Multi-level Optimization of Matrix Multiplication for GPU-equipped Systems

<u>K. Matsumoto</u><sup>a</sup>, N. Nakasato<sup>a</sup>, T. Sakai<sup>a</sup>, H. Yahagi<sup>b</sup>, S. G. Sedukhin<sup>a</sup> <sup>a</sup>University of Aizu, <sup>b</sup>Kyoto University; Japan

ICCS 2011, June 1, 2011

# Outline

- Matrix Multiplication Problem
- Motivation
- AMD Cypress GPU
- DGEMM Implementation
  - Part 1: DGEMM Kernel
  - Part 2: DGEMM for Large Matrices
- Conclusions

## Matrix-Matrix Multiplication

• GEMM (General Matrix Multiplication) is a fundamental linear algebra routine

 $C \leftarrow AB + C, C \leftarrow A^TB + C, C \leftarrow AB^T + C, C \leftarrow A^TB^T + C$ 

• Existing DGEMM (Double-precision GEMM) implementations on GPU

– On Cypress: 472 GFlop/s;

87% of peak (544 Gflop/s) [Nakasato]

– On Fermi: 362 GFlop/s;70% of peak (515 GFlop/s) [Tan]

 [Nakasato] N. Nakasato (2010), "A Fast GEMM Implementation on a Cypress GPU," In the 1<sup>st</sup> International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computing Systems (PMBS 10).
 [Tan] G. Tan, et al. (2011), High Performance DGEMM on NVIDIA, [Online], Available: <u>http://asl.ncic.ac.cn/dgemm/dgemm\_nv.html</u> [accessed May 24, 2011].

## Motivation

- DGEMM kernel with higher performance stability by considering memory access patterns.
- DGEMM for matrices whose required data size is larger than GPU memory capacity.

| Optimization | Role                                                           |
|--------------|----------------------------------------------------------------|
| 1st level    | Building block for computation in each GPU thread              |
| 2nd level    | Optimizing the memory access pattern in a group of GPU threads |
| 3rd level    | Maximizing the GPU utilization                                 |



# AMD Cypress GPU (Radeon HD 5870)

- Evergreen GPU family launched in 2009
- 320 double-precision (DP) cores
  - 640 DP op/clock, using MAD (fused multiply-add) instruction
- DP peak perf.: 544 GFlop/s (=640 [op/clock] \* 0.85 [GHz])



# **GPU** Thread Scheduling

- Cypress GPU schedules a range of threads onto a group of DP cores.
   16 DP cores / group
- 64 threads are a unit of workload on a group.
  - Changing the order of thread assignment changes memory access patterns.



### PART 1: DGEMM KERNEL

## Layout Functions

• map a thread ID to the memory index.

• are based on space filling curves.







Z-Morton

X-Morton

U-Morton

Hilbert

## Performance of $C \leftarrow A^T B + C$



#### Cache hit rate of $C \leftarrow A^T B + C$

![](_page_9_Figure_1.jpeg)

#### Performance of $C \leftarrow A^T B$

![](_page_10_Figure_1.jpeg)

#### PART 2: DGEMM FOR LARGE MATRICES

# Using $C \leftarrow A^T B$ kernel

- Fastest kernel among all tested kernels.
- No need to send a matrix C to GPU.
- Load with transposition by CPU if necessary.
  - Example:  $C \leftarrow AB$

![](_page_12_Figure_5.jpeg)

# Hiding data communication latency

- Reusing matrix blocks within the GPU and minimizing the amount of communication.
  - asymptotically sending 1 matrix block and receiving 1 matrix block during a DGEMM kernel execution on the GPU.
- Explicitly loading/storing matrix blocks to/from PCI Express memory.

![](_page_13_Figure_4.jpeg)

### Maximum Performance of $C \leftarrow AB + C$

CPU + 1 GPU

CPU + 2 GPUs

![](_page_14_Figure_3.jpeg)

Core i7 960 CPU (4-core at 3.2 GHz) + Radeon HD 5870 GPUs Core i7 920 CPU (4-core at 2.67 GHz) + Radeon HD 5870 GPUs

### Performance of $C \leftarrow AB + C$

![](_page_15_Figure_1.jpeg)

# Conclusions

- DGEMM for systems which contain AMD Cypress GPUs
- Effects of memory access patterns to the DGEMM kernel's performance
  - $C \leftarrow A^T B + C$  kernel with X-Morton layout shows the superior performance
- DGEMM for large matrices on hybrid CPU-GPU systems

   Max perf. (n≈30000): 472 GFlop/s (on CPU + 1 GPU), 921 GFlop/s (on CPU + 2 GPUs)
- Future work: optimizing DGEMM for non-square matrices and utilizing it to other linear algebra problems