
Multi-level Optimization of
Matrix Multiplication for
GPU-equipped Systems

K. Matsumotoa, N. Nakasatoa, T. Sakaia,
H. Yahagib, S. G. Sedukhina

aUniversity of Aizu, bKyoto University; Japan

ICCS 2011, June 1, 2011

Outline

• Matrix Multiplication Problem

• Motivation

• AMD Cypress GPU

• DGEMM Implementation

– Part 1: DGEMM Kernel

– Part 2: DGEMM for Large Matrices

• Conclusions

2

Matrix-Matrix Multiplication

• GEMM (General Matrix Multiplication) is a
fundamental linear algebra routine

 C  AB + C, C  ATB + C, C  ABT + C, C  ATBT + C

• Existing DGEMM (Double-precision GEMM)
implementations on GPU

– On Cypress: 472 GFlop/s;
 87% of peak (544 Gflop/s) [Nakasato]

– On Fermi: 362 GFlop/s;
 70% of peak (515 GFlop/s) [Tan]

3

*Nakasato+ N. Nakasato (2010), “A Fast GEMM Implementation on a Cypress GPU,” In the 1st International Workshop on
 Performance Modeling, Benchmarking and Simulation of High Performance Computing Systems (PMBS 10).
[Tan] G. Tan, et al. (2011), High Performance DGEMM on NVIDIA, [Online],
 Available: http://asl.ncic.ac.cn/dgemm/dgemm_nv.html [accessed May 24, 2011].

http://asl.ncic.ac.cn/dgemm/dgemm_nv.html

Motivation

• DGEMM kernel with higher performance stability by
considering memory access patterns.

• DGEMM for matrices whose required data size is
larger than GPU memory capacity.

4

Optimization Role

1st level Building block for computation in each GPU thread

2nd level Optimizing the memory access pattern in a group of GPU threads

3rd level Maximizing the GPU utilization

AMD Cypress GPU (Radeon HD 5870)

• Evergreen GPU family launched
in 2009

• 320 double-precision (DP) cores

– 640 DP op/clock,
using MAD (fused multiply-add)
instruction

• DP peak perf.: 544 GFlop/s
 (=640 [op/clock] * 0.85 [GHz])

5

GPU Thread Scheduling

• Cypress GPU schedules a
range of threads onto a
group of DP cores.
– 16 DP cores / group

• 64 threads are a unit of
workload on a group.
– Changing the order of

thread assignment
changes memory access
patterns.

6

PART 1: DGEMM KERNEL

7

Layout Functions

• map a thread ID to the memory index.

• are based on space filling curves.

8

Performance of C  ATB + C

9

[sec] timeExec.

[Flops] 2

[GFlop/s] Perf.

3n


Cache hit rate of C  ATB + C

10

•Stability of performance is
related to the cache hit rate

•When n = 4096
 X-Morton Z-Morton

Perf.
[GFlop/s]

437 404

Cache hit
rate [%]

28.8 20.0

Performance of C  ATB

•No prominent difference

•Max perf.: 480 GFlop/s
(88% of 544 GFlop/s)

11

PART 2: DGEMM FOR LARGE MATRICES

12

Using C  ATB kernel

• Fastest kernel among all tested kernels.

• No need to send a matrix C to GPU.

• Load with transposition by CPU if necessary.

– Example: C  AB

13

Hiding data communication latency

• Reusing matrix blocks within the GPU and
minimizing the amount of communication.

– asymptotically sending 1 matrix block and
receiving 1 matrix block during a DGEMM kernel
execution on the GPU.

• Explicitly loading/storing matrix blocks to/from PCI-
Express memory.

14

Maximum Performance of C  AB + C

CPU + 1 GPU CPU + 2 GPUs

15

(Matrix size n  30000)

Performance of C  AB + C

16

Max perf.:
921 GFlop/s

Max perf.:
472 GFlop/s

Conclusions

• DGEMM for systems which contain AMD Cypress GPUs
• Effects of memory access patterns to the DGEMM

kernel’s performance
– C  ATB + C kernel with X-Morton layout shows the

superior performance

• DGEMM for large matrices on hybrid CPU-GPU systems
– Max perf. (n30000): 472 GFlop/s (on CPU + 1 GPU),

 921 GFlop/s (on CPU + 2 GPUs)

• Future work: optimizing DGEMM for non-square

matrices and utilizing it to other linear algebra
problems

17

