×16) 42 4.38 20.09 82.06 20.26 5.20 1.22 133.21
Blobby 7D 32,768 14 NA 10.36 NA 11.16 3.04 1.04 25.60

(a) (b)

Fig. 8. Analyzing scattered samples of a 7D function (32,768 samples):
(a) Rendered image of the samples in the space spanned by the first
three coordinates, and (b) its corresponding approximate contour tree.

Coarse-to-fine vs. Fine-to-Coarse: The contour trees obtained us-
ing our framework are only approximate representations while users
can freely select specific parts of the trees to investigate local subvol-
umes at finer levels. This coarse-to-fine analysis can successfully cut
out significant features even from high-dimensional data and bring out
its visual appearance in 3D space. The present approach employs an
eigensolver for locating the representative samples on the approximate
contour tree, and thus the size of the samples should be kept moderate.
Nonetheless, the eigenanalysis-based scheme can extract the macro-
scopic structure of the representative samples only from their mutual
positional relationships over the underlying manifold, without regard
to minor local details. This is also justified by the fact that our visual
ability to recognize features at a glance has its own limit in terms of
spatial frequency. Therefore, the information drill-down approach to
zooming up specific microscopic features on demands would be more
effective in our context (Fig. 5).

Distribution of input samples and neighborhood definition: The
input data is assumed to be uniformly distributed over the underlying
manifold in our approach, while irregular samples can also be handled
since we introduced Eq. (1) as the new metric to evaluate the local
proximity. If we use the ordinary Euclidean metric instead, we cannot
fully contract the distribution of samples to a contour tree around its
branching parts as shown in Fig. 10a. This is because, with the or-
dinary Euclidean metric, different connected components at the same
scalar level are likely to be merged by way of such branching parts
during the search for the k-closest neighbors. The coordinates of the
samples with respect to each axis are normalized in the above results
while we may have to use different normalization to spatial and tem-
poral dimensions. The results are also influenced by the number k
of the nearest neighbors. Basically, as shown in Figs. 10b and 10c,
the approximate contour tree becomes fat as k decreases while some
branches or cycles may also be excessively contracted if k becomes
large. See also Fig. 1b (k= 14) for comparison. Our system optionally
provides us with a means of semi-automatically finding an appropri-
ate number for k, since we can reduce the computation time for the
adaptive clustering when k is relatively small as shown in Table 1.

Ability to extract Reeb graphs: In addition, as described in Sec-
tion 2, our method can extract Reeb graphs from surfaces with nonzero
genus as well. Fig. 11 shows an example of the extracted Reeb graph
obtained from a teapot-like object using our prototype system. High-
lighting the corresponding portion in red helps us visually confirm that

(a)

(b)

Fig. 9. Comparison with a graph-based approach [6]: (a) “Neghip”
(653 samples) and (b) “Nucleon” (413 samples). The left images show
approximate contour trees extracted with our approach while the right
show those obtained by the graph-based approach [6]. The labels in-
dicate the correspondence between the critical points while numerical
values (in blue) represent the normalized scalar field values.

the complicated topological transition of cross-sectional contours ac-
cording to the height was correctly captured in our system. This exam-
ple shows that our framework is applicable to surfaces with nonzero
genus while the cycle-induced unmatured layout and colorization of
projected samples could still be improved.

8 CONCLUSION

This paper has presented an approach to plotting approximate con-
tour trees by embedding a set of sample points into a low-dimensional
space using a variant of Isomap. Our process for the contour tree
construction consists of extracting local manifold proximity among
the sample points, flattening the curvy embedding of the manifold in
the high-dimensional space, and projecting it into the low-dimensional
space for our visual analysis. Our contribution lies in the sophistica-
tion of the ordinary distance metric of Isomap, which actually provides
us with an effective means of contracting sample points to the contour
tree. Step-by-step hierarchical representations enable us to shift our
reference space from the data domain to contour tree when adaptively
resampling the original distribution of samples, which keep the size of
the problem to be moderate for reducing the computational cost.

Our future extension includes finding more attractive embeddings
of contour trees into 3D space. Extracting the explicit graph structure
from the approximate contour tree representation is beneficial for fur-
ther quantitative analysis of extracted topological features. If we come
up with other distance metrics to contract high-dimensional scientific
datasets, it will provide more effective ways to understand the contents
of the given datasets.

7

(a) (b) (c)

Fig. 10. Choice of parameters for proximity metric: Approximate contour
trees obtained using (a) the Euclidean distance metric for local proximity,
(b) an insufficient number of k-neighbors (k = 6), and (c) an excessive
number of k-neighbors (k = 80). See Fig. 1b (k = 14) for comparison.

(a) (b)

Fig. 11. Analyzing surfaces with non-zero genus: (a) A teapot-like object
(5,600 samples) and (b) its approximate Reeb graph.

ACKNOWLEDGMENTS

We thank Reiji Suda for his guidance in exploring numerical eigen-
solvers. Haruhisa Ishida and Jun Kobayashi helped us implement an
early version of the prototype system. We also thank anonymous re-
viewers for their valuable comments. This work has been partially sup-
ported by Japan Society of the Promotion of Science under Grants-in-
Aid for Scientific Research (A) No. 20240020, Scientific Research (B)
No. 18300026, Challenging Exploratory Researches No. 21650019
and No. 20650010, and Young Scientists (B) No. 17700092.

REFERENCES

[1] C. L. Bajaj, V. Pascucci, and D. R. Schikore. The contour spectrum. In

Proc. IEEE Vis.’97, pages 167–173, 1997.

[2] M. Belkin and P. Niyogi. Laplacian eigenmaps for spectral embedding

and clustering. Neural Computations, 15(6):1373–1396, 2003.

[3] R. L. Boyell and H. Ruston. Hybrid techniques for real-time radar simu-

lation. In IEEE Proc. Fall Joint Computer Conf., pages 445–458, 1963.

[4] H. Carr and J. Snoeyink. Path seeds and flexible isosurfaces using topol-

ogy for exploratory visualization. In Proc. Joint Eurographics-IEEE

TCVG Symp. Visualization 2003, pages 49–58, 285, 2003.

[5] H. Carr and J. Snoeyink. Representing interpolant topology for contour

tree computation. In Topology-Based Methods in Visualization II, pages

59–73. Springer, 2009.

[6] H. Carr, J. Snoeyink, and U. Axen. Computing contour trees in all dimen-

sions. Computational Geometry: Theory and Applications, 24(2):75–94,

2003.

[7] H. Carr, J. Snoeyink, and M. van de Panne. Simplifying flexible isosur-

faces using local geometric measures. In Proc. IEEE Vis. 2004, pages

497–504, 2004.

[8] K. Cole-McLaughlin, H. Edelsbrunner, J. Harer, V. Natarajan, and V. Pas-

cucci. Loops in Reeb graph of 2-manifolds. In Proc. 19th ACM Symp.

Computational Geometry, pages 344–350, 2003.

[9] T. Cox and M. Cox. Multidimensional Scaling. Chapman & Hall, Lon-

don, 1994.

[10] V. de Silva and J. B. Tanenbaum. Global versus local method in non-

linear dimensionality reduction. In Proc. Neural Information Processing

Systems Conf. 2002, pages 705–712, 2002.

[11] H. Edelsbrunner, J. Harer, A. Mascarenhas, and V. Pascucci. Time-

varying Reeb graphs for continuous space-time data. In Proc. 20th ACM

Symp. Computational Geometry, pages 366–372, 2004.

[12] I. Fujishiro, T. Azuma, Y. Takeshima, and S. Takahashi. Volume data min-

ing using 3D field topology analysis. IEEE CG&A, 20(5):46–51, 2000.

[13] I. Fujishiro, R. Otsuka, S. Takahashi, and Y. Takeshima. T-map: A topo-

logical approach to visual exploration of time-varying volume data. In

Proc. 6th Int’l Symp. High Performance Computing, volume 4759 of

Springer LNCS, pages 176–190, 2008.

[14] V. Hernandez, J. E. Roman, A. Tomas, and V. Vidal. SLEPc users manual.

Technical report, Technical Univ. of Valencia, Spain, 2004.

[15] H. Hoppe. Progressive meshes. In Proc. SIGGRAPH96, pages 99–108,

1996.

[16] P. Keller and M. Bertram. Modeling and visualization of time-varying

topology transitions guided by hyper Reeb graph structures. In Proc.

Computer Graphics and Imaging (CGIM) 2007, 15–20.

[17] A. Mascarenhas and J. Snoeyink. Implementing time-varying contour

trees. In Proc. 21st ACM Symp. Computational Geometry, pages 370–

371, 2005.

[18] S. Mizuta and T. Matsuda. Description of digital images by region-based

contour trees. In Proc. Int’l Conf. Image Analysis and Recognition 2005,

volume 3656 of Springer LNCS, pages 549–558, 2005.

[19] V. Pascucci and K. Cole-McLaughlin. Efficient computation of the topol-

ogy of level sets. In Proc. IEEE Vis. 2002, pages 187–194, 2002.

[20] V. Pascucci, K. Cole-McLaughlin, and G. Scorzelli. Multi-resolution

computation and presentation of contour trees. In Proc. IASTED Conf.

Visualization, Imaging, and Image Processing, 2004. 452-290.

[21] V. Pascucci, G. Scorzelli, P.-T. Bremer, and A. Mascarenhas. Robust

on-line computation of Reeb graphs: Simplicity and speed. ACM TOG,

26(3):58, 2007.

[22] G. Reeb. Sur les points singuliers d’une forme de pfaff completement

integrable ou d’une fonction numerique. Comptes Rendus Acad. Sciences

Paris, 222:847–849, 1946.

[23] S. Roweis and L. Saul. Nonlinear dimensionality reduction by locally

linear embedding. Science, 290(5500):2323–2326, 2000.

[24] H. Sakagami, H. Murai, Y. Seo, and M. Yokokawa. 14.9 tflops three-

dimensional fluid simulation for fusion science with HPF on the earth

simulator. In Proc. ACM/IEEE SC2002, 2002.

[25] Y. Shinagawa, Y. L. Kergosien, and T. L. Kunii. Surface coding based on

Morse theory. IEEE CG&A, 11(5):66–78, 1991.

[26] Y. Shinagawa and T. L. Kunii. Constructing a Reeb graph automatically

from cross sections. IEEE CG&A, 11(6):44–51, 1991.

[27] B.-S. Sohn and C. Bajaj. Time-varying contour topology. IEEE TVCG,

12(1):14–25, 2006.

[28] S. Takahashi, T. Ikeda, Y. Shinagawa, T. L. Kunii, and M. Ueda. Algo-

rithms for extracting correct critical points and constructing topological

graphs from discrete geographical elevation data. Computer Graphics

Forum, 14(3):181–192, 1995.

[29] S. Takahashi, G. M. Nielson, Y. Takeshima, and I. Fujishiro. Topolog-

ical volume skeletonization using adaptive tetrahedralization. In Proc.

Geometric Modeling and Processing 2004, pages 227–236, 2004.

[30] S. Takahashi, Y. Takeshima, and I. Fujishiro. Topological volume skele-

tonization and its application to transfer function design. Graphical Mod-

els, 66(1):22–49, 2004.

[31] Y. Takeshima, S. Takahashi, I. Fujishiro, and G. M. Nielson. Introduc-

ing topological attributes for objective-based visualization of simulated

datasets. In Proc. Volume Graphics 2005, pages 137–145, 236, 2005.

[32] J. Tenenbaum, V. de Silva, and J. Langford. A global geometric frame-

work for nonlinear dimensionality reduction. Science, 290(5500):2319–

2323, 2000.

[33] M. van Kreveld, R. van Oostrum, C. Bajaj, V. Pascucci, and D. Schikore.

Contour trees and small seed sets for isosurface traversal. In Proc. 13th

ACM Symp. Computational Geometry, pages 212–220, 1997.

[34] C. Ware and W. Cowan. The RGYB color geometry. ACM TOG,

9(2):226–232, 1990.

[35] G. H. Weber, P.-T. Bremer, and V. Pascucci. Topological landscapes: A

terrain metaphor for scientific data. IEEE TVCG, 13(6):1416–1423, 2007.

[36] G. H. Weber, S. E. Dillard, H. Carr, V. Pascucci, and B. Hamann.

Topology-controlled volume rendering. IEEE TVCG, 13(2):330–341,

2007.

[37] G. H. Weber, G. Scheuermann, H. Hagen, and B. Hamann. Exploring

scalar fields using critical isovalues. In Proc. IEEE Vis. 2002, pages 171–

178, 2002.

[38] X. Zhang and C. Bajaj. Extraction, visualization and quantification of

protein pockets. In Proc. 6th Annual Int’l Conf. Computational System

Bioinformatics (CSB2007), pages 275–286, 2007.

8

