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Matrix-Matrix Multiplication 

• GEMM (General Matrix Multiplication) is a 
fundamental linear algebra routine 

   C  AB + C, C  ATB + C, C  ABT + C, C  ATBT + C 

• Existing DGEMM (Double-precision GEMM) 
implementations on GPU 

– On Cypress: 472 GFlop/s;  
            87% of peak (544 Gflop/s) [Nakasato] 

– On Fermi: 362 GFlop/s;  
            70% of peak (515 GFlop/s) [Tan] 
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*Nakasato+ N. Nakasato (2010), “A Fast GEMM Implementation on a Cypress GPU,”  In the 1st International Workshop on  
     Performance Modeling, Benchmarking  and Simulation of High Performance Computing Systems (PMBS 10). 
[Tan] G. Tan, et al. (2011), High Performance DGEMM on NVIDIA, [Online], 
     Available: http://asl.ncic.ac.cn/dgemm/dgemm_nv.html  [accessed May 24, 2011]. 

http://asl.ncic.ac.cn/dgemm/dgemm_nv.html


Motivation 

• DGEMM kernel with higher performance stability by 
considering memory access patterns. 

• DGEMM for matrices whose required data size is 
larger than GPU memory capacity. 
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Optimization Role 

1st level Building block for computation in each GPU thread 

2nd level Optimizing the memory access pattern in a group of GPU threads 

3rd level Maximizing the GPU utilization 



AMD Cypress GPU (Radeon HD 5870) 

• Evergreen GPU family launched 
in 2009 

 

• 320 double-precision (DP) cores 

– 640 DP op/clock,  
using MAD (fused multiply-add) 
instruction 

 

• DP peak perf.: 544 GFlop/s 
 (=640 [op/clock] * 0.85 [GHz]) 
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GPU Thread Scheduling 

• Cypress GPU schedules a 
range of threads onto a 
group of DP cores. 
– 16 DP cores / group 

 

• 64 threads are a unit of 
workload on a group. 
– Changing the order of 

thread assignment 
changes memory access 
patterns. 
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PART 1: DGEMM KERNEL 
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Layout Functions 

• map a thread ID to the memory index. 

 

• are based on space filling curves. 
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Performance of C  ATB + C  
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[Flops] 2
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Cache hit rate of C  ATB + C 
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•Stability of performance is 
related to the cache hit rate 
 
•When n = 4096 
 X-Morton Z-Morton 

Perf. 
[GFlop/s] 

437 404 

Cache hit 
rate [%] 

28.8 20.0 



Performance of C  ATB 

•No prominent difference 
 
•Max perf.: 480 GFlop/s  
(88% of 544 GFlop/s) 
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PART 2: DGEMM FOR LARGE MATRICES 
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Using C  ATB kernel 

• Fastest kernel among all tested kernels. 

• No need to send a matrix C to GPU. 

• Load with transposition by CPU if necessary. 

– Example: C  AB 
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Hiding data communication latency  

• Reusing matrix blocks within the GPU and 
minimizing the amount of communication. 

– asymptotically sending 1 matrix block and 
receiving 1 matrix block during a DGEMM kernel 
execution on the GPU. 

 

• Explicitly loading/storing matrix blocks to/from PCI-
Express memory. 
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Maximum Performance of C  AB + C 

CPU + 1 GPU CPU + 2 GPUs 
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(Matrix size n  30000) 



Performance of C  AB + C 
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Max perf.:  
921 GFlop/s 

Max perf.:  
472 GFlop/s 



Conclusions 

• DGEMM for systems which contain AMD Cypress GPUs 
• Effects of memory access patterns to the DGEMM 

kernel’s performance 
– C  ATB + C kernel with X-Morton layout shows the 

superior performance 

• DGEMM for large matrices on hybrid CPU-GPU systems 
– Max perf. (n30000): 472 GFlop/s (on CPU + 1 GPU),  

                                       921 GFlop/s (on CPU + 2 GPUs) 

 
• Future work: optimizing DGEMM for non-square 

matrices and utilizing it to other linear algebra 
problems 
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