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(a) Simple interpolation

(b) Optimized stepwise animation

Figure 1: Side-by-side comparison of the interpolation method between two set diagrams. (a) A simple interpolation in which elements

are linearly translated simultaneously. (b) Our optimized stepwise animation in which the transition is decomposed to a sorted sequence of

atomic changes. Each element is represented as an image of the alphabet and each set is represented as a colored region.

Abstract

A set diagram represents the membership relation among data elements. It is often visualized as secondary information on top

of primary information, such as the spatial positions of elements on maps and charts. Visualizing the temporal evolution of such

set diagrams as well as their primary features is quite important; however, conventional approaches have only focused on the

temporal behavior of the primary features and do not provide an effective means to highlight notable transitions within the set

relationships. This paper presents an approach for generating a stepwise animation between set diagrams by decomposing the

entire transition into atomic changes associated with individual data elements. The key idea behind our approach is to optimize

the ordering of the atomic changes such that the synthesized animation minimizes unwanted set occlusions by considering their

depth ordering and reduces the gaze shift between two consecutive stepwise changes. Experimental results and a user study

demonstrate that the proposed approach effectively facilitates the visual identification of the detailed transitions inherent in

dynamic set diagrams.

CCS Concepts

• Human-centered computing → Information visualization; Graph drawings; • Computing methodologies → Perception;

1. Introduction

Visualization of dynamic data helps us perceive important charac-

teristics of time-varying information. In practice, it is a technically

challenging problem that researchers in the visualization commu-

nity have attempted to address. Typically, the visualization of dy-

namic data comprises two technical problems: a correspondence

problem and an interpolation problem. The correspondence prob-

lem involves extracting meaningful correspondences from multiple

temporal snapshots of dynamic data. This allows us to find a rea-

sonable layout of the next temporal snapshot by referring to the

previous snapshot while preserving the associated mental map. In

contrast, the interpolation problem involves finding a perceptually

plausible transformation between data in adjacent temporal snap-

shots.

The visualization of dynamic set diagrams is beneficial because

it allows us to understand the temporal changes in set memberships
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associated with data elements. However, only a few studies have

investigated this problem, despite the existence of real dynamic set

data. This is because it is necessary to manage the memberships

of data elements as secondary information as well as primary in-

formation, for example, spatial positions that are often predefined

in visualization images, such as geographical maps and statistical

charts. Even if the positions of data elements are not fully con-

strained, we cannot arbitrarily compose a new set diagram layout

by referring to a previous temporal snapshot. This is because set

diagrams are often composed in such a way that the data elements

in the same set are close to each other. This is done to maximally

suppress unwanted conflicts among set contours for better readabil-

ity. In this case, the correspondence problem can be solved natu-

rally by understanding the set memberships of the data elements in

the diagrams. However, the interpolation problem becomes signif-

icantly complex because we often have to transform between two

distinct layouts of the data elements by referring to the underlying

changes in their set memberships. In Figure 1(a), a simple interpo-

lation scheme is employed to visualize the transformation between

two set diagrams. Unfortunately, we cannot clearly identify the de-

tails of changes in the set memberships of the data elements in this

case since all temporal transitions are made in a single step. More-

over, dynamic set diagrams inevitably suffer from occlusions of the

sets and data elements, which degrades the clarity of the synthe-

sized animation. Thus, the visualization of dynamic set diagrams

differs from that of dynamic graphs and consequently requires its

own specific solution.

In this paper, we present an animation approach for such dy-

namic set diagrams to fully elucidate the underlying temporal

changes in the set memberships of the data elements. For this pur-

pose, we employed a graph-based representation of a set diagram,

which helps decompose the entire temporal transition into atomic

changes associated with the data elements for composing stepwise

animations automatically. Our technical contribution lies in opti-

mizing the sequence of the atomic changes to reduce the gaze shifts

imposed on the viewers and in arranging the depth ordering of sets

during the animation to minimize occlusions. In addition, we de-

crease the duration of the entire transition by clustering conflict-

free atomic changes while retaining visual clarity in the animation.

Figure 1(b) shows a stepwise animation between two set diagrams

generated automatically using our approach. Compared to the sim-

ple interpolation on the top Figure 1(a), our approach can success-

fully visualize how the source set diagram changes into the target

one while suppressing occlusions among the sets.

Note that our optimization criteria for reducing the cognitive

load originate from the study performed by Bauhoff et al. [BHS12],

where the researchers claimed that working memory use increases

when the gaze shift becomes longer. Since our approach expects

users to focus their visual attention on the series of atomic changes

that constitute the difference between the two set diagrams, we

want to minimize the total distance of such gaze motion during the

stepwise animation to fully reduce the associated cognitive load.

The remainder of this paper is organized as follows. Section 2

provides a survey of related work, including visualization tech-

niques for static set diagrams and dynamic graphs. Section 3

overviews the proposed approach and the notations used in this pa-

per are described, and Section 4 includes our graph representations

associated with set diagrams. Section 5 presents the primary con-

tributions of this work by describing our techniques to compose

a stepwise animation of a dynamic set diagram. Experimental re-

sults, the evaluation with user studies, and discussions are given in

Section 6. Section 7 presents conclusions and future work.

2. Related Work

In this section, we investigate the most relevant techniques for vi-

sualizing set diagrams and dynamic graphs.

2.1. Set Diagram Visualization

The visualization of set memberships has been extensively studied

in the information visualization community, which has resulted in a

wide range of proposed visualization algorithms [AMA∗14]. Venn

and Euler diagrams are classical representations of set-typed data,

where associated data elements are arranged such that they are in

close proximity if they belong to the same set. An individual set is

typically bounded by a closed curve called a contour, and an inter-

section among multiple sets is represented by their overlap. Various

techniques have been developed to automate the layout design and

color assignment of Euler diagrams [Rod14, SA08, RD10]. How-

ever, conventional techniques for drawing Euler diagrams and their

variants are limited to static cases, and thus they fail to directly

convey details about the dynamic transitions of sets.

Several previous approaches have been used for such set dia-

grams that are overlaid on preexisting visualization images, such

as statistical charts and geographical maps. Bubble Sets [CPC09]

introduced an energy field to outline the shape of each set on

the underlying image by employing an implicit surface represen-

tation Meanwhile, colored textures are applied to render areas of

interest to visualize multiple metrics associated with constituent

sets together with the relationships among them [BT09]. Line-

Sets [ARRC11] and its successor KelpDiagram [DvKSW12] em-

ployed continuous lines and sparse networks, respectively, to con-

nect data elements in the same set. Recently, a hybrid of such line-

and region-based set representations has been further improved as

KelpFusion [MRS∗13].

In contrast, few studies have investigated dynamic set visualiza-

tion. Rodgers et al. [RMF04] proposed a technique for rearranging

Euler diagrams by incorporating the layouts of reference graphs

to preserve users’ mental maps. To improve user intervention, ap-

proaches have been developed to explore annotated modules in bi-

ological networks by extending self-organizing maps [DEKB∗14]

and to edit Venn diagrams, which offers a way to analyze set unions

while preserving the overall shape of the diagram [HMdS∗15].

Bremm et al. [BLA∗11] extended the concept of Parallel Sets to

analyze time-dependent group memberships to interactively iden-

tify meaningful trends within time-varying data. These approaches

have successfully employed interactions on set diagrams using pre-

defined diagrams or networks, but it is not designed to analyze de-

tailed time-dependent changes in the set structure.

In this paper, we tackle the problem of dynamic set visualiza-

tion. Our focus is on visually elucidating individual changes in the
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Figure 2: Overview of the proposed approach. The asterisk “∗” indicates an optional step.

set membership while maximizing temporal coherence in the visu-

alization of the dynamic set diagrams.

2.2. Dynamic Graph Visualization

In regard to time-varying data, the visualization of dynamic graphs

is not a new research area [Nor96]; it has been studied aggres-

sively in recent years [BBDW14]. Temporal coherence in the vi-

sualization of dynamic graphs that allows viewers to maintain their

mental map is a primary technical challenge, which has been dis-

cussed in depth by Archambault et al. [AP13]. As described earlier,

this technical challenge leads to correspondence and interpolation

problems, particularly when handling offline dynamic graphs.

To solve the above two key problems, Brandes et al. [BIM12]

developed aggregation and anchoring techniques to handle dynam-

ics, under the assumption that the networks have relatively constant

global structures. The animation of a dynamic graph has also been

compared to its multiple temporal snapshots, and Archambault et

al. [APP11, AP16] concluded that animation is more useful when

accuracy is more important than speed. The pioneering work of

Friedrich et al. [FE01, FH02] decomposed a temporal transition of

a dynamic graph into components. Rufiange and McGuffin [RM13]

subsequently implemented DiffAni to present differences in multi-

ple graphs or animations between temporal snapshots according to

user preferences. The concept was further developed by Bach et

al. [BPF14], whose system, GraphDiaries, depicts graph dynam-

ics through a staged animated transition. Moreover, to advance the

visualization of dynamic graphs, they are often displayed with clus-

tered node structures [FA04, LSCL10, MKY12].

We consider that the most crucial gap between the problems of

visualizing dynamic set diagrams and dynamic graphs is that we

have to maximally avoid occlusion of individual sets. The dynamic

set diagrams inherently suffer from this occlusion problem because

they generally employ region-based representations unlike graphs

consisting of nodes and links only. In this work, we address this

gap by composing stepwise animations to visually analyze offline

dynamic sets while maximizing the visibility of evolving sets and

the temporal coherence in their relationships.

3. Visualization Design

Before describing our approach in detail, we summarize the visu-

alization design criteria employed in the proposed approach.

3.1. Overview

In our approach, we take as input a given collection of data el-

ements M = {m1,m2, . . . ,mn}, each of which is associated with

multiple sets S = {s1,s2, . . . ,sm}. We assume that the individual

elements and sets have unique IDs and that the 2D positions of

the elements at specific times are given beforehand. Each set is ex-

pected to contain at least one element and have some overlap with

other sets. Every set has a unique color assigned by the system as

described in the supplementary material.

Suppose that each temporal snapshot Ti at time ti consists of

data elements Mi = {mi1,mi2, . . . ,min} and constituent sets Si =
{si1,si2, . . . ,sim}. Note that mi j ( j = 1, . . . ,n) also represents the 2D

positions in the set diagram throughout this paper. Our task is to

find a proper interpolation between a pair of snapshots Tp(Mp,Sp)
and Tq(Mq,Sq), where Tp and Tq correspond to a source and tar-

get set diagram, respectively. Note that the elements and sets can

appear/disappear during a temporal change in the dynamic set dia-

gram according to whether they constitute the entire diagram. Our

visualization goal is to clarify the individual differences in the set

membership of the data elements between a specific pair of set di-

agrams Tp and Tq while retaining the static set relationships in the

two temporal snapshots. As mentioned previously, we assume that

the positions of the data elements are predefined in the given dia-

grams. This means that we only focus on the interpolation problem

for the dynamic set diagrams in this paper and thus exclude the cor-

respondence problem for finding the next layout of data elements

from our consideration.

Figure 2 presents an overview of the proposed approach. The top

path in the figure illustrates the process of rendering static set dia-

grams, and the bottom path corresponds to the process of compos-

ing a stepwise animation for dynamic set diagrams. In the visualiza-

tion of static set diagrams, we display set relationships over the pre-

existing elements by associating graph structures with the sets so

that we can outline the profile of each set as a contour line. In con-

trast, in the visualization of dynamic set diagrams, we decompose

c© 2019 The Author(s)

Computer Graphics Forum c© 2019 The Eurographics Association and John Wiley & Sons Ltd.



K. Mizuno et al. / Optimizing Stepwise Animation in Dynamic Set Diagrams

the temporal transition of the set membership into atomic changes

and sort them to generate a stepwise animation while maintaining

the temporal coherence of the graph structures associated with the

sets. Note that we call the decomposed atomic change an action.

3.2. Visualization Design Criteria

The goal of this study is to clearly visualize how each data ele-

ment moves or participates in and/or leaves specific sets during the

transition between a pair of consecutive set diagrams to help users

reliably follow these individual actions. In the proposed approach,

we achieve this by generating stepwise animations that fulfill the

following design criteria.

C.1 Better visibility: The visibility of each action should be en-

hanced during the stepwise animation, in particular by sup-

pressing undesirable occlusions and unrelated visual effects.

C.2 Limited degree of complexity: Each stepwise transition is

forced to contain only a few actions to effectively assist view-

ers to visually interpret the target action by following the vi-

sualization design proposed by Bach et al. [BPF14].

C.3 Minimal gaze shift: Total gaze shift throughout the animation

should be minimized to reduce the cognitive load imposed on

viewers [BHS12].

4. Rendering Static Set Diagrams

First, we explain how we render a set diagram at each time

step. As a variant of the line-based representation as described in

Section 2.1, the proposed approach constructs a skeleton graph as

a basis for representing each set since this representation can de-

lineate its topological transition easily compared to a region-based

representation. In the rendering process, we perform the following

three steps for each set, while steps 2 and 3 are described in the

supplementary material.

1. Skeleton construction: We construct a skeleton graph for each set

by referring to the positions of its member elements.

2. Contour generation: We dilate the skeleton graph to generate a

closed region and extract its profile as a contour.

3. Color assignment: We assign a unique color to the set and apply

its smooth gradation to the inside of the corresponding region.

Skeleton Construction. In the proposed approach, we use a

shortest-path graph as the skeleton of each set. The shortest-path

graph, which was proposed by de Berg et al. [dBMS11], can cap-

ture the spatial distribution of elements as a graph with variable

degrees of detail. In practice, the shortest-path graph can control

the sparseness of the graph, which allows us to explore the balance

between line-based and region-based representations. We have ex-

tended their shortest-path graph construction process to maintain

consistency between temporal snapshots.

According to KelpFusion [MRS∗13], the construction of the

shortest-path graph begins with the generation of a Delaunay tri-

angulation with the given positions of the collection of data ele-

ments in the target set. We then construct the shortest-path graph

by selecting edges from those of the Delaunay triangulation. Note

that, in the original KelpFusion process, edges for the shortest-path

graph are selected from the Delaunay triangulation in the order of

edge length. However, we want to maximally maintain the consis-

tency of edge connectivity with respect to the temporal change in

set membership to establish criteria C.1 and C.3 (in Section 3.2).

Therefore, we modify the priority of selecting the edges of the

shortest-path graph by referring to the positions of the elements

and their set memberships in the set diagrams at two time samples.

Suppose that we consider the transition between the two dia-

grams Tp and Tq at time samples tp and tq, respectively. In our im-

plementation, we first compute the Delaunay triangulation of each

set in that order and assign default priority values to the respective

edges in the triangulation by referring to their length. However, we

also adjust the edge priority values for our specific purpose by em-

ploying several criteria. Suppose that we denote the Delaunay tri-

angulations of sp j and sq j by Dp j and Dq j , respectively. We can

summarize the criteria as follows (Figure 3):

• Local temporal coherence (Figure 3(a)): We suppress the un-

necessary disappearance of the edge during the transformation.

Suppose that an identical edge is shared by Dp j and Dq j . We

suppress the unnecessary disappearance of this edge during the

transformation if the displacements of its two end elements m1

and m2 from Tp to Tq are both less than a given threshold. In

this case, we raise the priority of this edge in such a way that the

edge is more likely to be chosen in the corresponding shortest-

path graph.

• Global temporal coherence (Figure 3(b)): We retain the pres-

ence of this edge in the corresponding shortest-path graph at tq if

it connects two specific elements m1 and m2 in both Dp j and Dq j

to maintain the temporal coherence of this edge between the two

temporal snapshots. This is accomplished by giving higher pri-

ority to such an edge before extracting the shortest-path graph

from the Delaunay triangulation Dq j .

• Set connectivity (Figure 3(c)): We suppress an unwanted incon-

sistency in the connectivity of the shortest-path graphs of two

different sets sik and si j at ti (i = p,q). When an identical edge

is shared by the corresponding Delaunay triangulations Dik and

Di j , we preserve the existence of this edge if its end elements

(e.g., m2 and m3) are shared by the two sets or more at each time

sample.

Note that, in our formulation, we apply these three criteria to the

Delaunay edges to construct the shortest-path graphs.

5. Composing Optimized Stepwise Animations

The primary contribution of this work is described in this section;

that is, generating stepwise animations to clarify individual changes

inherent in a dynamic set diagram. We synthesize stepwise anima-

tions similar to those developed in GraphDiaries [BPF14]; how-

ever, our technical challenge is further complicated because we

must clarify individual changes in the set membership of the data

elements in addition to their displacements. This problem is solved

by respecting the design criteria described in Section 3.2, where

C.2 provides guidelines for decomposing the entire transition be-

tween two different set diagrams (Section 5.1), and C.3 and C.1 al-

low us to formulate an optimization problem to rearrange the order-

ing of the actions in the stepwise animation (Section 5.3). In prac-

tice, the entire sequence of the stepwise animation requires con-

siderable time to preview if it contains a large number of actions.
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Figure 3: Adjusting the priority values of edges in the Delaunay triangulation of each set for our specific purpose. This allows us to compose

a shortest-path graph for each set such that the graph respects the following three criteria: (a) local temporal coherence, (b) global temporal

coherence, and (c) set connectivity.

Thus, when required, we add an action grouping process prior to re-

arranging the ordering of actions to control the balance between vi-

sualization clarity and the number of animation steps (Section 5.2).

Consequently, in the process of generating optimized stepwise ani-

mations, we perform the following three steps:

1. Decomposition of temporal transitions: We decompose the entire

transition between two set diagrams into actions.

2. Grouping actions into clusters (optional): We group compatible

actions into clusters while preserving visualization clarity.

3. Optimization of the action cluster order: We optimize the order-

ing of action clusters in consideration of the design criteria.

5.1. Temporal Transition Decomposition

According to C.2, we first decompose the entire transition be-

tween temporal snapshots Tp(Mp,Sp) and Tq(Mq,Sq) into actions

a1,a2, . . . , and ak, where each action can be represented as follows:

ai = (m
p

M(i)
,m

q

M(i)
,sS(i),ci) i = 1,2, . . . ,k, (1)

where k is the number of actions. Here, the action consists of the

source and target positions of elements m
p

M(i)
and m

q

M(i)
at tp and

tq, respectively; target set sS(i), and action type ci. M(i) and S(i) are

the IDs of the elements and sets associated with the i-th action ai,

respectively. For convenience, we categorize actions (during [tp, tq])
into the following five types (Figure 4):

A.1 Disappearance: An existing element disappears from a set.

A.2 Appearance: A new element appears in a set.

A.3 Exclusion: An element leaves a set.

A.4 Inclusion: An existing element joins a new set.

A.5 Translation: An element simply moves while retaining its set

membership.

5.2. Grouping of Actions into Clusters

We then optionally group compatible actions into clusters to re-

duce the total number of animation steps, which makes it possible

to seek a compromise between visualization clarity and the length

of the animation. In this approach, we first collect all the possi-

ble groups of actions that can coexist into a single animation step

A.1

A.2

A.4

A.3

A.5
Target set

Target element

m1

m2

m3

m2

m3

m1

m2

m3

m1

m2

m3

m1

m2

m3

m1

m2

m3

m1

m4 m4

Figure 4: Five types of actions in our approach.

and then determine the optimal subsets of actions that cover the en-

tire collection of actions without any overlap. Our conditions for

grouping actions ai and a j are summarized as follows:

• Spatial closeness: Elements m
p

M(i)
and m

p

M( j)
are sufficiently

close to each other in Tp, or elements m
q

M(i)
and m

q

M( j)
are suffi-

ciently close to each other in Tq (Figure 5(a)).

• Motion similarity: The translation direction of m
M(i) and m

M( j)

is sufficiently similar, on the condition that ci and c j are transla-

tion type (A.5) within the same set (Figure 5(b)).

• Action consistency: Actions ai and a j must satisfy at least one

of the conditions shown in Figure 6. Generally, we group actions

of the same type, which are associated with the same element

(Figure 6(a), (c), and (e)) or the same set (Figure 6(b), (d), and

(f)). We also accept a pair with A.4 (or A.2) and A.3 (or A.1)

associated with a single set (Figure 6(g)). However, we do not

allow the same pair if it influences multiple sets during a single

animation step (Figure 6(h)), as this is more likely to cause un-

wanted occlusion among the multiple sets. Thus, we eliminated

this case from the list of acceptable action pairs.

To find an optimal collection of subsets of actions, we solve a

variant of the set cover problem that finds an optimal collection of

subsets that covers all elements while minimizing a predefined cost

function as described in the supplementary material.
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Figure 5: Spatial and motion conditions for grouping actions as a

cluster: (a) spatial closeness and (b) motion similarity (clustered

actions are indicated by the red font).

5.3. Optimization of the Action-Cluster Order

To fully satisfy criteria C.3 and C.1, we optimally sort the clusters

of actions (Section 5.2) in the entire animation. Suppose that we

have k′ action clusters, each of which consists of a single action or

a cluster of actions as shown in Figure 7. Here, we have to search

for an optimized permutation of such action cluster IDs {1, . . . ,k′}
to generate a visually appealing stepwise animation. This is accom-

plished by seeking a route that travels all positions of these action

clusters exactly once while minimizing the total cost of the route.

Thus, we formulate our optimization problem for ordering action

clusters, as a variant of the traveling salesman problem and search

for the permutation that minimizes the following cost function:

k′

∑
σ(i)=1

(αF1(gσ(i))+βF2(gσ(i))+ γF3(gσ(i))+δF4(gσ(i))), (2)

where σ is a permutation of the action cluster IDs {1, . . . ,k′} to

be optimized and gσ(i) is the i-th action cluster in σ. Note that F1,

F2, F3, and F4 are cost functions that penalize the total gaze shift,

visual clutter arising from the order of action clusters, frequency

of changes in the depth order of sets, and existence of multiple

components in skeleton graphs, respectively. In the following, the

four cost functions are explained in detail.

Total Gaze Shift. To incorporate criterion C.3, we define cost

function F1 to evaluate the total amount of gaze shift. In practice,

we sum up the distances between two consecutive action clusters.

If the type of the current action cluster is translation (A.5), we also

include the associated displacement of the action cluster. Thus, we

can write

F1(gσ(i)) = |P′
σ(i)−Pσ(i)|+ |Pσ(i+1)−P′

σ(i)|, (3)

where Pσ(i) is the gravity center of data elements in action cluster

gσ(i), and P′
σ(i) corresponds to the center of the data elements after

all translations of these elements are carried out. Note that P′
σ(i) =

Pσ(i) if gσ(i) is a non-translation action cluster.

Visual Clutter Arising from the Order of Action Clusters. To

maximally respect criterion C.1, we introduce three rules for order-

ing the action clusters by referring to their types as follows.

• Priority order of all actions: The observations in GraphDi-

aries [BPF14] suggest that the number of displayed elements

and edges should be reduced as much as possible to simplify

the information contained in the static images. By following this

idea, we prefer to order actions of the disappearance (A.1) and

exclusion (A.3) types first, then the translation (A.5) type, and

finally the appearance (A.2) and inclusion (A.4) types.

• Priority order among disappearance and exclusion actions:

Actions of the disappearance (A.1) and exclusion (A.3) types

shrink the sizes of the associated sets, and thus smaller sets

should be handled earlier in the sequence of such actions to

maximally expose changes in the set diagram (Figure 8).

• Priority order among appearance and inclusion actions: In con-

trast, actions of the appearance (A.2) and inclusion (A.4) types

should emerge in descending order of size (Figure 8).

Here, to penalize pairs of action clusters that violate the above rules,

we formulate the cost function F2 as follows:

F2(gσ(i)) =
k′

∑
j=i+1

L(gσ(i),gσ( j)) (4)

L(gσ(i),gσ( j)) = ∑
(ai′ ,a j′ )∈G

L′(ai′ ,a j′) (5)

G = gσ(i)×gσ( j) = {(ai′ ,a j′)|ai′ ∈ gσ(i)∧a j′ ∈ gσ( j)} (6)

L′(ai′ ,a j′) =














1 if O(ai′)> O(a j′),
1 if O(ai′) = O(a j′) = 0 and D(sS(i′))> D(sS( j′)),

1 if O(ai′) = O(a j′) = 2 and D(sS(i′))< D(sS( j′)),

0 otherwise,

(7)

where O(ai′) returns 0, 1, or 2 if ai′ is of the disappear-

ance/exclusion, translation, or appearance/inclusion types, respec-

tively. In addition, D(sS(i′)) indicates the depth order of set sS(i′)

prior to performing gσ(i) and decreases if the set approaches the top

of the depth layers. For example, let us find the optimal sequence

of actions that transforms the leftmost set diagram to the right-

most one in Figure 8. In this case, L′(aR−,aG−) = L′(aB−,aG−) =
L′(aB−,aR−) = 1 while L′ = 0 otherwise (Eq. (7)). This is because

all these actions are of the exclusion type and the green, red, and

blue sets are arranged in this depth order from top to bottom in the

diagram. Thus, the optimal sequence is aG−, aR−, and aB− among

the possible action sequences.

Frequency of Changes in the Depth Order of Sets. It is possible

to swap sets in the depth order when the number of elements in a

certain set changes according to some action. This inevitably causes

additional unwanted visual clutter, which violates the criterion C.1.

Thus, we aim to penalize such changes in the depth order of sets by

introducing the cost function F3 as the number of sets included in

Tp and Tq, which changes its depth after performing gσ(i).

Existence of Multiple Components in Skeleton Graphs. It is

still possible that a skeleton graph unnecessarily splits and merges

during an animation step, which causes unwanted confusion, espe-

cially for viewers who try to identify meaningful changes in the

set diagram. We aim to penalize such unwanted separation of each

set by introducing the cost function F4 as the number of connected

components in the skeleton graph of sets included in Tp and Tq.

6. Validation

We performed three different types of experiments to assess the

capability of the proposed approach, which can be summarized as:

• Computational performance: This experiment was conducted for

evaluating the performance of our approach (Section 6.2).
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Figure 6: Conditions for grouping actions as a cluster that corresponds to a single animation step. Appearance/Disappearance actions are

applied to (a) an element of (b) a set. Translation actions are applied to (c) an element or (d) a set. Inclusion/Exclusion actions are applied

to (e) an element or (f) a set. Inclusion and exclusion actions are applied to (h) an element or (g) a set.

m1

m2

m3

m4

m1

m1

m2

m3

m4

m3

m1

m2

m3

m4

m4

m1

m2

m3

m4
m1

m2

m4

m3

a1 a2 a3 a4 a5 ... ak

{a1,a3} {a2,a4,a5}
... gk'

actions:

action

clusters:
 

g1 g2

reordered action clusters: g3 → g1 → g4 · · ·
σ = {3,1,4, . . .} σ(1) = 3, σ(2) = 1, σ(3) = 4, . . .

Figure 7: Reordering action clusters, each of which consists of in-

dividual actions.

m1

m2

m3

m4

m1

m2

m3

m4
m1

m2

m3

m4

m1

n2

m3

m4

m2

m1

m2

m3

m4

m2

m1

m3

m4
m1

m2

m3

m4

m1

m2

m3

m4

aR-

aR+

aR-

aR+

aR-
aR+

aG-

aG+

aG-

aG+

aG-

aG+

aG-

aG+
aR-

aR+

aB-

aB+aB-

aB+

aB-

aB+ aB+

aB-

���g�� �������m1

Disapperance
or Exclusion

Apperance
or Inclusion

Figure 8: Optimizing the order of actions. From the leftmost dia-

gram to the rightmost one, the sequence of actions aG−, aR−, and

aB− is the optimal order among possible action sequences.

• Eye-tracking study: We tracked the eye gaze behaviors of

the subjects over synthesized animations to clarify the effects

of action order optimization and grouping in our approach

(Section 6.3).

• Task-based analysis: We recruited participants and asked them to

perform a specific set of tasks through an online questionnaire,

to identify the advantages and limitations of our approach when

compared with other relevant techniques (Section 6.4).

6.1. Data Generation

We prepared two real-world datasets for our experimental study:

D.1 Map of flu spread across Europe: We tried to visualize the spread

of flu on the map in Europe during three weeks from November

27, 2017 to December 17, 2017 [flu]. More specifically, we vi-

sualized how the three different types of flu (i.e., Type A(H1),

Type A(H3), and Type B) were prevalent in the respective Eu-

ropean countries during that period of time. In this example, the

elements of the set diagram correspond to countries on the map

and are thus static.

D.2 Authorships: As a dynamic set diagram of relatively large size,

we applied our method to visualize the trend of relationships

between authors and research topics in the area of graph vi-

sualization. This data was obtained by partially extracting au-

thors and keywords from the survey paper on graph visualiza-

tion [VBW15]. To investigate the trend in this dataset, we iden-

tified four static set diagrams by sampling the temporal change

in the authorship from 2008 to 2012, where the keywords and

authors were extracted as elements and sets, respectively.

We employed these datasets for our eye-tracking experiment and

online questionnaire as described later. Table 1 gives a summary

of the datasets, including the numbers of elements, sets, actions,

action clusters, and durations of the animations.

6.2. Computational Performance Study

Our prototype system was implemented on a desktop PC with In-

tel Xeon E5 CPU with 12 cores (2.7 GHz, 256 KB L2 Cache per

core and 30 MB L3 Cache), 64GB RAM, and an AMD Dual Fire-

Pro D700 GPU (3GB VRAM × 2). The source code was writ-

ten in C++ using the OpenGL, CGAL, IBM ILOG CPLEX, and

GAlib libraries for rendering, skeleton construction, integer pro-

gramming, and genetic-based optimization, respectively. Table 2
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Table 1: Numbers of elements (#{E}), sets (#{S}), actions (#{A}),

and action clusters (#{AC}) and duration for each dataset.

Data Figure #{E} #{S} #{A} #{AC} Duration

D.1 Figure 12 12 3 22 16 15.0 sec

D.2 Figure 13 17 6 144 41 30.0 sec

Table 2: Performance.

Data Rendering Skeleton Grouping Ordering

D.1 15.63 fps 0.002 sec 0.058 sec 38.731 sec

D.2 3.82 fps 0.006 sec 0.228 sec 194.481 sec

shows the computational time of each experimental result. Each

column represents skeleton graph construction (Section 4), action

grouping (Section 5.2), optimal reordering of the action clusters

(Section 5.3), and rendering (Section 4).

Figure 12 exhibits the temporal transition of flu spread across

Europe on the map (D.1). We employed this example to evaluate

how our approach can enhance the readability of the dynamic set

diagram when the elements are fixed on the map domain. In con-

trast to simple linear interpolation, we can readily track individ-

ual changes in the set membership with our stepwise animation.

Figure 13 shows the relationships between researchers and key-

words in their publications (D.2). In this case, however, the key-

word elements change their positions such that they come together

to constitute a researcher set they belong to. The stepwise anima-

tion effectively facilitates us to identify the translations or exclu-

sions/inclusions of keywords associated with the expertise of each

researcher. (See the accompanying video also.)

6.3. Evaluation of Visualization Criteria on Gaze Shift

We conducted an eye-tracking experiment (with Tobii Pro X3-120

eye-tracker) to evaluate the effectiveness of the optimized order

of actions and action clusters in terms of viewers’ gaze behaviors.

This lets us confirm that our approach only requires minimal gaze

shift (C.3) and facilitate viewers to fully focus their attention on the

changes in the animation.

Dataset. In this eye-tracking experiment, we employed the afore-

mentioned two real-world datasets (D.1 and D.2) to help the partic-

ipants intuitively interpret the context of the dynamic set diagrams.

Moreover, we prepared these two datasets such that the elements

are static and dynamic in the animated set diagrams, respectively.

Participants. We recruited 12 participants (three females and nine

males; ages ranged from 19 to 24) with normal vision for this study.

All of them were students majoring in computer science. Each par-

ticipant was compensated with 2,000 JPY for his or her participa-

tion.

Tasks. The participants were requested to track the local change in

the animations of the dynamic set diagrams with their eyes.

Conditions. We conducted the experiment with the four different

types of animations (Table 3). Here, RO means that we just ran-

domly arranged the temporal sequence of actions or action clus-

ters in the animation, while OO indicates that we optimized the se-

quence using the proposed approach. Moreover, NG, RG, and OG

Table 3: Conditions of our eye-tracking experiment. The first and

second two letters correspond to the ordering of actions or action

clusters and method of grouping individual actions, respectively.

Condition RO-NG OO-NG OO-RG OO-OG

Ordering Random Optimized Optimized Optimized

Grouping N/A N/A Random Optimized

correspond to the cases in which actions are ordered without group-

ing, randomly grouped into clusters, and assembled into an optimal

set of clusters with our formulation. In our experiment, we compare

the results of conditions (RO-NG) and (OO-NG) for evaluating the

effectiveness of ordering actions and (OO-RG) and (OO-OG) for

that of grouping compatible actions.

Procedures. We asked the participants to visually track changes in

the animations. During the eye-tracking experiment, we recorded

the eye-gaze distributions and movements of the participants, as

shown in Figure 9. Each participant observed eight animations (2

datasets × 4 conditions) in total, while the order of animations was

randomly changed as their frequencies were counterbalanced.

Results. Figure 9 shows the average heatmaps of the eye-gaze dis-

tributions for the keyframe images obtained using datasets D.1 and

D.2. In the case of stepwise animations without the ordering opti-

mization (RO-NG), the participants sometimes looked outside the

animated region, and thus they sometimes failed to focus on lo-

cal changes in the animations. In contrast, the stepwise animations

with our ordering optimization (OO-NG) successfully prompted all

participants to visually track the local animated regions. In compar-

ison with the stepwise animations based on random action group-

ing (OO-RG), our optimized action grouping (OO-OG) facilitated

the participants to concentrate on the local animated regions. This

comparison suggests that our action grouping conditions success-

fully drew visual attention toward animated regions from the par-

ticipants.

6.4. Evaluation of Readability on Analysis Tasks

In addition, we administered an online questionnaire with multiple-

choice questions to investigate the readability of our visualization

results when compared with conventional techniques.

Dataset. We again employed the aforementioned two real-world

datasets; that is, the flu (D.1) and the authorship (D.2) datasets.

Participants. We recruited 38 participants (12 females and 26

males; ages ranged from 21 to 65) with normal vision for this

study. Participants were primarily computer science majors and

were compensated with 1,500 JPY for their participation.

Tasks. We selected four common tasks based on conventional tax-

onomy [AMA∗14, BPF14] for our analysis:

Q1 (local) Find elements that belong to a specific set.

Q2 (local) Find sets that contain a specific element.

Q3 (global) Find if a specific set has its elements changed.

Q4 (global) Find sets having the most drastic changes in terms of

the number of elements.

We prepared the first two as local tasks by referring to the element-

related tasks supported by KelpFusion as summarized in the survey
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Condition RO-NG OO-NG OO-RG OO-OG

D.1

2.5 7.5 12.5 2.5 7.5 12.5 2.5 7.5 12.5 2.5 7.5 12.5 

D.2

5.0 15.0 25.0 5.0 15.0 25.0 5.0 15.0 25.0 5.0 15.0 25.0 

Figure 9: Average heatmaps of eye-gaze distribution. The white regions correspond to dense regions of the eye-gaze distribution, while the

yellow circles indicate local animated regions. The white numbers on the lower right of the images represent the corresponding time (in

seconds).

(a) (b)

Figure 10: Results of the online questionnaire for D.1. (a) Answer

categories and (b) task completion times for the four tasks. The error

bars represent the standard errors.

(a) (b)

Figure 11: Results of the online questionnaire for D.2. (a) Answer

categories and (b) task completion times for the four tasks. The error

bars represent the standard errors.

on set diagram visualization [AMA∗14], and the last two as global

tasks of trend analysis employed in [BPF14]. Based on this, we thus

designed four questions corresponding to each of the task for both

datasets. (See the supplementary material for details.)

Conditions. We compared three types of animations. Three an-

imations were prolonged equally for 15 seconds for D.1 and 30

seconds for D.2.

O1 Simple linear interpolation (Parallel): All actions were ani-

mated linearly in parallel.

O2 3-step animation (3-steps): All actions were categorized into

three types; that is, removal (A.1, A.3), translation (A.5), and

addition (A.2, A.4) first, and the respective types of actions

were animated individually in three steps, similarly to Graph-

Diaries [BPF14].

O3 Stepwise animation (Ours): All actions were animated in a

stepwise manner by applying the proposed approach.

Setup. During the questionnaire, participants could use the video

progress bar to rewind or stop the animation. However, this will

be measured in each task completion time for further analysis. We

provided participants with the same animation content but with dif-

ferent color assignments for both datasets, and its reflections and

rotations on D.2 [BPF14]. We also counterbalanced the task order

as well as the order of conditions for each task to avoid unwanted

learning effects and influence from specific color assignments.

Procedures. Each participant was asked to answer two trial ques-

tions, including 24 formal questions (i.e., 2 datasets × 3 conditions

× 4 tasks) in this questionnaire. We first described how to visu-

ally interpret the set structures and then train participants with two

simple exercises. Once the participants understood the explanations

and moved on to the main questionnaire, they were asked to watch

an animation video (stopping and rewinding allowed) and answered

the corresponding multiple-choice questions. To avoid random se-

lection, the participants could optionally select the “I don’t know”

option. This study required approximately 40 minutes to complete.

Results. Figure 10 and Figure 11 show the statistical results for

both datasets, each of which consists of answer categories (i.e, cor-

rect, wrong, and no answer) (Figure 10(a) and Figure 11(a)) and av-

erage task completion times (Figure 10(b) and Figure 11(b)). Note

that, among the 38 participants, we eliminated four participants as

outliers from the results due to their low accuracy ratios (less than

25 percent, which is close to random selection from the solution

pools), and further screened them out if they spent more than 800

seconds on a task.

Our first example is the flu dataset. Recall that the positions of all

elements here are fixed on the map as they correspond to the Euro-

pean countries. From the results presented in Figure 10, we found

that ours achieved higher or equal accuracy compared to parallel

and 3-steps (Figure 10(a)), and participants could accomplish the

tasks faster when using ours (Figure 10(b)). This tendency was es-

pecially strong for local tasks (Q1 and Q2), but less significant for

global tasks (Q3 and Q4). Parallel in general leads to low accuracy

and high completion times for local tasks, while 3-steps is weak

for global tasks. This is probably because important changes have

been grouped together and additional time is thus needed to unravel

the details.

Nonetheless, the advantage of stepwise animation changes when

elements in the visualization begin to move. Ours still performs the

best in terms of accuracy and completion time for Q2, while the

accuracy decreases for Q1 (see Figure 11). For Q1, Q3, and Q4,
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3-steps has better accuracy, while there is no significant advantage

for the task completion time. During the analysis, we found that

Q3 has extremely low accuracy for all approaches. This is because

participants need to track individual changes in their membership

of all elements during the spatial movement. We also consider that

this is a difficult task requiring high mental workload.

6.5. Discussion

Based on the observations in Section 6.3 and Section 6.4, the eye-

tracking experiment showed the effectiveness of gaze shift op-

timization in the sense that our stepwise animation successfully

guided participants’ visual attention to each step of the animation.

We also learned from the task-based analysis that our stepwise an-

imation provides better readability and help minimize the time to

complete local analysis tasks (i.e., Q2)). This is because our ap-

proach decomposes complicated changes inherent in the dynamic

set diagram to a sequence of actions, and thus the number of de-

composed action clusters (i.e., the duration of the animated actions)

effectively reflects the degree of complexity involved in the mem-

bership change (D.1). Meanwhile, parallel happened to be rela-

tively competitive with ours for global tasks when the elements

had fixed positions. We assume that participants can still identify

important changes in the set coverage over time if the animation is

slow enough to elucidate all the necessary actions.

On the contrary, in the analysis of the authorship dataset (D.2),

the participants failed to conduct global tasks even with our step-

wise animation. To further understand the data, we also conducted

an ANOVA test to investigate the significance levels (p-values)

on the answers of our questionnaire. Nonetheless, the difference

between the three studied approaches are not significant enough

(p < 0.05) to strongly support our hypothesis on the advantage of

stepwise animation. This is probably due to the excessive overlap

among the sets and too high speed of membership updates in the an-

imation. Some participants claimed that the speed of the stepwise

animation was too fast to follow, while suppressing conflicts among

elements also helps to complete the tasks, which has been reflected

in the task completion times. We expect to have a detailed study

with a more sophisticated setting to clarify this question. Neverthe-

less, the between-subjects significance was smoothed in all condi-

tions once having recruited a sufficient number of participants.

In summary, the stepwise animations are then considered more

suitable for local tasks on the analysis of dynamic set diagrams,

while more advanced analysis on understanding dynamic set dia-

grams should be further explored. As a limitation of our approach,

it is still possible to misinterpret actions of translation as those of

element exclusion/inclusion, which has been also suggested by the

difference in the results between (D.1) and (D.2), in which the data

elements were static and dynamic, respectively. Effectively con-

trolling the spatial placement of elements and their associated sets

while adjusting the animation speed still remains a technical chal-

lenge for future research.

7. Conclusion

In this paper, we have presented an approach to visualizing dy-

namic set diagrams by composing stepwise animations. The goal

of this study was to properly decompose atomic changes inher-

ent in the dynamic set diagram for enhancing the visual readabil-

ity of the individual temporal changes in the set membership. We

achieved three appropriate design criteria for visualizing set dia-

grams by employing a contour-based representation. An algorithm

is developed for optimizing the order of individual atomic changes

while allowing the grouping of compatible changes in composing

visually appealing stepwise animations Our results together with

an eye-tracking experiment demonstrate the effectiveness of the ap-

proach for visually tracking the detailed transitions in dynamic set

diagrams, and a user study based on online questionnaires eluci-

dates the advantages and possible issues of the proposed approach.
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Figure 12: Snapshots of the stepwise animation of the flu dataset D.1. This animation sequence contains 22 actions and 16 action clusters.
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