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Figure 1: Manipulating feature space for categorizing images. Global manipulation allows us to edit the closeness between image categories on
the screen space as shown at the top right, while local manipulation controls the distances between images within each category as depicted at
the bottom right. Here, different background colors are assigned to image categories where images in each category are tied with edges of the
same color.

ABSTRACT

The demand for interactively designing the image feature space has
been increasing due to the ongoing need for image retrieval, recog-
nition, and labeling. Although conventional methods provide an in-
terface for locally rearranging such a feature space, category-level
global manipulation is still missing and thus manually rearranging
the overall image categorization usually requires a time-consuming
task. This paper presents a novel approach to exploring images
in the database through the manipulation of bilevel feature space
representations, where the upper- and lower-level representations
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characterize the global categories and local features of the images,
respectively. In this approach, the upper-level space describes sim-
ilarity relationship among the underlying categories extracted from
the bag-of-features model, while the lower-level space encodes the
closeness between a pair of images within the same category. The
key idea behind this approach is to associate the relationship be-
tween the two feature spaces with a two-layered graph representa-
tion and project it onto 2D screen space using pivot MDS for user
manipulation. Experimental results are provided to demonstrate
that our approach allows users to understand the entire structure
of the given image dataset and reorganize the layout according to
their preferences both locally and globally.

Keywords: Image exploration, feature space manipulation, bag-
of-features, dimensionality reduction

Index Terms: I.3.6 [Computer Graphics]: Methodology and Tech-
niques; H.5.1 [Information Interfaces and Presentation]: Multime-
dia Information Systems



1 INTRODUCTION

Recent development of web infrastructure has resulted in the rapid
increase in the number of images accessible to common users of
the Internet. The demand for managing such large-sized image
datasets promoted many commercial image database systems in-
cluding Flickr and Google Image Search. Nonetheless, seeking a
more effective means of retrieving specific images from the im-
age database systems still poses a variety of interesting problems
from a technical point of view. One of the common solutions is to
encode images in a feature vector format and then plot the respec-
tive images in the feature space for estimating the similarity be-
tween them. Dimensionality reduction has often been employed to
project the high-dimensional feature space on the two-dimensional
(2D) screen so that we can visualize the underlying structure of the
image dataset. In practice, this scheme makes it easy for us to edit
the layout of the images through the screen space manipulation for
more effective image retrieval.

Although this style of image exploration is intuitive, it still suf-
fers from a problem of the semantic gap, which is defined to be
the gap between the semantics of images recognized by the users
and their relative positioning within the feature space. The primary
reason for this problem is that existing approaches only allow us to
change local arrangement of images in the feature space, which is
not necessarily coincident with the image semantics in our mind.
This means that we usually have our own categorization of the im-
ages and try to rearrange the images in the feature space to best
meet our expectations. Nonetheless, editing local configuration of
the image feature space is not still sufficient for this purpose and
thus new high-level operations for organizing the overall catego-
rization are required.

This paper presents an approach to manipulating both the local
and global arrangements of images by projecting the overall fea-
ture space onto the 2D screen space. For this purpose, we incor-
porated bilevel feature space representation so that we can asso-
ciate the global categories and local features of the images with
the upper- and lower-level graph structures, respectively. Here, the
upper-level graph characterizes the relationships among the under-
lying image categories extracted from the bag-of-features model,
while the lower-level graph shows local closeness between a pair of
images within the same category. The two graphs are arranged in
a hierarchical fashion so that we can describe how each image be-
longs to a specific set of image categories. The entire feature space
of the images can efficiently be transformed into 2D screen space
by taking advantage of a dimensionality reduction technique called
pivot MDS, where we employ representative feature vectors of the
image categories as the pivots for accelerating the computation of
large-scale eigenproblems. Experimental results are also provided
to demonstrate that how our approach helps users explore specific
images in the feature space through local and global operations.
Figure 2 shows the overview of the proposed approach.

Figure 1 presents how we can manipulate the relative positions
of images using the proposed approach. Here, global manipula-
tion allows us to edit the closeness between image categories on the
screen space as shown at the top right of the figure, while local ma-
nipulation basically controls the distances between images within
each category. In our system, different background colors are as-
signed to the images by referring to their primary categories while
those in the same category are tied with edges of the same color.
This color-based rendering scheme gives us a perceptually plausi-
ble guide to identify the images of the same category, and further
helps us perform category-aware manipulation of the entire feature
space as well as local manipulation of image arrangement.

The remainder of this paper is structured as follows: Section 2
provides a brief survey on existing techniques related to our ap-
proach. Section 3 describes the representation of the bilevel feature
space together with its projection onto the 2D screen space. Sec-

Figure 2: Overview of the proposed approach.

tion 4 explains implementation details on how we can interactively
explore images in the feature space through the screen space ma-
nipulation. After presenting experimental results together with dis-
cussions in Section 5, we conclude this paper and refer to possible
future extensions in Section 6.

2 RELATED WORK

Filling the semantic gap in the data exploration has been a very im-
portant subject, and visualization often helps us effectively explore
the feature space of the data, as done in interactive analysis of text
semantics for example [6]. In this section, we focus on the problem
of image exploration in the feature space, and provide a brief sur-
vey on two relevant research topics: visualizing image datasets and
dimensionality reduction.

2.1 Visualizing Image Datasets

As the number of images increases in the dataset, more sophisti-
cated visual metaphors should be invented to effectively visualize
the underlying structure of the corresponding image feature space.
This indeed allows us to understand the semantic configurations of
the overall feature space, and further explore a specific set of im-
ages through the screen-space interactions.

Eler et al. [5] and Paiva et al. [19] proposed a tree structure
named similarity-tree for image dataset, which successfully clari-
fied the hierarchical structures hidden behind the image datasets.
While the similarity-tree representation helps us explore the image
feature space, it is still straightforward representation of hierarchi-
cal relationships among images and often not intuitive enough for
users to search for specific images of interest. In particular, the
spatial relationship between images in the screen space dost not
faithfully reflect their similarity. This means that a pair of image
nodes are not necessarily close to each other even when they are
within a small neighborhood on the screen space, because they may
be connected via a parent node at long distance. Furthermore, the
computational cost for laying out the similarity trees is relatively
high and thus not appropriate for interactive environments in our
setting. Kennedy and Naaman [13] and Heath et al. [10] identified
a new type of relationship between a pair of images if they contain
similar objects, and visualized such relationships by drawing the as-
sociated graph layouts. The extracted graph representation makes it
possible to compute the dissimilarity between images, and thus pro-
vides an effective means of retrieving images that are similar to the
key image. However, these methods are again computationally ex-
pensive and thus cannot be directly employed for our purpose. Fan
et al. [7, 8] proposed an approach to extracting hierarchical struc-
tures of the image regions by employing both feature space analysis
and textual annotations. This approach successfully identifies im-
age semantics by referring to the extracted hierarchical structures
while the quality of the image classification strongly depends on
the accuracy of the textual annotations.



On the other hand, Thomee et al. [28, 27] implemented a browser
for interactively exploring images in the feature space through a
graphical user interface. This approach can effectively incorporate
feedback from users for intuitive manipulation of the image feature
space. Nonetheless, the proposed framework cannot restrict the up-
dates in the local configuration of the feature space, and can unnec-
essarily modify the layout of images in which users are not inter-
ested at all. Another approach to browsing large image datasets has
been proposed by Brivio et al [2], where they employed Voronoi di-
agrams as the underlying layout of the images. While this provides
an effective interactive environments, it does not allow users to edit
the configuration of the feature space, unfortunately.

2.2 Dimensionality Reduction

Visualizing datasets in high-dimensional space has been an impor-
tant technical problem in the last decade. Dimensionality reduction
schemes usually provide us with powerful solutions to this problem
in the sense that they project such high-dimensional data onto low-
dimensional space where we can visually inspect the underlying
structure of the datasets. One traditional scheme for dimensional-
ity reduction is multidimensional scaling (MDS) [29, 14], which
provides the arrangement of data samples in the low-dimensional
space by maximally respecting the distance between every pair
of samples in the original high-dimensional space. Indeed, MDS
has often been employed for browsing images by projecting high-
dimensional feature space onto the 2D screen space, where various
types of similarities were incorporated for the purpose of image re-
trieval [21, 16, 23]. A self-organizing map (SOM) is another popu-
lar technique to transform data samples in high-dimensional space
specifically to 2D, and several SOM-based techniques for image
browsing and retrieval have been developed [15, 26].

Recently, user-driven dimensionality reduction approaches have
been proposed so that users can interactively manipulate the con-
figuration of the high-dimensional feature space according to their
preferences. Mamani et al. [18] employed a sophisticated frame-
work called local affine multidimensional projection [12] for this
purpose, and realized a visualization system that allows users to edit
the structure of the high-dimensional feature space by interactively
updating the local configuration of images through the 2D screen
space. One of the most relevant work has been done by Paulovich
et al. [20], where they developed an approach to interactively ma-
nipulating the feature space through the piecewise Laplacian-based
projection. Their method is similar to our method in that they em-
ployed a neighborhood graph for defining local similarity among
images in the feature space, and allows users to edit the graph con-
nectivities through the 2D screen space manipulation. Nonetheless,
their method primarily focused on manipulation of local configu-
rations in the feature space. On the other hand, our proposed ap-
proach provides an effective means of editing both the local and
global configurations while retaining the consistency among them,
by incorporating bilevel representation of the feature space.

3 CONSTRUCTING THE BILEVEL FEATURE SPACE

As described earlier, we provide global operations for rearranging
clustered sets of the images in the feature space, as well as local
ones for adjusting the closeness of a specific image to its neighbors.
In particular, the global manipulation will allow us to change the
configuration of the feature space by referring to the underlying
categorization of the images. For this purpose, we employ bilevel
representation of the feature space and prepare a two-layered graph
structure for that representation, as shown in Figure 3. In the rest of
this section, we explain three steps for the construction of the initial
representation of the bilevel feature space: categorizing images by
their features, constructing the two-layered graph, and projecting
the feature space onto the screen space.

Figure 3: Bilevel feature space representation and its associated two-
layered graph.

3.1 Categorizing Images by Their Features

For initializing the bilevel feature space, we have to extract an
underlying categorization of the images so that we can compose
category-based hierarchy over the image dataset. In this work, we
introduced the bag-of-features model [25, 3], which has been re-
cently popular for image recognition and retrieval since it can sig-
nificantly accelerate the associated image exploration and retrieval
and also improve their accuracy. The construction of the bag-of-
features model commonly begins with extracting SIFT features [17]
from each image in the dataset, where the SIFT descriptor is known
to be robust enough for affine transformations and variation in view,
lighting and occlusion conditions. Since a SIFT feature is usually
encoded as a 128-dimensional feature vector, we plot each SIFT
feature as a point sample in the 128-dimensional Euclidean space
first of all. We then apply the k-means clustering to the set of fea-
ture vectors and extract the center of each cluster as the visual word,
which has been considered as a representative of some category
implicitly defined in the bag-of-features model. In practice, we em-
ployed the visual words as the nodes of the upper-level graph in the
proposed feature space representation, as shown in Figure 3. As for
the number of clusters, we empirically set k = 100, while k can be
adjusted according to the characteristics of the given image dataset.

According to the bag-of-features model, we can represent each
image as a histogram with respect to the visual words we have ex-
tracted. This can be accomplished by projecting each SIFT fea-
ture contained in that image to the closest visual word in the 128-
dimensional feature space. In practice, the histogram of the image
can be composed by counting the occurrences of each correspond-
ing visual word, as shown in Figure 4. This encoding based on
the vector quantization now transforms the 128-dimensional SIFT
feature vector of each image into a new k-dimensional vector repre-
sentation with respect to the k extracted visual words, which usually
allows us to enjoy a sparse vector representation of the image by as-
sociating it with a small number of representative features, i.e., the
visual words. Note that, in our implementation, common weights
known as tf-idf (term frequency - inverse document frequency) [25]
has been applied to the histogram representation, in order to take
into account the frequency of each visual word in the entire set of
images. We use this histogram representation of the images as the
fundamental for constructing the bilevel feature space.

3.2 Constructing the Two-Layered Graph

Our next step is to construct the two-layered graph by incorporat-
ing the bag-of-features model we have composed, as shown in Fig-
ure 4. Actually, by the presence of the two-layered graph, we can
describe the relationships among image categories with the upper-
level graph while associate local arrangements of images with the
lower-level graph. This type of graph data structure allows us to



Figure 4: Histogram representations of images.

perform fuzzy clustering of images in the feature space and thus
implicitly represent semantic polysemy of the images also. The
construction of the two-layered graph consists of three parts, i.e.,
constructing the upper-level graph, connecting edges between the
two graphs, and constructing the lower-level graph, each of which
will be detailed in what follows.

3.2.1 Constructing the Upper-Level Graph

Let us denote the upper-level graph Gu in this paper. As mentioned
previously, we represent each extracted visual word as the node of
Gu, which also serves as a representative of some image category
in our approach. For connecting the nodes within Gu, we would
like to find some meaningful correlation between every pair of the
visual words. For that purpose, we define a distance metric between
the nodes vi and v j in Gu as follows:

dg(vi,v j) = rLmin +(1− r)Lmax, where

r =
|J|

|I|
and J = {s ∈ I | Hi(s) > 0 and H j(s) > 0}. (1)

Here, I represents the entire set of input images, Hi(s) is the his-
togram value of the i-th visual word vi contained in the image s ∈ I,
and |J| is the number of images contained in the image set J. We
also set Lmin = 1.0 and Lmax = 2.0 by default in our setting. This
means that we define the closeness between vi and v j by count-
ing the number of images that contain both the i-th and j-th visual
words as the representative features. In the actual construction of
Gu, we connect each node with its l-nearest neighbors by employ-
ing Eq. (1), where l is set to be 5 in our implementation.

3.2.2 Connecting Edges Between the Two Graphs

Suppose that we represent the lower-level graph as Gl , where its
node corresponds to an image of the given dataset in the proposed
two-layered graph representation. After having constructed the
upper-level graph Gu, we try to connect edges between the nodes of
Gu to those of Gl . This is because in our approach we would like
to associate each image with a specific number of visual words that
are matched with major features contained in that image.

For finding edges emanating from an image node s in Gl , we
first search for the visual word v1 that has the maximum histogram
value of the image s, and insert an edge from s in Gl to v1 in Gu. We
then choose a visual word v2 if it has the largest histogram value of
the image s among those adjacent to v1, and connect s and v2 with
an edge. We perform the iteration for finding the next visual word
among those adjacent to the already selected visual words in Gu,
until we can insert m edges from s to the nodes in Gu. Note that
the m edges incident to s may be reconnected through interactive
manipulation of the feature space, which will be described later in
Section 4.

3.2.3 Constructing the Lower-Level Graph

Finally, we consider how to connect nodes within the lower-level
graph Gl in our approach. In practice, we seek n-nearest neigh-
bors of each image node as its adjacent nodes in Gl , in a similar
way to in Gu. Nonetheless, we use a different metric for evaluating
the distance between image nodes in Gl . This is because every im-
age node now largely depends on a specific number of visual word
nodes in Gu, and thus we should respect such association with the
underlying image categorization when positioning the image node.
This leads us to the idea of locating each image node in Gl using
a barycentric coordinate system with respect to its adjacent visual
word nodes in Gu. Our approach employs the formulation by Rus-
tamov et al. [22] for this purpose, where we can define the distance
metric between the image nodes si and s j in Gl as

dl(si,s j) =

√

−
1

2
(bbb(si)−bbb(s j))

TDDD(bbb(si)−bbb(s j)). (2)

Here, DDD is the matrix of squared distances with respect to the visual
word nodes in Gu, and bbb(si) conforms to the barycentric coordi-
nates of the image node si. Note that the (i, j)-component of DDD can
be calculated as the squared distance between the visual words vi

and v j using Eq. (1). Furthermore, the i-th barycentric coordinate
of an image node s can be obtained by

bbbi(s) =







Hi(s)

∑ j∈A H j(s)
( j ∈ A)

0 otherwise,

(3)

where A is a set of visual word nodes in Gu that are adjacent to s
in Gl . Again, the parameter n can be adjusted by users, while it is
empirically set to be 3 in our implementation.

Note that we can use Eq. (2) also for evaluating the length of an
edge between the image node s in Gl and visual word node v in
Gu. More specifically, we can rewrite the barycentric coordinates
Eq. (3) for the visual word node v j as follows:

bbbi(v j) =

{

1 (i = j)

0 otherwise.
(4)

3.3 Projecting the Feature Space onto the Screen Space

The last step of initializing the bilevel feature space is to project
it to 2D so that we can allow users to interactively explore the
images in the dataset and rearrange their arrangement through the
screen space. Indeed, the problem of visualizing high-dimensional
data has been a common problem and not limited to image dataset,
and thus various dimensionality reduction methods are proposed for
general use. The aforementioned multidimensional scaling (MDS)
can be thought of as one classical solution of this dimensionality re-
duction problem, where it transforms high-dimensional point sam-
ples onto low-dimensional space using mutual distances among the
the samples in the original high-dimensional space.

In this classical MDS setting, however, the associated computa-
tion takes more time as the number of samples increases, since we
have to solve the eigenproblems of the size equal to the squared
number of samples. Landmark MDS [4] accelerates the computa-
tion by first calculating the low-dimensional layouts of the smaller
set of representative samples, and then successfully locates other
samples in the low-dimensional space by referring to the positions
of these representatives. Multilevel MDS called Glimmer [11] has
also accelerated this type of distance-based dimensionality reduc-
tion process by taking advantage of GPU functionalities.

In our approach, we employ the pivot MDS [1] for efficiently
projecting bilevel feature space onto the 2D screen space for our
purpose. The pivot MDS is a more advantageous method than the



Figure 5: Local and global operations for manipulating feature space.

landmark MDS in that it has been designed to alleviates potential er-
rors in the landmark MDS by taking into account distances of repre-
sentative samples from other nonrepresentative samples. Note that
the representative samples are called pivots in [1], and we employ
this terminology also in this paper. For projecting the bilevel fea-
ture space in our approach, we just employ the visual word nodes in
the upper-level graph Gu as the pivots, while we compute the short-
est path between every pair of nodes by referring to the distance
associated with the edges in the composite two-layered graph, on
the assumption that we can freely traverse between the upper-level
graph Gu and lower-level graph Gl through the edges in between.
This significantly accelerates the projection of the bilevel feature
space onto the 2D screen space, which is important for realizing an
interactive environment for image exploration.

4 MANIPULATING THE FEATURE SPACE

Now we are ready to rearrange the images in the feature space using
both global and local manipulations that become available from the
bilevel representation of the feature space. Our basic strategy here
is to select a set of images we want to manipulate by clicking them
on the screen space, and then adjust their displacement by mouse
motion. This is accomplished by updating the distance among vi-
sual word nodes and image nodes in the two-layered graph we con-
structed previously as shown in Figure 5 (cf. Section 3). In practice,
with the local operations we basically update the lengths of edges
incident to image nodes, so that we can manually control the corre-
lation among a specific set of images to make them either closer to
or further from each other. On the other hand, the global operations
enable us to adjust the lengths of edges between visual word nodes
and thus modify the image categorization by increasing/decreasing
the correlation between particular pairs of categories. The remain-
der of this section describes the details of these two types of opera-
tions for rearranging the feature space of the images.

4.1 Local Manipulation of the Feature Space

Editing the local arrangements of images helps us adjust the prede-
fined similarity among a specific set of images within a small neigh-
borhood of the feature space. This means that the local manipula-
tion of the feature space allows us to increase the closeness among
images to categorize them into the same group, or to decrease the
closeness to make them apart from each other in the feature space.
Figure 6(a) shows how we can achieve this local manipulation by
updating the barycentric coordinates of each target image node.

Suppose that we would like to control the closeness among a
set of user-selected images s j ( j ∈ B). In our implementation, we
first compute the average barycentric coordinates of the visual word
nodes that have connection with the user-selected image nodes as

ggg =
1

|C| ∑
i∈C

bbb(vi), (5)

(a) (b)

Figure 6: Updating the distance between the nodes in the two-
layered graph when manipulating the feature space. (a) local ma-
nipulation. (b) Global manipulation.

where C represents the set of the visual word nodes and |C| is the
number of nodes in C. The closeness among the selected images is
controlled by updating bbb(s j) to bbb′(s j) as

bbb′(s j) = (1− t)bbb(s j)+ tggg ( j ∈ B). (6)

Here, t is a parameter that can be controlled by users, where we
can increase and decrease the closeness among the image set by
setting 0 < t(< 1) and t < 0, respectively in Eq. (6). Note that after
updating the barycentric coordinates of the images s j( j ∈ B) using
Eq. (6), we recalculate the weights of edges between image and
visual word nodes and also reconnect edges among image nodes.

4.2 Global Manipulation of the Feature Space

On the other hand, global manipulation of the feature space allows
us to design the categorization of the images by altering the similar-
ity between the visual words. This means that the global operation
just updates the distance between the visual word nodes selected by
users, as illustrated in Figure 6(b).

In this case, we first ask users to select a set of images in the
feature space through the screen space. We then extract a set of
visual word nodes in the upper-level graph Gu that are adjacent to
the nodes of the selected images. For each edge between the visual
word nodes vi and v j in the set, we update the length di j to d′

i j as:

d′
i j =

{

max{Lmin,min{di j − t(di j −Lmin),Lmax}} i, j ∈V

di j otherwise
(7)

where V is an index set of the extracted visual word nodes. Note
that t is a parameter again that can interactively be edited by users,
where we can decrease the distance between the visual word nodes



(a) (b)

Figure 7: Local manipulation of the feature space: (a) Original layout of images where tomato images are selected. (b) Local manipulation
permits us to increase the closeness of the selected two images.

when 0 < t and increase it when t < 0 while the distance remains to
be within the range [Lmin,Lmax]. This process also lets us update the
distance matrix among the visual word nodes DDD, which means that
we recompute the edge connection among visual word nodes and
image nodes in our two-layered graph representation. The illustra-
tion on the right of Figure 5 and Figure 6(b) show such cases where
the connectivity among the set of extracted visual word nodes is
updated with the global manipulation of the feature space.

5 RESULTS AND DISCUSSION

In this section, we present experimental results of the proposed ap-
proach together with discussion on its possible limitations. Our pro-
totype system has been implemented on a desktop PC with Quad-
Core Intel Xeon CPUs (3.2GHz, 8MB cache) and 8GB RAM, and
the source code was written in C++ using OpenCV for SIFT feature
extraction and matrix computation, and the sqlite and soci library
for managing the image database. The interface for visualizing and
manipulating the image feature space has been implemented inde-
pendently with JavaScript.

5.1 Experimental Results

Throughout this experiment, we employed the bag-of-features
model to extract 100 visual words from each image dataset, and
represented the respective images as a vector of 100 histogram val-
ues. In constructing the two-layered graph, we empirically set l = 5,
m = 3, and n = 3 as described in Section 3. Indeed, the choice
of these parameters comes from the consideration that we should
seek compromise between multiple categorization of images and
the sparseness of the two-layered graph.

Figure 1 shows an example where we applied local and global
manipulation to the image dataset, which has been composed by
manually collecting 75 copyright-free photos of cats and contain-
ers. As described earlier, we used the global manipulation to in-
crease the closeness between two categories of images of food in a
container. On the other hand, the local manipulation just controls
the distance between images within each category as shown in the
figure. Note that each image has a background color that corre-
sponds to the primary visual word in the sense that the correspond-
ing histogram value is the largest. Furthermore, every image shares
an edge with its nearest neighbors within the same category and the
edge is rendering in the corresponding color also in our implemen-

tation. This color assignment scheme systematically supports our
category-aware manipulation of the feature space.

We also employed another image dataset Caltech256 [9] for our
experiment. We selected 20 categories in advance and randomly
extracted 50 images from each category to collect 1,000 images in
total. The proposed local manipulation permitted us to fit similar
images into a small space as shown in Figure 7. Here, we first se-
lected tomato images as shown in Figure 7(a), where the selected
images were enlarged. We then controlled the closeness between
the selected images by mouse motion as shown in Figure 7(b). On
the other hand, as shown in Figure 8, we can make two image
categories, i.e. tomatos and CDs, closer to each other through the
global manipulation of the feature space, by selecting the images
contained in those categories. In practice, we focused images of
different categories by referring to the background colors as shown
in Figure 8(a), and tried to merge the two small categories into one
as shown in Figure 8(b). The global manipulation effectively helps
us reorganize the image categories inferred by the bag-of-features
model. Indeed, in this case, once we merged two categories of im-
ages, we could further successfully attract other unselected images
that include similar looking round objects, around the merged cate-
gory as shown Figure 8(b).

We conducted a small user study where we recruited three grad-
uate students as participants for evaluating the prototype system.
As a whole, all the participants preferred the combination of the
global and local manipulations to local manipulations only, since
they could systematically change the arrangement of images by ex-
plicitly employing the image categorization. In practice, they were
more likely to continue their image exploration with the composite
manipulations since they could rearrange the image positions in fur-
ther detail. The accompanying video contains some interactive ses-
sions with our prototype system. Note that Table 1 provides statis-
tics on computation times at the stage of initializing the two-layered
graph, handling local manipulation, and handling global manipula-
tion, according to the size of the image database.

5.2 Discussion

The primary motivation of the proposed bilevel feature space rep-
resentation is to equip our image database with category-aware ma-
nipulation. Toward this goal, we introduced the bag-of-features
model so that we can employ the extracted visual words as the rep-
resentatives of the underlying image categories of the given dataset.



(a) (b)

Figure 8: Global manipulation of the feature space: (a) Original layout of the images where tomato and CD images are selected. (b) Global
manipulation helps us merge the two different image categories and further collect images including round objects around the merged category.

Table 1: Computation times (in seconds).

stage process
Number of images

100 500 1,000

init. graph construction 0.071 0.639 1.675
init. distance computation 0.065 0.576 1.866
init. MDS computation 0.005 0.014 0.018

local graph updates 0.019 0.086 0.259
local distance computation 0.006 0.531 1.764
local MDS computation 0.005 0.011 0.019

global graph updates 0.094 0.568 1.753
global distance computation 0.057 0.543 1.789
global MDS computation 0.005 0.011 0.019

Furthermore, we also use the visual words as the pivots for ac-
celerating the MDS computation, which effectively allows us to
project the high-dimensional feature space of the images onto the
2D screen space. Another advantage is that it enables us to allow
fuzzy categorization of the images since each image node has con-
nections with multiple visual word nodes in the two-layered graph
representation. This naturally lets us assign multiple semantics with
each image, along with the provided local and global manipulations
through the 2D screen space.

On the other hand, the present approach has several limitations.
In our implementation, we label each image with a color accord-
ing to its primary visual word only. This means that we cannot
explicitly elucidate other related visual words of the image in our
visualization scheme, which remains to be improved especially for
supporting our fuzzy categorization of the images. In addition,
the system occasionally makes a set of images unexpectedly far
away from each other while handling other selected images with
the global manipulations as shown in Figure 9, where we employed
the same image set as that in Figure 1. We have learned that this
problem arises when some visual word node has a large number of
edge connections with the images. This problem can be alleviated
by incorporating a new formulation for restricting the maximum
degree of each visual word node.

6 CONCLUSION

This paper has presented an approach to exploring images in the
feature space so that we can edit the global relationships among

image categories as well as the positions of the images in a local
neighborhood through the 2D screen space. We supported both the
global and local manipulation of image layouts by introducing the
bilevel feature space representation together with the two-layered
graph structure. The initial layout of the image set has been cal-
culated based on the bag-of-features model, where we associated
the representative features called visual words as the node of the
upper-level graph while we represent the respective input images
by the nodes of the lower-level graph. The bilevel feature space
has been effectively projected onto the screen space using the pivot
MDS, where we employ the visual word nodes as the pivot in the
process of the dimensionality reduction. The global and local ma-
nipulations of the feature space have been achieved by adjusting the
lengths of the edges in the two-layered graph, by taking advantage
of the barycentric coordinate representation of the image nodes with
respect to the visual word nodes. Experimental results were also
provided to demonstrate the capability of the global category-aware
and local detailed rearrangements of images in the user-driven fea-
ture space manipulation.

As future work, we may be able to further sophisticate the defi-
nition of the co-occurrence of the visual words, by referring to their
geometric relationships in the original SIFT feature space [24]. In-
creasing the controllability of image layouts with the bilevel feature
space representation still remains to be tackled. Our future work
also includes the improvement of interface design so that users can
fully associate their mental map with the arrangement of images in
the feature space.
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