
Constraint-Based Simulation of Interactions
Between Fluids and Unconstrained Rigid Bodies

Sho Kurose∗

The University of Tokyo, Japan.
Shigeo Takahashi†

The University of Tokyo, Japan.

Figure1: Simulating interactions between fluid and multiple rigid bodies with our approach.

Abstract

We present a method for simulating stable interactions between flu-
ids and unconstrained rigid bodies. Conventional particle-based
methods used a penalty-based approach to resolve collisions be-
tween fluids and rigid bodies. However, these methods are very
sensitive to the setting of physical parameters such as spring co-
efficients, and thus the search for appropriate parameters usually
results in a tedious time-consuming task. In this paper, we ex-
tend a constraint-based approach, which was originally developed
for calculating interactions between rigid bodies only, so that we
can simulate collisions between fluids and unconstrained rigid bod-
ies without worrying about the parameter tweaking. Our primary
contribution lies in the formulation of such interactions as a linear
complementary problem in such a way that it can be resolved by
straightforwardly employing Lemke’s algorithm. Several anima-
tion results together with the details of GPU-based implementation
are presented to demonstrate the applicability of the proposed ap-
proach.

CR Categories: I.3.5 [Computer Graphics]: Computational Ge-
ometry and Object Modeling—Physically based modeling; I.3.7
[Computer Graphics]: Three-Dimensional Graphics and Realism—
Animation and Virtual reality

Keywords: physically-based simulation, constraint-based, fluids,
rigid body, linear complementarity problem

∗e-mail: kurose@visual.k.u-tokyo.ac.jp
†e-mail: takahashis@acm.org

1 Introduction

Simulating interactions between fluids and rigid bodies has become
popular in computer games and movie films. Realistic behaviors of
fluids and rigid bodies give us the feeling of being at the scenes.
When we try to generate such realistic scenes, however, we have
to adjust a large number of physical parameters, which inevitably
results in a tedious time-consuming process. This leads us to the
need for a more sophisticated model for simulating such interac-
tions, which prevents us from having troubles in exploring accept-
able physical parameters.

Particle-based methods have been effectively used for simulating
the interactions between fluids and rigid bodies because it can eas-
ily calculate how the rigid bodies will respond to local motions of
the water surface flow. However, in practice, such conventional
particle-based methods require careful tweaking of physical param-
eters for visually-acceptable simulation results, due to their poor
approximation of collisions between fluids and rigid bodies.

This paper presents a method for simulating accurate interactions
between fluids and rigid bodies, by taking advantage of a constraint-
based formulation [Baraff 1989; Baraff 1994]. Our method allows

usto avoid a time-consuming trial and error process for setting ap-
propriate parameters because the associated simulation can be car-
ried out in a stable manner while allowing for relatively large time
steps. Nonetheless the constraint-based formulation has originally
been developed for calculating interactions between rigid bodies
only, we extend this to handle collisions between fluids and rigid
bodies in this study.

In the constraint-based method, aLinear Complementarity Prob-
lem (LCP) must be solved to compute contact forces. Lemke’s al-
gorithm [Lemke 1965] is an efficient solver for the LCP, however,
the algorithm leads to unstable computation especially when rigid
bodies have many contact points at a time during collision as shown
in Figure 2. We resolve this problem by representing each fluid
particle as a point mass, because, in this setting, a fluid particle col-
lides with a rigid body only at a single contact point. Furthermore,
together with the assumption that all the rigid bodies are uncon-
strained, we can employ Lemke’s algorithm straightforwardly in
order to simulate interactions between fluids and rigid bodies in a
stable manner. The enhancement of this formulation can be imple-
mented on GPUs, where more than 1,200 contact points at a time
can be successfully resolved (See Figure 7 for example.).

Figure2: Rigid bodies colliding with each other on multiple contact
points. Contact points are represented in red.

The remainder of this paper is organized as follows. After referring
to related work for interactions between fluids and rigid bodies in
Section 2, we describe the fluid and rigid body models employed
in our approach in Section 3. Section 4 presents an algorithm for
simulating the interactions between fluids and unconstrained rigid
bodies using the constraint-based method. In Section 5, the GPU
implementation of the present algorithm is introduced for its accel-
erated computation. Section 6 demonstrates experimental results to
clarify the applicability of our approach. Finally, we conclude this
paper and refer to future work in Section 7.

2 Related Work

This section provides a survey on existing methods for coupling
between fluids and rigid bodies in physically-based simulation. If
rigid bodies are constrained in their motion in some way, they are
defined to be constrained rigid bodies. A chain of rigid bodies
connected by rotational joints is such an example. To the best of
our knowledge, none has been done for simulating the interactions
of such constrained rigid bodies with fluids, and thus all the con-

ventional methods were developed for the interactions between flu-
ids and unconstrained rigid bodies. Basically, these methods can
be classified into three categories:one-way solid-to-fluidcoupling,
one-way fluid-to-solidcoupling, andtwo-waycoupling.

In theone-way solid-to-fluidcoupling, we only consider force tran-
sition from solid objects to fluids. Simulations of a water splash
generated by a ball thrown into a water tank [Foster and Metaxas
1997; Foster and Fedkiw 2001; Enright et al. 2002] and a paddle
wheel rotating through fluids [Batty et al. 2007] are examples of
this category.

On the other hand, theone-way fluid-to-solidcoupling only takes
into account inverse forces produced by fluids to rigid bodies. Fos-
ter et al. [1996] demonstrated this type of coupling by simulating
tin cans floating on top of swelling water. Yuksel et al. [2007] an-
imated many boats drifting among ocean waves using this type of
coupling.

In the two-waycoupling of fluids and rigid bodies, they respond
to each other when the collision occurs between them. This paper
focuses on an approach based on thistwo-waycoupling.

The development of the two-way coupling methods began by em-
ploying the Eulerian grid-based simulation scheme. Takahashi et
al. [2002] presented a simple method for coupling between fluids
and buoyant rigid bodies on regular grids using a combinedVol-
ume of Fluidmethod andCubic Interpolated Propagationsystem.
However, their technique poorly approximates interactions between
fluids and rigid bodies because it neglects the dynamic forces and
torques due to the fluid momentum. Génevaux et al. [2003] used
marker particles for a free surface fluid simulation and demon-
strated a two-way coupling of fluids and deformable solids repre-
sented as spring-mass conglomerations. However, this method can-
not be applied easily to non-deformable rigid bodies having com-
plex shapes. Carlson et al. [2004] performed the two-way cou-
pling of fluids and rigid bodies using theDistributed Lagrange
Multipliers, which approximates rigid bodies as fluids on a grid.
This method projects the velocity field inside rigid bodies back to
rigid motion, while this incurs discontinuities in the velocity field
and thus results in unexpected leaks of fluids through rigid bodies.
Moreover, the method cannot simulate the interactions between flu-
ids and rigid bodies in a stable manner especially when the densities
of the rigid bodies are less than those of the fluids. This is due to
the fact that the force caused by the collisions between rigid bodies
depends on the difference in density between the rigid bodies and
fluids.

In general, these Eulerian grid-based methods suffer from handling
local motions of fluid flows such as water splashes because it can-
not faithfully represent the local shapes of water surfaces. Lagrange
particles have been introduced to alleviate this problem and suc-
cessfully simulated the complex spatio-temporal behaviors of wa-
ter surfaces. Using theSmoothed Particle Hydrodynamics(SPH)
method [Monaghan 1992; M̈uller et al. 2003] for the fluid dynam-
ics, Müller et al. [2004] demonstrated interactions between particle-
based fluids and mesh-based deformable solids, by representing the
solid as a tetrahedral mesh and distributing particles around them.
However, in this work, the associated simulation results are not pre-
cise enough to produce visually-plausible animations. A similar
method [Amada et al. 2004] has also been proposed that represents
each rigid body as a set of particles in order to detect and resolve
collisions between fluids and rigid bodies efficiently. In addition,
Tanaka et al. [2007] used the Moving Particle Semi-implicit (MPS)
method [Koshizuka and Oka 1996; Premože et al. 2003] instead of
the SPH method. In their approach, the MPS method is more ef-
ficient than the SPH method because they represented rigid bodies
with lattice particle positions.

In practice, all of these methods employ a penalty-based approach
to resolve collisions between fluids and rigid bodies. Although the
penalty-based approach is easy to implement and its computation
complexity is linear with respect to the number of collisions, the
stability of its associated simulation highly depends on the stiffness
and damping parameter values that govern the contact forces be-
tween fluids and rigid bodies. However, adjusting these parameters
to avoid unnatural self-intersections has still been a daunting task.

Solenthaler et al. [2007] used the SPH method for the simulation of
liquids and deformable objects as well as rigid objects. They used
the SPH-based method to compute the pressure and viscosity forces
that have influence on the particles. In their framework, these forces
are handled as contact forces that arise in the collisions among liq-
uids, deformable objects, and rigid objects. Avoiding interpenetra-
tion between these objects, however, inevitably needs careful ad-
justment of the gas constant as well as the stiffness parameter for
the penalty-based method, and thus results in crude approximation
of their collisions.

Quite recently, Becker et al. [2009] have presented a constraint-
based method for resolving collisions between fluids and uncon-
strained rigid bodies. Instead of solving the LCP, they formulated
the constraint equation for the relative velocity between a fluid par-
ticle and a single rigid body at their contact point using the coeffi-
cient of restitution, and then computed the total forces and torques
accumulated on the rigid body. Their approach is advantageous in
that the equation is always defined as a linear 6×6 system of equa-
tions, no matter how large the number of associated collisions is.
However, the approach can handle the interactions only between
fluids and a single rigid body, and cannot handle the case where
multiple rigid bodies collide with each other.

We employ the constraint-based method in order to avoid trouble-
some trial and error processes, which the penalty-based method
imposes on us. To simulate interactions between fluids and un-
constrained multiple rigid bodies, we solve the LCP to compute a
contact force at a contact point.

3 Fluid and Rigid Body Models

In this section, we explain the fluid and rigid body models employed
in our approach.

3.1 Fluid Model

A smoothed particle hydrodynamics (SPH) method has become the
most popular particle-based method for simulating fluid dynam-
ics. The SPH method was originally developed by Lucy [1977]
and Gingold et al. [1977] for the simulation of nonaxisymmetric
phenomena in astrophysics. According to the SPH formulation, a
physical quantityA at the positionx is interpolated by blending
those of the particles in the local neighborhood only, which is for-
mulated as:

A(x) = ∑
i

mi
Ai

ρi
W(x−xi ,h), (1)

wheremi , ρi andxi are the mass, density, and position of thei-th
particle, respectively.W(x,h) is a weight function called a smooth-
ing kernel with the core radiush.

A conventional particle-based method in [Müller et al. 2003] com-
putes various forces that influence on the velocities of particles.
However, such an explicit scheme is likely to be unstable because

it is sensitive to the size of the time step. In order to prevent such
instability, Clavet et al. [2005] introduced an implicit scheme called
Prediction-Relaxation Schemeto the SPH approach. This implicit
scheme directly computes the displacements and velocities of par-
ticles, instead of forces applied to them. Note that the local dis-
placement and velocity are separately used to update the particle
positions step by step, in order to maximally preserve the stability
of the associates simulation. In this approach, we use Clavet et al.’s
method especially for computing the fluid dynamics.

3.2 Rigid Body Model

In general, polygonal mesh representation is frequently used to rep-
resent the shapes of rigid bodies, while it requires intricate algo-
rithms for detecting collisions with fluids, which may result in a
high computational cost in our framework. In this approach, a rigid
body is modeled as a set of particles in order to systematically de-
tect and resolve collisions with particle-based models of fluids. We
use Crane et al.’s approach [2007] for approximating rigid bodies
with particles, as shown in Figure 3.

Figure 3: Polygonal representation of a rabbit model and its
particle-based representation. The rabbit model on the right con-
sists of 3,352 particles.

4 Constraint-Based Interactions

This section presents an algorithm for simulating interactions be-
tween fluids and rigid bodies using the constraint-based method.

4.1 Detecting Collision

For handling collisions between fluids and rigid bodies, our first
task is to detect whether rigid bodies are colliding with fluids. Since
fluids and rigid bodies are composed of particles as described in
Section 3, we can write the conditions for finding such collisions
as:

∥X f −Xr∥ ≤ r f + rr , and (2)

n · (V f −Vr) ≤ 0, (3)

whereX f andXr denote the positions of the fluid and rigid parti-
cles,r f andrr represent their radii.n is the unit surface normal of
a rigid body at the contact point, andV f andVr are the velocities

of fluid and rigid particles, respectively. Figure 4 shows such a col-
lision between the fluid and rigid particles. Here,Vr is expressed
asVr = Vpar + ω × r, whereVpar andω are the linear and angu-
lar velocities of the corresponding rigid body, respectively. Eq. (2)
implies that the fluid and rigid particles are overlapping at the con-
tact pointXp = Xr + rrn. Eq. (3) shows that the relative velocity
of the fluid particle with respect to the rigid particle along the nor-
mal direction is less than zero. If the relative velocity is positive,
the particles will be no longer interpenetrated because they will be
separated in a future time step.

r

fx

rx

cx

fr

rr

px

fv

rv

n

Figure4: A collision between fluid and rigid particles

Calculating the possible collision between every pair of particles is
computationally expensive even for a small number of particles. We
avoid this expensive computation by partitioning the 3D space into
small cube-like regions calledcells on a 3D grid, where the size
of the regions is set to be the largest particle diameter among the
particles representing fluids and rigid bodies. For each particle, we
will then collect cells that are adjacent to the cell that contains the
target particle, and check the collisions of the target particle with
those contained in these cells only. This allows us to efficiently
reduce the computational cost by minimizing the number of cells
we have to visit for the collision detection. In our implementation,
the diameters of rigid particles are equal to those of fluid particles,
and thus we only visit 26 neighboring cells in addition to the cell
that contains the target particle since the cells are aligned with the
3D grid.

4.2 Resolving Collisions

In our approach, we treat collisions between fluids and rigid bodies
as those between rigid bodies only by representing a fluid particle
as a point mass. For resolving these collisions, we have to com-
pute contact forces between fluids and rigid bodies that preclude
the interpenetration of object surfaces. The most popular approach
for modeling such contact forces is a penalty-based method, which
defines the contact forceF asF = ksdn+kd(v ·n)n, whered is the
amount of the interpenetration between a pair of colliding rigid bod-
ies A and B,n is a unit surface normal of B,v is the relative velocity
of A with respect to B, andks andkd are stiffness and damping pa-
rameters, respectively. The stiffness parameter controls the strength
of the force to avoid interpenetration and must be large enough to
avoid any undesirable visual artifacts. However, it is difficult to
adjust this parameter value systematically and often requires a te-
dious trial and error process for searching an proper value. Simi-
larly, tweaking of the damping parameter will also require special
attention. Another problem with the penalty-based method is that it

expects very small time steps for stably updating the temporal snap-
shot of the simulation. This means that the penalty-based method
is not appropriate for resolving collisions between fluids and rigid
bodies especially when the associate configuration of objects is rel-
atively complicated because it is prone to multiple collisions at a
time.

An impulse-based method is another way to handle the collisions.
Mirtich et al. [1995] employed the method to simulate interac-
tions between rigid bodies, and Bridson et al. [2002] extended the
method to handle deformable models. The impulse-based methods
do not compute a force that influences on the accelerations of col-
liding rigid bodies, but an impulse that connects to their velocities.
This enables us to update the velocities of the rigid bodies without
explicitly integrating their acceleration with respect to the time. In
practice, the impulse-based method is more stable than the penalty-
based method because it just requires us to control a coefficient of
restitutionε for elasticity, which is much easier to be adjusted than
the stiffness and damping parameters in the penalty-based method.
A major limitation of the impulse-based methods is that it assumes
the occurrence of each collision to be isolated in space and time,
i.e., every collision happens at one contact point at a time. This im-
plies that the impulse-based method cannot fully simulate the com-
plicated configuration of fluids and rigid bodies since it will readily
contains simultaneous multiple contact points between them.

This simultaneous multiple contacts problem can be solved us-
ing constraint-based methods [Baraff 1989; Baraff 1994]. The
constraint-based method provides a high degree of accuracy. For
each contact, the constraint-based method defines a non-penetration
constraint. These defined constraints can be formulated as a LCP. In
practice, the constraint-based method solves this LCP to compute
contact forces that prevent such interpenetration. We employ the
constraint-based method to resolve collisions between fluids and
rigid bodies, while representing a fluid particle as a point mass.

4.2.1 Identifying the type of collision

Figure5: Simultaneous multiple contacts between fluid and rigid
bodies. Red points indicate the contact points. Each green arrow
represents the normal direction at the contact point. The points 1,
2, and 3 are contacts between fluid particles and rigid bodies, 4, 5,
and 6 are contacts between rigid bodies and a wall, and 7 and 8 are
contacts between the two rigid bodies.

In our approach, we first identify each contact point as one of the

threetypes as shown in Figure 5: a contact between fluid and an
unconstrained rigid body, a contact between an unconstrained rigid
body and a non-movable rigid body (such as a wall), and a contact
between two unconstrained rigid bodies. Solving the aforemen-
tioned LCP amounts to computing contact forces at these contact
points appropriately by referring to the associated types of colli-
sions. In our framework, we must collect the following information
for each contact point:

• the position of the contact pointp,

• the IDs of the two colliding objects A and B, and

• the normal at the contact pointn.

For the contact between fluid and an unconstrained rigid body (i.e.
the first type of collision), we assume that A and B are the IDs
of the fluid and rigid body, respectively. For the contact between
unconstrained and non-movable rigid bodies (i.e. the second type
of collision), A is the ID of the non-movable rigid body while B is
the unconstrained one. When A and B are both unconstrained rigid
bodies, we assign a smaller ID to B. Figure 5 shows how we set the
object IDs to A and B.

Furthermore, the normal at the contact point is assumed to be the
unit surface normal of the object B. Note that we uniquely assign
object IDs to A and B this way because we want to avoid bothering
with the choice of surface normal directions (i.e. the signs of the
normal vectorsn) in our formulation.

4.2.2 LCP formulation

Suppose that we havek simultaneous collisions at timet. In this
situation, we can find an impulseJi = fini at a contact pointi (1≤
i ≤ k), whereni is the normal vector at the contact point andfi is
the i-th entry of a vector of unknown impulse magnitudesf. The
goal of resolving these collisions is to find an appropriate vectorf
that keeps the fluids and rigid bodies from interpenetrating.

According to [Baraff 1989], we can compute an appropriate vec-
tor f if all the contact forces satisfy the following non-penetration
constraints:

(1) The impulse does not allow colliding objects to interpenetrate.

(2) The impulse only applies forces to the colliding objects so that
they become apart from each other.

(3) The impulse becomes zero at the corresponding contact point
once the two colliding objects begin to come apart.

Now, at timet, let vt
i be the relative velocity of the object A with

respect to the object B in theni direction at the contact pointi.
Similarly, letvt+∆t

i be the corresponding relative velocity at timet +
∆t. Here,∆t denotes a small time step interval. With this notation,
we can write the non-penetration constraints as

vt+∆t
i + εvt

i ≥ 0, (4)

fi ≥ 0, and (5)

fi(vt+∆t
i + εvt

i) = 0, (6)

whereε is a coefficient of restitution.

These constraints (4), (5), and (6) can be reduced to the LCP for-
mulation. Formally speaking, the LCP is defined as the following

problem of finding a vectorx ∈ Rk such that

Ax +b ≥ 0, (7)

x ≥ 0, and (8)

xT(Ax +b) = 0, (9)

whereA ∈ Rk×k andb ∈ Rk.

Before solving this LCP problem with a numerical solver, we must
compute the matrixA and vectorb. These values can be obtained
from the correspondence between the equations (4) and (7). Since
each impulse at some contact point will influence on the forces at
all the other contact points through the colliding objects,vt+∆t

i can
be defined as a linear combinations offi ’s. Due to this, we can
rewrite the equation (4) as follows:

n

∑
j=1

f jai j +vt
i (1+ ε) ≥ 0. (10)

Here,
vt

i (1+ ε) = bi , (11)

ai j denotes the (i, j)-entry of the matrixA, andbi is thei-th element
of the vectorb, respectively. Note that the matrix entryai j shows
how the impulse at the contact pointj affects the impulse at the
contact pointi.

Since the impulse depends on the force and torque acting on the
object,ai j can be expressed as follows:

ai j = ni ·
((n j

MAi

+ I−1
A (rA×n j)

)
−

(−n j

MBi

+ I−1
B (rB× (−n j))

))
.

(12)

Here,MAi andMBi are the masses of objects A and B for the contact
point i, ni andn j are the normals of the contact pointsi and j, I−1

A
and I−1

B are the inverse inertia tensors of the colliding objects A
and B, andrA andrB are the vectors emanating from the centers of
objects A and B to the contact point, respectively. As described in
Section 4.2.1, we can use this equation straightforwardly, without
worrying about the orientations of the normals at the contact points.

Although we can get the matrixA and vectorb from Eqs. (11) and
(12), several issues should be noted when we get the matrixA from
Eq. (12). The inertia tensor of the fluid particle is zero because we
represent a fluid particle as a point mass. Non-movable objects,
such as walls and floors, are usually assumed to have infinite mass.
This implies that we have to set the inverse of the object mass to
be zero. Furthermore, if the contact pointsi and j are not involved
in the same object (e.g. the contact points 1 and 3 in Figure 5), the
corresponding matrix entryai j is zero because the contact pointi
has no influence on the contact pointj, and vice versa. According
to Baraff [1989], in a friction-free system, the formulated matrixA
is guaranteed to be positive semi-definite (PSD). The LCP including
the PSD matrix can be solved by Lemke’s algorithm, which is an
efficient LCP solver. We assume such a frictionless system in our
framework so that we can take full advantage of Lemke’s algorithm
in order to simulate visually plausible interactions between fluids
and rigid bodies.

In practice, we can consider special cases that violate the above as-
sumption of a friction-free system. For example, highly viscous flu-
ids incur friction forces when they stick to rigid bodies. Clavet et al.
successfully simulated such phenomena in their framework [Clavet
et al. 2005] by applying virtual attraction forces between the flu-
ids and rigid bodies to make them stay close to each other, once

they resolved their collisions. Their technique allows us to simulate
frictional systems also in our framework while its use is limited to
dynamic friction and cannot be extended to the simulation of static
friction forces.

The impulse magnitudes calculated through Lemke’s algorithm will
then be applied to appropriately update the temporal snapshots of
objects’ velocities and momentum in the simulation.

5 GPU Implementation

We enhanced our method through a GPU implementation, by tak-
ing advantage of Harada et al.’s GPGPU technique [Harada et al.
2007], which uses a texture buffer in the video memory to search
for neighbors of a target particle. The texture consists of a 2D grid
of pixels, each of which has red, green, blue, and alpha (RGBA)
channels. By using a shading language such as GLSL, each chan-
nel can store an arbitrary value. In their method, each pixel of the
texture image has been matched with a cell described in Section
4.1, and the corresponding four channels were used to store the in-
dices of neighboring particles to be searched. Harada et al. used
only one texture image for describing neighborhood relationships
between particles since they could simulate realistic behaviors of
particles by visiting four neighboring particles only, while we in-
troduced more texture images to visit more particles so that we can
fully simulate viscoelasiticity of the fluids inherent to Clavet et al.’s
framework [Clavet et al. 2005]. In our implementation, we em-
ployed three texture images in order to keep up to 12 neighbors for
each particle.

We also apply this technique to accelerate the collision detection
between fluids and rigid bodies. Although we have to read data
back from the GPU so that we can handle the LCP computation on
the CPU, we still achieved a speedup by a factor of more than 12,
compared to the equivalent CPU implementation.

More specifically, we store the indices of fluid and rigid body par-
ticles in each cell in the GPU so as to search for neighboring and
colliding particles. The GPU is also responsible for computing the
fluid flows based on the SPH and updating the positions of fluid
particles. On the other hand, the CPU computes the matrixA and
vectorb in the LCP (Eq. (7)) at every time step, and resolves the col-
lisions among fluid and rigid body particles using Lemke’s method.
The data transmitted from the GPU to the CPU contains the IDs
of the colliding objects the positions of the contact points, the sur-
face normals at the contact points, and the relative velocities in the
normal directions. Conversely, the GPU receives from the CPU the
impulses that influence on the velocities of fluid particles, together
with the updated positions and velocities of the rigid bodies.

6 Results and Discussions

All experiments in this paper were conducted on a PC with an In-
tel Core 2 Duo 2.13GHz processor, 2.0GB RAM, and an NVIDIA
GeForce 8800 GT graphics card with 1.0GB video RAM. The soft-
ware was implemented in C++, OpenGL and GLSL. In our imple-
mentation, we performed the simulation using point-based render-
ing at the first stage, and then improved the rendering quality as a
post-process with the POV-Ray software. Note that the statistics on
frame rates in this paper exclude this post-process stage of render-
ing.

Figure 1 shows interactions with fluids and two rigid bodies having
different densities. Note that the densities of the green and golden

rabbits are 0.5 and 5 times larger than that of the fluid. Each rab-
bit is sampled with 1,710 particles, and the number of fluid parti-
cles is 82,944. This animation is 4.3 seconds long and the average
frame rate on the GPU is 6.4 fps and the time interval (∆t) is 1.0
msec in the animation. The average frame rate on the CPU only is
0.36 fps. The maximum number of simultaneous contact points is
464. This result demonstrated that our scheme can successfully vi-
sualize plausible interactions between fluid and rigid bodies while
fully taking into account the differences in their densities. On the
other hand, conventional penalty-based approaches require time-
consuming trial and error processes to seek appropriate stiffness
and damping parameters for each rigid body.

In Figure 6, a toy duck is pushed by water spraying from a fountain.
In this scene, we used 41,616 particles for the entire fluid and 917
particles for the toy duck. This simulation was 5.0 seconds long. Its
average frame rate on the GPU was 22.7 fps and that on the CPU
was 1.90 fps, while the corresponding time interval (∆t) was 1.5
msec. The maximum number of simultaneous contact points was
41 in this case. As shown in this figure, we can simulate realis-
tic spatio-temporal behavior of the rigid body in response to local
motions of the water surface flow.

We also simulated a large number of collisions between fluid and
a complicated rigid body as shown in Figure 7. In this 7.0 sec-
onds simulation, 262,144 fluid particles and 6,432 rigid particles
were used. The average frame rate on the GPU was 1.5 fps for the
simulation, and that on the CPU only was 0.041 fps. The time in-
terval (∆t) employed here was 1.0 msec. The maximum number
of simultaneous contact points for this scene was 1,249. This re-
sult indicates that our scheme can handle such a large number of
simultaneous collisions. In Table 1, we summarize these statistics
for three example scenes.

Our scheme can also simulate accurate interactions between flu-
ids, unconstrained rigid bodies, and non-movable objects such as
walls and floors. Figure 8 shows the comparison between the sim-
ulation results with the conventional penalty-based method and our
method. We can notice from the figure that the teapot interpen-
etrates the wall and the fluid also interpenetrates the teapot using
the penalty-based method while this unexpected artifact is success-
fully avoided using our method. Although the impulse-based meth-
ods [Mirtich and Canny 1995; Bridson et al. 2002] may achieve
similar results, they are highly likely to be unstable when the given
configuration of fluids and rigid bodies is too complicated.

7 Conclusion and Future Work

We have presented an approach to simulating interactions between
fluids and unconstrained rigid bodies. We extend the conventional
constraint-based approach to model collisions between fluids and
rigid bodies by representing a fluid particle as a point mass. This
extension allows us to avoid a time-consuming trial and error pro-
cess for setting appropriate parameters and to take full advantage of
Lemke’s algorithm for computing contact forces between the fluids
and rigid bodies. Several animation results have been presented to
demonstrate that our scheme can simulate various cases, where the
fluid and rigid bodies intricately collide with each other.

In this paper, frictional interactions between fluids and rigid bod-
ies were not taken into account. When we introduce the effects
of friction contacts between the colliding objects, the matrixA in
the LCP (Eq. (7)) may violate the conditions of the PSD. For the
solution of such type of LCP, we have to improve the associated
Lemke’s algorithm. Furthermore, we can still enhance our compu-
tation for finding the nearest particles by implementing avilablek-D

Scene Fluid Particles Avg. FPS (GPU / CPU) Time Interval Max Simultaneous Contact Points

Fountain 41,616 22.7/ 1.90 1.5 41
Multiple Bodies 82,944 6.4/ 0.36 1.0 464
Large Contacts 262,144 1.5/ 0.041 1.0 1,249

Table 1: Statistics for example scenes.

Figure6: A fountain simulation.

tree algorithms on GPU [Horn et al. 2007]. We would also like to
extend our method to handle interactions of multiple types of fluids
together with rigid bodies.

Acknowledgements

We would like to thank Satoshi Mabuchi for his assistance in pro-
grame implementation, and anonymous reviewers for their valuable
comments. This work was partially supported by Grants-in-Aid for
Scientific Research (B) (20300033).

(a) (b)

Figure8: Comparison between the simulation results with (a) the
penalty-based method and (b) the present method. The penalty-
based method cannot avoid the interpenetrations among the fluid,
the teapot and the wall.

References

AMADA , T., IMURA , M., YASUMURO, Y., MANABE , Y., AND
CHIHARA , K. 2004. Particle-based fluid simulation on GPU.

In Proc. ACM Workshop on General-Purpose Computing on
Graphics Processors.

BARAFF, D. 1989. Analytical methods for dynamic simulation
of non-penetrating rigid bodies. InProc. ACM SIGGRAPH ’89,
223–232.

BARAFF, D. 1994. Fast contact force computation for nonpene-
trating rigid bodies. InProc. ACM SIGGRAPH ’94, 23–34.

BATTY, C., BERTAILS, F., AND BRIDSON, R. 2007. A fast varia-
tional framework for accurate solid-fluid coupling.ACM Trans-
actions on Graphics 26, 100.

BECKER, M., TESSENDORF, H., AND TESCHNER, M. 2009. Di-
rect forcing for lagrangian rigid-fluid coupling.IEEE Transac-
tions on Visualization and Computer Graphics 99, 2.

BRIDSON, R., FEDKIW, R., AND ANDERSON, J. 2002. Robust
treatment of collisions, contact and friction for cloth animation.
ACM Transactions on Graphics, 594–603.

CARLSON, M., MUCHA, P. J.,AND TURK, G. 2004. Rigid fluid:
animating the interplay between rigid bodies and fluid.ACM
Transactions on Graphics 23, 377–384.

CLAVET, S., BEAUDOIN, P., AND POULIN , P. 2005. Particle-
based viscoelastic fluid simulation. InProc. ACM SIG-
GRAPH/Eurographics Symposium on Computer Animation
2005, 219–228.

CRANE, K., LLAMAS , I., AND TARIQ, S. 2007. Real-time simu-
lation and rendering of 3D fluids. InGPU Gems 3, H. Nguyen,
Ed. Addison Wesley, ch. 30, 633–675.

ENRIGHT, D., MARSCHNER, S.,AND FEDKIW, R. 2002. Anima-
tion and rendering of complex water surfaces.ACM Transactions
on Graphics, 736–744.

Figure7: A large number of collisions between fluid and the complicated rigid body. To illustrate the contact points clearly, the fluid particles
are rendered as spheres by using pointsprite.

FOSTER, N., AND FEDKIW, R. 2001. Practical animation of liq-
uids. InProc. ACM SIGGRAPH 2001, 23–30.

FOSTER, N., AND METAXAS, D. 1996. Realistic animation of
liquids. Graphical Models and Image Processing, 471–483.

FOSTER, N., AND METAXAS, D. 1997. Controlling fluid anima-
tion. In Proc. Computer Graphics International ’97, 178–188.

GÉNEVAUX , O., HABIBI , A., AND MICHEL DISCHLER, J. 2003.
Simulating fluid-solid interaction. InProc. Graphics Interface
2003, 31–38.

GINGOLD, R., AND MONAGHAN, J. 1977. Smoothed particle
hydrodynamics: theory and application to non-spherical stars.
Monthly Notices of the Royal Astronomical Society 181, 275–
389.

HARADA , T., KOSHIZUKA, S., AND KAWAGUCHI , Y. 2007.
Smoothed particle hydrodynamics on GPUs. InProc. of Com-
puter Graphics International, 63–70.

HORN, D. R., SUGERMAN, J., HOUSTON, M., AND HANRAHAN ,
P. 2007. Interactive k-d tree gpu raytracing. InProc. Symposium
on Interactive 3D graphics and games 2007 (I3D ’07), 167–174.

KOSHIZUKA, S., AND OKA , Y. 1996. Moving-particle semi-
implicit method for fragmentation of incompressible fluid.Nu-
clear Science and Engineering 123, 421–434.

LEMKE, C. E. 1965. Bimatrix equilibrium points and mathematical
programming.Management Science 11, 681–689.

LUCY, L. B. 1977. A numerical approach to the testing of the
fission hypothesis.Astronomical Journal 82, 1013–1024.

MACM ILLAN , W. D. 1960.Dynamics of Rigid Bodies.

M IRTICH, B., AND CANNY, J. F. 1995. Impulse-based simulation
of rigid bodies. InProc. Symposium on Interactive 3D Graphics
’95, 181–188.

M IRTICH, B. 2000. Timewarp rigid body simulation. InSIG-
GRAPH, 193–200.

MONAGHAN, J. 1992. Smoothed particle hydrodynamics.Annual
Review of Astronomy and Astrophysics 30, 543–574.

M ÜLLER, M., CHARYPAR, D., AND GROSS, M. 2003. Particle-
based fluid simulation for interactive applications. InProc. ACM
SIGGRAPH/Eurographics symposium on Computer animation,
154–159.

M ÜLLER, M., SCHIRM, S., TESCHNER, M., HEIDELBERGER,
B., AND GROSS, M. 2004. Interaction of fluids with deformable
solids. Computer Animation and Virtual Worlds 15, 3-4, 159–
171.

PREMOŽE, S., TASDIZEN, T., BIGLER, J., LEFOHN, A., AND
WHITAKER , R. T. 2003. Particle-based simulation of fluids.
Computer Graphics Forum 22, 401–410.

SOLENTHALER, B., SCHLÄFLI , J., AND PAJAROLA, R. 2007.
A unified particle model for fluid–solid interactions: Research
articles.Computer Animation and Virtual Worlds 18, 1, 69–82.

TAKAHASHI , T., UEKI , H., KUNIMATSU , A., AND FUJII, H.
2002. The simulation of fluid-rigid body interaction. InSIG-
GRAPH ’02: Sketches & Applications, 266.

TANAKA , M., SAKAI , M., AND KOSHIZUKA, S. 2007. Particle-
based rigid body simulation and coupling with fluid simulation.
Transaction of JSCES, Paper No.20070007.

YUKSEL, C., HOUSE, D. H., AND KEYSER, J. 2007. Wave parti-
cles.ACM Transactions on Graphics 26, 3, 99.

