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Redundancy eliminations for a polynomial solution of the 

graph Hamiltonicity problem 

Nikolay Mirenkov 
nikmirenkov@gmail.com 

 

Abstract. A regional invariant method based on redundancy eliminations is presented for the 
polynomial solution of the graph Hamiltonicity problem. This method includes searching 
logarithmic size regions, considering all possible partial solutions (pp-solutions) within 
corresponding regions and removing redundant pp-solutions. The pp-solutions preserved are 
employed for extracting edge value invariants in the regions and composing a system of 
linear algebraic equations which is solved by a standard method applied for systems with 
symbolic parameters. Within the method, regional redundancy and redundancy with remote 
impact eliminations are applied in order to split the problem into a polynomial number of 
tractable subproblems.  

 
Keywords and phrases: regional redundancy, redundancy with a remote impact, regional 
invariant, symbolic parameter system, Hamiltonicity polynomial solution, P=NP.    

  
1. Preliminary considerations 
 
One of the main ideas behind the approach is the regional existence of 

possible partial solutions (pp-solutions) that can be removed without altering 

Hamiltonicity. Another idea is the regional existence of invariants which are 

represented by values of some edges in regions and do not include values of 

edges from the “external world” (though for discovering such invariants, 

values of edges from the external world can be employed). The invariants are 

extracted within eliminating the redundant pp-solutions and within splitting the 

pp-solution sets across all regions. The efficiency of this process is based on 

reducing the problem to a polynomial number of the subproblems that are 

related to different slices of pp-solutions and solved as the systems of linear 

algebraic equations. To demonstrate this approach, we select the 

Hamiltonicity problem on a planar graph G = G (V, E), where V is a set of 

nodes and E is a set of edges. It is assumed that the graph is undirected with 

no weighted edges. It is also assumed that the number of nodes is N, the 

number of edges is M and the node degree is 3. The problem of searching a 

Hamiltonian cycle in such a graph is still NP-complete [1]. Our goal is to 

present a polynomial algorithm for finding a Hamiltonian cycle or to show the 

graph is non-Hamiltonian.  

For simplicity, we assume that the graph is 3-edge connected (otherwise, our initial 

problem is reduced to problems of smaller sizes). In addition, nodes of 3-degree 

faces are replaced by one node [2] and the problem is reduced to a graph with a 

smaller number of nodes. In any case, we expect that the graph is big enough. 

Two symbolic parameters H and F are introduced to represent values of 

edges: E1 = H means that edge E1 belongs to a Hamiltonian cycle and E2 = F 

means that edge E2 does not belong to a Hamiltonian cycle (Failed to be a 

mailto:nikmirenkov@gmail.com
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part of a cycle). For edges E1, E2 and E3 incident to a common node, we can 

write a node invariant (n-invariant) as the following equation:  

                                         E1 + E2 + E3 = 2H + F,                                        (1.1)    

representing a necessary (for the graph Hamiltonicity) feature in this node. 

This equation has to be valid in all nodes.  

In a sense, H and F represents “yes” and “no” (1 and 0), but with different 

“units of measure.” For such parameters, symbolic expression  

E4 + E5 + E6 + E7 + E8 = 5H 

means that all Ei (i=4, …, 8) are equal to H, expression E1 = 2H – z1 is valid 

only if z1 = H and expressions E1 = (H + F)/2 or E1 = 2H - F are just invalid. H 

and F are convenient for reasoning about the symbolic expressions of edge 

values.  

Edges of a cut-set separating a subgraph (region) from other parts of the 

graph are called boundary (B-) edges of a B-set. A set of B-edge values is 

called a B-set value. The B-edges are arranged in a set of pairs each of 

which represents an in-out link related to a Hamiltonian cycle path going 

through the region. Paths of different pairs are not intersected and jointly 

cover all regional nodes.  

This set of B-edge pairs (corresponding to their in-out links) is called a B-

communicator. For a B-set value, there can be a number of different B-

communicators. Together a B-set value and a corresponding B-communicator 

are called a B-case. In other words, the number of B-cases with the same B-

set value is equal to the number of different B-communicators.  

Fig.1 depicts examples of B-edges, B-set values, in-out link sets and B-cases:  

- B1, B2, B3, and B4 are B-edges in all examples;  

   

Fig. 1. Examples related to region boundary edges 
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- (H,H,H,H) is a B-set value in examples  g1 and g2; (H,H,F,F) is a B-set 

value in examples g3 and g4;  

- {(B1, B4), (B2, B3)} is a B-communicator in example g1, {(B1, B2), (B3, B4)} 

is a B-communicator in example g2. In other words, examples g1 and g2 

present two different B-cases for the same B-set value.   

- Finally, {(B1, B2)} is a B-communicator (of one in-out link) in example g3; it 

is also a B-communicator in example g4. The coincidence of the B-

communicators means that example g3 and g4 present one B-case and 

any of two different paths inside the region is allowed to be used.  

A linear algebraic equation related to some region edges (for 

example, Ei + Ej + Ek = 2H + F, Ei + Ej = H + F, Ei = H or Ei - Ej = 0) which is 

valid for all possible B-cases is called a regional invariant.   

 
Such invariants are extracted in logarithmic-size regions where the numbers 

of region B-edges and the number of interior faces are ≤ c×log2N (c is a pre-

defined constant). In order to solve a Hamiltonicity problem, we need N/2 

regional invariants (r-invariants), which have to be independent of n-

invariants (1.1). In order to check independence, we can calculate the rank of 

a corresponding matrix.   R-invariants together with the n-invariants allow 

composing a system of M linear algebraic equations (M is the edge number), 

which is solved by a standard method (Gaussian elimination) applied for 

symbolic parameter systems [3]. Absence of an appropriate solution means 

that the graph is non-Hamiltonian.  

 

In the next sections, we consider ideas behind our approach: how to apply a 

system of linear algebraic equations with symbolic parameters for discovering 

pp-solutions, what redundant pp-solutions are and how to extract r-invariants. 

Special attention is paid to regional redundancy and redundancy with a 

remote impact, as well as, covering the graph with a tree of region chains and 

creating a set of the subproblems based on splitting the pp-solutions across 

all regions.  

 

2. Valid pp-solutions and redundancy eliminations 
 

Our eliminations are based on redundancies: they are regional pp-

solutions (or chains of pp-solutions in chains of regions) that 

can be removed without altering the graph Hamiltonicity.  
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In order to apply the redundancy eliminations, first we have to find all valid 

(feasible) pp-solutions in the region under consideration.  

 

A pp-solution is defined as a B-communicator set of 

Hamiltonian non-intersected paths covering jointly all 

regional nodes, satisfying n-invariants (1.1) in each node 

and excluding internal cycles of H-valued edges in the region.  

 

This definition implicitly includes another necessary condition of Hamiltonicity 

which should be applied for feasible pp-solutions: 

 

For any region the symbolic expression of the sum of B-edges 

(related to any Hamiltonian solution) has to include an even 

number of H and this number should be ≥ 2.  

 
For each B-set value, its own set of the feasible pp-solutions is discovered.  

These pp-solutions are divided into clusters of equivalent B-communicators 

possessing the same set of B-edge pairs.  Redundancy elimination is 

applied to these clusters; it preserves only one representative pp-solution 

from each cluster of the feasible pp-solutions. In other words, the sum of 

different B-cases of each B-set value defines the number of pp-solutions left 

in corresponding regions for extracting the r-invariants. The pp-solutions 

eliminated in such a way are called redundant pp-solutions.  
 
Here we consider examples to clarify some aspects of the feasible pp-

solutions and redundancy eliminations.  

 

Discovering feasible pp-solutions is based on composing a system of the 

equations and solving it. Assume that graph G of Fig. 2 is divided in two 

regions by edges of a cut-set, which is behind the C-D-H-face path.  

 

Then for the left region edges of G, we can write the following equations of the 

(1.1) type: 

                         E1 + E2 + E3 = 2H + F       E3 + E7 + E22 = 2H + F 
                         E2 + E4 + E5 = 2H + F       E6 + E7 + E12 = 2H + F          (2.1) 
                         E4 + E9 + E10= 2H + F       E8 + E9 + E13 = 2H + F 
                         E5 + E6 + E8 = 2H + F       E1 + E10 +E14 = 2H + F, 
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Fig. 2. A cut-set line dividing graph G into two regions 

  

where the right column of the equations is related to the B-set values (values 

of E22, E12, E13, and E14). Since we consider the system of the equations for 

each possible B-set value (that is for assigned values of E22, E12, E13, and 

E14), then there are ten unknowns in eight equations. To decrease the 

number of B-cases to consider, we take into account that B-edge values, 

making a contribution in such a B-set value, satisfy the above mentioned 

condition of Hamiltonicity:  

E22 + E12 + E13 + E14 = 2H + 2F or  

E22 + E12 + E13 + E14 = 4H.                                     (2.2) 

 

As an example, let E22 = E12 = F and E13 = E14 = H. Solving system (2.1) gives 
us a solution for eight edges depending on H, F and two symbolic parameters 
E2 and E5:  

E1 = H+F- E2, E3 = H, E4 = 2H+F- E5- E2, E6 = H,  

E7 = H, E8 = H+F- E5, E9 = E5, E10 = E2.          

 

Possible values of E2 = H, E5 = F and E2 = F, E5 = H give us two pp-solutions: 

 

                E14 = E10 = E4 = E2 = E3 = E7 = E6 = E8 = E13 = H and  

                              E14 = E1   =  E3 = E7 = E6 = E5 = E4 = E9 = E13 = H 

 

(in both pp-solutions other edge values are equal to F), while values of E2 = H 

and E5 = H give a pp-solution, which is eliminated because of a subtour of an 

H-valued edge cycle {E2 = H, E3 = H, E7 = H, E6 = H, E5 = H}.  It is important 

to note that in the feasible pp-solutions, the pair of E13 = E14 = H has the 

same B-communicator (entering the region at E14 and leaving it at E13, or vice 

versa).  

 

This means that if one of these pp-solutions is a part of a 

Hamiltonian cycle then the other pp-solution is also a part of 
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another Hamiltonian cycle which differs from the former one 

only in our region.  

 

For the second example with E22 = E13 = F and E12 = E14 = H, edges E2 and 

E5 can also play a role as symbolic parameters. For any possible variation of 

them, there is only one feasible pp-solution: 

E14 = E10 = E9 = E8 = E5 = E2 = E3 = E7 = E12 = H  

and for the third example with E22 = E12 = H and E13 = E14 = F, there are no 

pp-solutions compatible with the necessary conditions of Hamiltonicity; one is 

because of an H-valued edge cycle and two others are because of invalid 

(infeasible) edge values in the form of 2H-F.   

 

Finally, let us consider one more example with E22 = E12 = E13 = E14 = H. 

There are three pp-solutions (of two paths each): 

 

E14 = E10 = E9 = E13 = H;  E12 = E6 = E5 = E2 = E3 = E22 = H  

E14 = E10 = E4 = E2 = E3 = E22 =H; E13 = E8 = E6 = E12 = H 

E14 = E1 = E3 = E22 =H;    E13 = E9 = E4 = E5 = E6 =E12 = H. 

 

In the first pp-solution, the in-out pairs of B-communicator are (E14, E13) and 

(E12, E22), while in the second one, they are (E14, E22) and (E13, E12). This 

means that if one of these pp-solutions is a part of a Hamiltonian cycle, then it 

is not necessarily the same for the other pp-solution.  On the other hand, in 

both the second and third pp-solutions the in-out pairs of B-communicators 

are (E14, E22) and (E13, E12). This means that one of these pp-solutions 

can be removed without eliminating the possibility of 

discovering a possible Hamiltonian cycle.  

Now let us consider another example related to the left region of Fig.3.  

 

Fig. 3. A cut-set line based on the C-K-I-face path  
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The system of equations of the (1.1) type is the following: 

E1 + E2 + E3  = 2H + F         E3  + E7 + E22 = 2H + F 
                           E2 + E4 + E5  = 2H + F         E12 + E16 + E21 = 2H + F                                                       

E4 + E9 + E10 = 2H + F         E11 + E15 + E17 = 2H + F     (2.3) 
E5 + E6 + E8  = 2H + F         E11 + E14 + E18 = 2H + F 

E6 + E7 + E12 = 2H + F         E1   + E10 + E14 = 2H + F 

E8 + E9 + E13 = 2H + F          E13 + E15 + E16 = 2H + F. 

 

The B-set values are sets of values of E22, E21, E17, and E18. Taking the 

names of these edges as symbolic parameters and a solving system (2.3) 

(with 12 equations and 16 unknowns), we find four independent edges (E9, 

E10, E11 and E16) allowing all region edges to be presented as symbolic 

expressions depending on these edges (as well as on E22, E21, E17, and E18).  

In other words, by considering possible value variations of E22, E21, E17, and 

E18, as well as E9, E10, E11 and E16, we find all possible pp-solutions in the 

region. Logarithmic sizes allow applying brute force for this consideration; 

however, a more elegant approach can also be taken. For example, because 

of the condition for Hamiltonicity, the B-edge value has to satisfy one of the 

equalities: E22 + E21 + E17 + E18 = 4H or E22 + E21 + E17 + E18 = 2H + 2F (in 

fact, the first equality means that E22 = H, E21 = H, E17 = H and E18 = H). In 

addition, by consecutively adding equations of E9 – E11 = 0 or E9 + E11 = H+F 

types, we can reason about the symbolic expressions of the edge values. 

Under condition of E22 + E21 + E17 + E18 = 4H, let’s consider two assumptions, 

that E9=E11, E10=E16 (E9-E11=0, E10-E16=0) and E9=E11, E10≠E16 (E9-E11=0, 

E10+E16=H+F). For the first assumption, the linear solver [3] provides symbolic 

expressions for edge values, where we can see E1=3H+F-E4-2E10 and E2=-

2H-F+E4+3E10; the first can be valid only with E10=H and, after that, the 

second can be valid only for E4=F (see some rules for reasoning about edge 

values in Appendix 1). Applying E10=H and E4=F gives us a pp-solution of two 

paths (of H-valued edges): 

E17, E11, E18;     E21, E16, E13, E9, E10, E1, E2, E5, E6, E7, E22. 

For the second assumption, we receive among others E11= (E5+ E7)/2 and E1= 

-(2F-E5-3E7)/2. The first can be valid only if E5=E7 and the second if E5=E7=F. 

Applying E5=F and E7=F gives us another pp-solution of two paths: 

E17, E15, E13, E8, E6, E12, E21;    E18, E14, E10, E4, E2, E3, E22. 

Similarly, we can consider assumptions E9≠E11, E10=E16 and E9≠E11, E10≠E16 

and obtain three pp-solutions: 

E17, E15, E13, E9, E4, E5, E6, E12, E21;     E18, E14, E1, E3, E22, 

E17, E15, E16, E21;        E18, E14, E1, E2, E4, E9, E8, E6, E7, E22, 

E17, E15, E13, E9, E10, E14, E18;    E21, E12, E6, E5, E2, E3, E22. 

Totally, three pp-solutions have B-communicator {(E17, E21), (E18, E22)} and 

two pp-solutions have B-communicator {(E17, E18), (E21, E22)}. 
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The redundancy elimination follows extracting pp-solutions acceptable in 

regions by considering all possible B-set values. First, each cluster of pp-

solutions, based on the same B-set value and the same B-communicator, is 

replaced by one pp-solution (a representative one). In our example, just 

considered, as well as in the first and fourth examples related to the left region 

of Fig. 2, one-of-two and two-of-three pp-solutions can be removed. Then, a 

set of B-cases is created. This set includes the cluster representatives that 

are pp-solutions based on different B-set values and pp-solutions based on 

the same B-set value, but with different B-communicators. In general, the 

number of different B-communicators for a B-set value is less or equal to 3p-

1/2 + 1/2, where p is the number of B-communicator pairs. For example, for a 

B-set with four, six and eight H-valued B-edges, that is for p=2, 3 and 4, it is 2, 

5 and 14, respectively (see Appendix 2). 

 

The set of B-cases is employed for extracting the r-invariants. However, there are 

alternative ways for pp-solution eliminations; therefore, creating the set of B-cases can 

be performed within the process of extracting the r-invariants or can be postponed until 

some additional data from neighboring regions becomes available.  

 

 

3. Examples of extracting regional invariants  
 
R-invariants are extracted from pp-solutions preserved after the redundancy 

eliminations. In fact, as mentioned above, the eliminations have alternatives in 

selecting representative pp-solutions; therefore, the final decision about such 

pp-solutions should be performed within the framework of extracting the r-

invariants. To demonstrate this, we will continue the consideration of the 

previous example related to Fig. 3. This includes pp-solutions related to the 

second equality for B-edges:  E22 + E21 + E17 + E18 = 2H + 2F. The number of 

B-set values is 6:  

 
                                                         Table 1: B-set values for the Fig. 3 example 

   B1=E22 B2=E21 B3=E17 B4=E18 

1 H H F F 

2 H F H F 

3 H F F H 

4 F H H F 

5 F H F H 

6 F F H H 

 
For each of these B-set values we consider solutions of the (2.3) system. 

However, before such a consideration, we can enter symbolic parameters Bj 

(j=1,2,3,4) into this system and find values of region edges depending on 

them, as well as on some independent edges (provided by the solver). In this 

case, they are E9, E10, E11, and E16. Value variations of this independent edge 

set (ind-set), applied to each B-set value, allow us to discover all pp-solutions 

in the region.  
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As we have already mentioned, logarithmic sizes allow applying brute force 

for this discovery. However, some reducing operations can be done in 

advance. For example, four cases with E9=E10=F and any values for E11 and 

E16 can be removed in advance from the consideration, because of 

incompatibility with an n-invariant. A similar thing occurs with E9=E10=E11=H 

and E16=F at B4=F; this is because of an internal H-valued cycle:  E9, E10, E14, 

E11, E15, E13. This means that if B4=F, for any values of B1, B2, and B3, we 

should not try cases with E9=E10=E11=H and E16=F.  

 

B-set value 1 is related to B1=B2=H, B3=B4=F. Then, E11 has to be equal only 

to H, and the variation of other independent edges includes five ind-sets: 

 1: {E9=E10=E16=H}, 2: {E9=H, E10=F, E16=H}, 3: {E9=F, E10=H, E16=H}, 

      4: {E9=H, E10=F, E16=F}, 5: {E9=F, E10=H, E16=F}. 

There are only three feasible pp-solutions for ind-sets 2, 4 and 5:  

                       E21, E16, E15, E11, E14, E1, E2, E4, E9, E8, E6, E7, E22, 

                       E21, E12, E6, E5, E4, E9, E13, E15, E11, E14, E1, E3, E22, 

                       E21, E12, E6, E8, E13, E15, E11, E14, E10, E4, E2, E3, E22. 

They have the same B-communicator {E21, E22}; therefore, the redundancy 

elimination allows us to preserve only one of these pp-solutions. 

 

B-set value 2 is related to B1=H, B2=F, B3=H, B4=F. Then, E11 and E16 have 

to be equal only to H, and the variation of other independent edges includes 

the following ind-sets:   1: {E9=E10=H}, 2: {E9=F, E10=H}, 3: {E9=H, E10=F}. 

There is only one feasible pp-solution for ind-set 1:  

                       E17, E11, E14, E10, E9, E13, E16, E12, E6, E5, E2, E3, E22. 

 

B-set value 3 is related to B1=H, B2=F, B3=F, B4=H. Then, as above, E11 and 

E16 have to be equal only to H, and the variation of other independent edges 

includes the following ind-sets:  1: {E9=E10=H}, 2: {E9=F, E10=H}, 3: {E9=H, 

E10=F}. There are no feasible pp-solutions for these ind-sets and B-set value 

3 is removed. 

 

B-set value 4 is related to B1=F, B2=H, B3=H, B4=F. Then, as in B-set value 1, 

E11 has to be equal only to H and the variation of other independent edges 

includes five ind-sets: 

   1: {E9=E10=E16=H}, 2: {E9=H, E10=F, E16=H}, 3: {E9=F, E10=H, E16=H}, 

       4: {E9=H, E10=F, E16=F}, 5: {E9=F, E10=H, E16=F}. 

 

There are two feasible pp-solutions for ind-sets 2 and 3:  

                       E17, E11, E14, E1, E3, E7, E6, E5, E4, E9, E13, E16, E21, 

                       E17, E11, E14, E10, E4, E2, E3, E7, E6, E8, E13, E16, E21. 

They have the same B-communicator {E17, E21}; therefore the redundancy 

elimination allows us to preserve only one of these pp-solutions. 

 



12 

 

B-set value 5 is related to B1=F, B2=H, B3=F, B4=H. Then, E11 has to be equal 

only to H, and the variation of other independent edges includes five ind-sets: 

 1: {E9=E10=E16=H}, 2: {E9=H, E10=F, E16=H}, 3: {E9=F, E10=H, E16=H}, 

      4: {E9=H, E10=F, E16=F}, 5: {E9=F, E10=H, E16=F}.                           

There is only one feasible pp-solution for ind-set 5:  

                       E18, E11, E15, E13, E8, E5, E4, E10, E1, E3, E7, E12, E21. 

 

B-set value 6 is related to B1=F, B2=F, B3=H, B4=H. Then, E16 has to be equal 

only to H, and the variation of other independent edges includes six ind-sets: 

 

1: {E9=E10=E11=H}, 2: {E9=H, E10=H, E11=F}, 3: {E9=H, E10=F, E11=H}, 

 4: {E9=F, E10=H, E11=H}, 5: {E9=H, E10=F, E11=F}, 6: {E9=F, E10=H, E11=F}. 

                           

There is only one feasible pp-solution for ind-set 2:  

                       E17, E15, E16, E12, E7, E3, E2, E5, E8, E9, E10, E14, E18. 

 

In total, thirteen feasible pp-solutions have been discovered:         

                       E17, E11, E18;     E21, E16, E13, E9, E10, E1, E2, E5, E6, E7, E22, 

                     E17, E15, E13, E9, E10, E14, E18;       E21, E12, E6, E5, E2, E3, E22,  
 

                       E17, E15, E13, E8, E6, E12, E21;     E18, E14, E10, E4, E2, E3, E22, 

                     E17, E15, E13, E9, E4, E5, E6, E12, E21;     E18, E14, E1, E3, E22,   

                     E17, E15, E16, E21;       E18, E14, E1, E2, E4, E9, E8, E6, E7, E22, 

 

                     E21, E16, E15, E11, E14, E1, E2, E4, E9, E8, E6, E7, E22, 

                     E21, E12, E6, E5, E4, E9, E13, E15, E11, E14, E1, E3, E22, 

                     E21, E12, E6, E8, E13, E15, E11, E14, E10, E4, E2, E3, E22, 

 

                     E17, E11, E14, E10, E9, E13, E16, E12, E6, E5, E2, E3, E22, 

 

                     E17, E11, E14, E1, E3, E7, E6, E5, E4, E9, E13, E16, E21, 

                     E17, E11, E14, E10, E4, E2, E3, E7, E6, E8, E13, E16, E21, 

 

                     E18, E11, E15, E13, E8, E5, E4, E10, E1, E3, E7, E12, E21, 

 

                     E17, E15, E16, E12, E7, E3, E2, E5, E8, E9, E10, E14, E18. 

 

Seven of these pp-solutions have to be preserved, and six can be eliminated 

to simplify discovering an r-invariant. Extracting values of the independent 

edges from these pp-solutions gives us Table 2: 
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                                       Table 2: Values of independent edges 

 1 2 3 4 5 6 7 8 9 10 11 12 13 

E9 H H F H H H H F H H F F H 

E10 H H H F F F F H H F H H H 

E11 H F F F F H H H H H H H F 

E16 H F F F H H F F H H H F H 

 

There are four clusters of columns of (1-2), (3-5), (6-8), (10-11), where in each 

of them, we can preserve only one column, and there are three columns of 9, 

12 and 13 which are not removable. Column 9 is coincident with column 1, so 

cluster (1-2) can be represented by column 1; similarly, column 12 is 

coincident with column 8 and cluster (6-8) can be represented by column 8. 

For selecting representatives of clusters (3-5) and (10-11), we should decide 

about an invariant pattern (Ej=H, Ej+Ek=H+F, Ej=Ek or Ej+Ek+Ep=2H+F, etc.) 

to be searched. In our case, pattern E10=H leads to columns 3 and 11 as the 

representatives (see Table 3), while E9=E16 leads to columns 3 and 10 (or 5 

and 10) (see Table 4). In other words, we extracted two invariants (E10=H and 

E9=E16) and one of them can be used in further considerations.  

 
  Table 3: Representatives with columns 3 and 11 

                    

  

 

 

 
Table 4: Representatives with columns 3 and 10 

 

 

 

 

 

To extract new invariants we should consider new regions. Fig. 4 depicts a 

cut-set line based on the E-K-H-face path and a top-left region we are going 

to consider. This region is overlapped with the previous one; therefore in the 

system of equations of (2.3), we add the E10=H invariant: 

 

                           E1 + E2 + E3  = 2H + F         E3  + E7 + E22 = 2H + F 

                           E2 + E4 + E5  = 2H + F         E12 + E16 + E21 = 2H + F                                                       

E4 + E9 + E10 = 2H + F         E22 + E23 + E24 = 2H + F    (3.1) 

E5 + E6 + E8  = 2H + F         E21 + E23 + E20 = 2H + F  

E6 + E7 + E12 = 2H + F         E13 + E16 + E15 = 2H + F  

         E10 = H        E8 + E9 + E13 = 2H + F        E1   + E10 + E14 = 2H + F  

   1 3 8 9 11 12 13 

E9 H F F H F F H 

E10 H H H H H H H 

E11 H F H H H H F 

E16 H F F H H F H 

   1 3 8 9 10 12 13 

E9 H F F H H F H 

E10 H H H H F H H 

E11 H F H H H H F 

E16 H F F H H F H 
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Fig. 4. A cut-set line based on the E-K-H-face path  

 

The B-set values are sets of values of E24, E20, E15, and E14. Taking the 

names of these edges as symbolic parameters and a solving system (3.1) 

(where 13 equations and 16 unknowns), we find three independent edges (E4, 

E5 and E23). By considering possible value variations of these independent 

edges, as well as B-edges, we find all possible pp-solutions in this new region.  

 

As for the previous region, the B-edge value has to satisfy one of the 

equalities:  E24 + E20 + E15 + E14 = 4H or E24 + E20 + E15 + E14 = 2H + 2F. For 

E24 + E20 + E15 + E14 = 4H, there are three feasible pp-solutions: 

 

E14, E10, E9, E8, E5, E2, E3, E7, E12, E16, E15; E20, E23, E24 (for E4=F, E5=H, E23=H), 

E14, E10, E4, E2, E3, E22, E24; E15, E13, E8, E6, E12, E21, E20 (for E4=H, E5=F, E23=F), 

E14, E10, E9, E13, E15; E20, E21, E12, E6, E5, E2, E3, E22, E24 (for E4=F, E5=H, E23=F). 

 

For E24 + E20 + E15 + E14 = 2H + 2F, B-set values are presented by Table 5.  

 
                                              Table 5: B-set values for the Fig.4 example 

   B1=E24 B2=E20 B3=E15 B4=E14 

1 H H F F 

2 H F H F 

3 H F F H 

4 F H H F 

5 F H F H 

6 F F H H 

  

For these, there are five feasible pp-solutions: 

 

1. E20, E21, E16, E13, E9, E10, E1, E2, E5, E6, E7, E22, E24 (for E4=F, E5=H, E23=F) 

2. E15, E13, E8, E5, E4, E10, E1, E3, E7, E12, E21, E23, E24 (for E4=H, E5=H, E23=H) 

3. E14, E10, E4, E2, E3, E7, E6, E8, E13, E16, E21, E23, E24 (for E4=H, E5=F, E23=H) 

4. No solutions 

5. E14, E10, E9, E13, E16, E12, E6, E5, E2, E3, E22, E23, E20 (for E4=F, E5=H, E23=H) 

6. E14, E10, E4, E2, E3, E22, E23, E21, E12, E6, E8, E13, E15 (for E4=H, E5=F, E23=H). 
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Taking into account the redundancy elimination, we remove pp-solution 

                 E14, E10, E9, E8, E5, E2, E3, E7, E12, E16, E15;     E20, E23, E24  

and after that discover three r-invariants: E13=H, E2=E6, and E4=E8. The edges 

involved are not from the set of (E4, E5, E23); therefore the r-invariants are 

checked for independence from the n-invariants and previously extracted r-

invariants. As a result of this check, we discover that E4=E8 is dependent 

(derived from the n-invariants and E10=H, E13=H).  

 

To continue extracting the invariants, we consider another region (see the 

right subgraph at Fig. 5).  

 
 

Fig. 5. A cut-set line based on the B-F-H-face path 

 

In the system of the (2.3) type equations, we add the E13=H invariant: 

 

E22 + E23 + E24 = 2H + F        E17 + E19 + E20 = 2H + F 

                           E6   + E7  +  E12 = 2H + F         E11 + E15 + E17 = 2H + F                                                       

E20 + E21 + E23  = 2H + F         E7   + E22 + E3  = 2H + F   (3.2) 

E12 + E16 + E21  = 2H + F         E6   + E8   + E5  = 2H + F  

E18 + E19 + E24 = 2H + F         E8  + E13 + E9  = 2H + F  

        E13 = H        E13 + E15 + E16 = 2H + F          E11 + E18 + E14 = 2H + F.  

 

The B-set values are sets of values of E3, E5, E9, and E14. Taking names of 

these edges as symbolic parameters and solving system (3.2) (where 13 

equations and 16 unknowns), we find three independent edges (E19, E23 and 

E24). By considering possible value variations of these independent edges, as 

well as B-edges, we find all possible pp-solutions in this new region. As for the 

previous region, the B-edge value has to satisfy one of the equalities:           

E3 + E5 + E9 + E14 = 4H or E3 + E5 + E9 + E14 = 2H + 2F.  

 

For E3 + E5 + E9 + E14 = 4H there are four valid pp-solutions: 

 

E14, E11, E17, E19, E24, E23, E21, E16, E13, E9;  E5, E6, E7, E3 (for E19=H, E23=H, E24=H), 

E14, E18, E9, E17, E15, E13, E9; E5, E6, E12, E21, E23, E22, E3 (for E19=H, E23=H,E24=F), 
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E14, E11, E15, E13, E9; E5, E6, E12, E21, E20, E19, E24, E22, E3 (for E19=H, E23=F, E24=H), 

E14, E18, E24, E22, E3; E5, E6, E12, E21, E20, E17, E15, E13, E9 (for E19=F, E23=F, E24=H). 

 

For E3 + E5 + E9 + E14 = 2H + 2F there are five feasible pp-solutions: 

At B-set value (E3=H, E5=F, E9=F, E14=H) 

E14, E11, E17, E19, E24, E23, E21, E16, E13, E8, E6, E7, E3 (for E19=H, E23=H, E24=H), 

E14, E18, E19, E17, E15, E13, E8, E6, E12, E21, E23, E22, E3 (for E19=H, E23=H, E24=F), 

E14, E11, E15, E13, E8, E6, E12, E21, E20, E19, E24, E22, E3 (for E19=H, E23=F, E24=H) 

 

At B-set value (E3=F, E5=H, E9=H, E14=F) 

E5, E6, E7, E22, E24, E18, E11, E17, E20, E21, E16, E13, E9 (for E19=F, E23=F, E24=H).  

 

At B-set value (E3=F, E5=H, E9=F, E14=H) 

E14, E18, E24, E22, E7, E12, E21, E20, E17, E15, E13, E8, E5 (for E19=F, E23=F, E24=H).  

 

From these pp-solutions, we extract ind-set values (presented in Table 6). By 

preserving column 3 from cluster 1-3 and column 7 from cluster 5-7, we 

extract two invariants: E24=H and E23=F (in cases of reasoning on symbolic 

expressions of the edge values, instead of invariants of the E23=F type, it is 

possible to use a pair of the <E22=H, E21=H> type).  

 

                                                           Table 6: Independent edge values 

 1 2 3 4 5 6 7 8 9 

E19 H H H F H H H F F 

E23 H H F F H H F F F 

E24 H F H H H F H H H 

 

To continue extracting the invariants, we consider a new region (see the 

bottom subgraph at Fig. 6).  

 
 

Fig. 6. A cut-set line based on the A-B-C-E-face path  

 

In the system of the (2.3) type equations, we add invariants extracted before 

and applicable to this region. In addition, we analyze their influence on B-set 

values. As a result, the B-set is reduced to two edges (E1 and E7; E2 is defined 
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by them) and ind-set is reduced to edges E4 and E11. For various values of 

the B-edges, there are five pp-solutions: 

 

At B-set value (E7=H, E1=H) 

E1, E10, E4, E2; E7, E6, E8, E13, E16, E21, E20, E17, E11, E18, E24 (for E4=H, E11=H),  

E1, E10, E9, E13, E16, E21, E20, E17, E11, E18, E24; E7, E6, E5, E2 (for E4=F, E11=H).  

 

At B-set value (E7=H, E1=F) 

E7, E12, E21, E20, E17, E15, E13, E8, E5, E4, E10, E14, E18, E24 (for E4=H, E11=F).  

 

At B-set value (E7=F, E1=F) 

E2, E4, E10, E14, E11, E15, E13, E8, E6, E12, E21, E20, E19, E24 (for E4=H, E11=H),  

E2, E5, E6, E12, E21, E20, E17, E15, E13, E9, E10, E14, E18, E24 (for E4=F, E11=F). 

 

From these pp-solutions, E4+E5+E11=2H+F is extracted as the invariant.  

 

In a similar way, we can consider additional regions and obtain additional 

invariants. However, in our case we have already got six invariants; therefore, 

we can consider the system of equations for the graph as a whole.  
 
 

                    E1 + E2 + E3  = 2H + F          E3  + E7 + E22 = 2H + F 

                    E2 + E4 + E5  = 2H + F          E12 + E16 + E21 = 2H + F                                                 

                    E4 + E9 + E10 = 2H + F          E22 + E23 + E24 = 2H + F           

                    E5 + E6 + E8  = 2H + F          E20 + E21 + E23 = 2H + F  

                    E6 + E7 + E12 = 2H + F          E13 + E15 + E16 = 2H + F           (3.3) 

                    E8 + E9 + E13 = 2H + F           E1   + E10 + E14 = 2H + F  

                    E17 + E19 + E20 = 2H + F        E11 + E15 + E17 = 2H + F                                                                   

                    E18 + E19 + E24 = 2H + F        E11 + E14 + E18 = 2H + F  

                    E10 = H                                  E13 = H 

                    E24 = H                                  E22 = H, E20 = H (instead of E23 = F) 

                    E2 = E6                                              E4 + E5 + E11 = 2H + F.  

 

The solver provides two independent edges E1 and E4 to get unique solutions 

for (3.3). There are no solutions for E1=E4, and there are two Hamiltonian 

cycles for E1≠E4: 

{E1, E10, E9, E13, E16, E21, E20, E17, E11, E18, E24, E22, E7, E6, E5, E2} and  

{E10, E14, E11, E15, E13, E8, E6, E12, E21, E20, E19, E24, E22, E3, E2, E4}, 

respectively for (E1=H, E4=F) and (E1=F, E4=H). 

 

4. Redundancy related index for searching appropriate regions  
 

A fundamental point of our approach is regional redundancy and 

“independence” represented by corresponding invariants. For searching the 

appropriate regions and their shapes, we consider around each graph node a 
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starting region including, first of all, three faces incident to this node. Then, 

these regions are sorted according to the growth of absolute values of a 

redundancy related index (RR-index), that is defined as the 

number of interior faces in a region minus the number of the 

region B-edges.  
The order mentioned is just used for some systematic search of the graph regions where 

RR-index ≥ 1, and where the first attempt of discovering r-invariants is performed.  

 

For obtaining a region with RR-index ≥ 1, we analyze the neighborhood of a 

starting region and attach to it one or a few faces to arrange a new region with 

a larger RR-index. A number of such arrangement steps can be performed for 

getting a basic region with RR-index ≥ 1. To demonstrate this process, let’s 

consider logarithmic size regions A and its neighbor D (Fig. 7), sharing some 

B-edges with A, and assume compound region AD, including A and D, is 

connected (otherwise another neighbor is selected). In addition, we assume 

that region A has VA nodes and is surrounded by Ktlr + Kb B-edges (Ktlr is the 

number of B-edges on top-left-right sides and Kb is the number of B-edges on 

the bottom side).  

 

Fig. 7. Neighboring regions A and D 

Applying the Euler formula we can obtain for interior faces of the region graph, 

the following expression:      

                                    FA = VA/2 – (Ktlr + Kb)/2 + 1. 

It is a formula connecting the number of regional interior faces, the number of 

regional nodes, and the number of regional B-edges. Then, for RR-index 

(RRI), we can obtain RRIA = FA – (Ktlr + Kb) = VA/2 – 3(Ktlr + Kb)/2 + 1. 

Now, let region D have h internal rows representing nodes reachable by one 

step from nodes of the upper neighboring row: the nodes of the first row are 

reachable from the bottom nodes of region A by the bottom side B-edges, the 

nodes of the second row are reachable from the nodes of the first row by 

edges going down (from the first row nodes), and so on. Denote the number 
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of nodes in row j by Kj, the average number of nodes (among all rows) by K 

and the number of B-edges on the bottom-left-right sides of region D by Kblr. 

Then for the number of interior faces of compound region AD we can get:                    

FAD = (VA+h·K)/2 – (Ktlr + Kblr)/2 + 1 

and for the RR-index of compound region AD:  

RRIAD = FAD – (Ktlr + Kblr) = (VA+h·K)/2 – (Ktlr + Kblr)/2 + 1 – (Ktlr + Kblr) or  

                     RRIAD = RRIA + h·K/2 + 3(Kb-Kblr)/2.                       (4.1) 

This formula shows how we can search regions with increasing values of RR-

index. For a case with Kblr > Kb and h·K/2 + 3(Kb-Kblr)/2 ≤ 0, the shape of 

region D is modified by increasing h and/or “tuning” rows involved. For Fig. 

7, tuning means removing the bottom-left node which is out of faces attached. 

In region D of Fig. 8 (a), there are 4 black nodes (labeled b) in the first row, 4 

yellow and 4 white nodes in the second and third rows (labeled y and w, 

respectively), and  five black nodes  (also labeled b)   in the fourth row;  

   a) 

b) 

Fig. 8. Neighboring regions A and two D-s, one of which is with “tuning” rows   

RRIA = -1, Kblr > Kb but h·K/2 + 3(Kb-Kblr)/2 = 1 and RRIAD = 0.  

However, “tuning” the shape of rows 2-4 decreases the value of Kblr; see Fig. 

8 (b), where there are 3 yellow nodes in the second row, 3 white nodes in the 
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third rows, and two black nodes in the fourth row.  As a result, RRIAD’ = 2. In 

this example, such tuning operations are also applicable for two bottom rows 

of region A (before considering region AD) for removing two right nodes of 

these rows and for getting  RRIA = 1.   

In general, tuning rows means decreasing a region cutting set by removing a 

face or by avoiding attachment of an incomplete face. In fact, the tuning 

operations are automatically performed, if D regions include only complete 

faces and their attachment increases the RR-index. A special point of 

attention is that different D regions lead to different increases; for example, 

attaching the right D at Fig. 8 (b) increases RRIA by 4, while attaching the 

bottom D increases RRIA by 3.  

Formula (4.1) shows a “quadratic” growth of h·K/2 and a 

“linear” growth of 3(Kb-Kblr)/2. This means that basic regions 

with RR-index ≥ 1 are achievable. 

The number of faces, in a sense, represents a “regional square” and the number of B-

edges represents a “regional perimeter”.  

Every time, we need a basic region to start extracting r-invariants, the 

following operations are performed.   

For a starting region A, we consider, one-after-another, possible locations of 

the region D attachment with h =1 and Kb = 2, 3,…,Ω (Ω is limited by a 

number of B-edges of region A). This is for discovering compound region AD 

with maximal RRIAD (which has to be > RRIA). Successful discovering leads 

us to assign this region AD for being a new region A and to restart the search. 

Unsuccessful discovering leads us to assign h = h+1 and after that to restart 

the search. It is finished by getting a basic region with RRIAD = ©+1 (0≤©≤©, 

© is a constant). These steps are a growing RR-index search.  

We can consider our search from another point of view. For each starting region A, we try to 

attach a neighboring face (sharing some internal edges and B-edges with A and representing 

region D), which increases RRI. Absence of such a face suggests that we should try attaching 

a set of two or more neighboring faces (the number of these faces is limited and predefined). 

The failure of getting a result is used for selecting a set of faces preserving RRI. Then AD is 

assigned as a new A, and the search is restarted.  

The basic region discovered is employed for extracting the r-invariants (this 

includes finding pp-solutions and applying redundancy eliminations) or (in the case of the 

invariant extracting failure) it is used for arranging neighboring regions (NRs) (see 

the next section and Appendix 3) and for applying the NR redundancy eliminations 

to unblock discovering invariants in the basic region. In a successful case, we 

use this basic region for discovering other r-invariants. After exhausting all 
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possibilities in this region, we reuse one of the NRs (as a basic one) or go to a 

new starting region with the largest RR-index.  

Discovering an r-invariant is followed by checking the number of the r-invariants available 

and finishing the search, if this number is ≥ N/2 (it is also for checking the invariant 

independence and duplication); otherwise employing (if any) a non-considered-yet 

starting region. Results obtained in a region are saved and taken into account by further 

operations in this and other regions.  

 

5. Searching invariants in basic and neighboring regions  

There are a lot of invariants in the graph regions. For example, let’s select any 

graph node and consider all nodes reachable within two steps. Then, the sum 

of edges involved at the second step is always equal to 4H+2F. A similar 

invariant exists for edges involved at the third step and related to nodes 

reachable within three steps: the sum of these edges is equal to 8H+4F.  

Another example is related to a region of one face with even degree k. Expression E1 - E2 

+ E3 – E4 + … + Ek-1 – Ek (where edges neighboring in the expression are neighboring B-

edges of the region) is always equal to 0.  Unfortunately, they are derived from the n-

invariants and cannot be used for the systems of equations mentioned above.  

5.1. Examples of independent r-invariants  

A great variety of basic regions allows directly discovering the independent r-

invariants.  For example, in the region of Fig. 9 (a) with RRI=1, five r-

invariants (E1=H, E7=H, E10=H, E13=H and E16=H) or alternatively (E2=H, E8=H, 

E12=H, E14=H and E17=H) can be extracted. In the region of Fig.9 (b) with 

RRI=2, r-invariants E1=E4 and E2=E5 are simultaneously available (however, 

they depend on each other); alternatively, E19=E21 or E14=E22 can also be 

discovered. In the region of Fig. 9 (c) with RRI=1, E25=H is the invariant. 

R-invariants also exist in regions presented by Fig.10 (a-d). E2=E5  (or E3=E6),  

E1=E3 (or E9=E11), E12=H and E1=E8 (or E1=E6) can respectively be discovered 

in Fig.10 (a) - (d).   Even for cases with RRI = 0 and RRI = -1, r-invariants can   

          

a)                                       b)                                      c)           

                Fig. 9. Examples of regions with r-invariants   
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exist in regions with four B-edges.  

  

                                  a)                               b)                             c) 

Fig. 10. Additional examples of regions with r-invariants 

It is important to note that an r-invariant extracted from a set of pp-

solutions in a region is valid on any subset of these pp-solutions. This 

means that additional removal of pp-solutions from the set preserves 

the r-invariant extracted. 

However, there are basic regions without invariants we are interested in; 

Fig.11 presents an example of such a region. Therefore (within the framework 

of the polynomial complexity), we consider some neighboring regions, 

overlapping the region under consideration (RUC), their pp-solutions and 

appropriate redundancy eliminations for decreasing the number of pp-

solutions in RUC and, as a result, for discovering the r-invariants there.  

 

Fig. 11. A region without invariants 

5.2. Arranging  the neighboring regions 

There can be a variety of approaches. Ours is based on selecting an invariant 

pattern (a candidate to be an r-invariant) for a basic RUC and discovering pp-

d) 
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solutions that block the recognition of this pattern as the r-invariant (Ej=H, 

Ej+Ek=H+F and Ei+Ej+Ek=2H+F are examples of patterns to be considered). 

For the blocking pp-solutions, we select (Ej,Ek) (and/or (Bi,Bp)  and (Ei,Bp), 

where Bi and Bp are B-edges) pairs of the RUC edges satisfying the equality 

of Ej=Ek=F. Such pairs are used for orientation within arranging an NR. The 

orientation means that a part of the pairs should be inside this NR.  

Table 7 shows 15 clusters of pp-solutions related to the region presented by 

Fig.11. Each cluster includes two pp-solutions and any of these two can be 

eliminated without altering the graph Hamiltonicity. The total number of the 

clusters is 29, however we selected 15; they possess all features we are 

interested in to present.  Though we cannot immediately discover an r-

invariant, we can select an invariant pattern (for example, E14=H) and analyze 

conditions blocking the recognition of this pattern as the r-invariant. Within the 

cluster eliminations, pattern E14 = H can be recognized as an r-invariant in all  

  Table 7: A set of pp-solutions for the region presented by Fig. 11 

E1 F,F H,H H,H F,F H,H H,H H,H H,H H,H H,F H,F H,H H,F H,H H,H 

E2 H,H F,H H,F H,H H,H H,H H,F F,F H,H F,H F,H H,F F,H H,H H,H 

E3 H,H H,F F,H H,F H,F H,H F,H H,H H,F H,H H,H F,H H,F F,H F,F 

E4 H,F H,H H,H F,H F,H H,F H,F F,H F,H H,F F,F H,H F,H H,F H,H 

E5 F,H F,H F,F H,H H,H F,H F,H H,F H,H F,H H,H H,H H,H F,H F,H 

E6 H,H H,F H,H H,H H,H H,H H,H H,H F,F H,H H,H F,F H,H H,F H,F 

E7 H,H F,H F,F H,H F,F F,F F,F F,F H,H F,H F,H H,H F,H F,H F,H 

E8 H,H H,F F,H H,H F,F F,F F,H H,H F,F H,H H,H F,H H,H F,F F,F 

E9 F,F H,H H,H F,H F,H F,F H,H H,H F,H H,F H,F H,H H,H H,F H,H 

E10 F,H F,H H,F H,H H,H F,H H,H H,F H,H F,H H,H H,F H,H H,H H,H 

E11 H,H H,F H,H H,F H,F H,H H,H H,H H,F H,H H,H F,F H,F H,H H,F 

E12 H,F H,H H,H F,F F,F H,F H,F F,H H,H H,F F,F H,H F,F H,H H,H 

E13 H,H F,H F,F H,H H,H H,H H,H H,H H,H H,H H,H H,H H,H F,H F,H 

E14 F,F H,F H,H F,F H,H H,H H,H H,H H,H H,H H,H H,H H,H H,F H,F 

E15 H,H H,H H,H H,H H,H H,H H,H H,H F,F H,F H,F F,F H,F H,H H,H 

E16 H,H H,H H,H H,H H,H H,H H,H F,F H,H F,H F,H H,H F,H H,H H,H 

E17 F,F F,H H,F F,F H,H H,H H,F H,H H,H H,F H,F H,F H,F H,H H,H 

E18 H,H H,F F,H H,H H,H H,H F,H H,H H,H F,H F,H F,H F,H H,H F,F 

E19 H,H F,H H,F H,F H,F H,H H,F F,F H,F H,H H,H H,F H,F F,H H,H 

E20 H,H H,F F,H F,H F,H H,H F,H H,H F,H H,H F,F F,H F,H H,F H,H 

E21 H,F H,H H,H H,F H,F H,F H,F F,H H,F H,F H,H H,H H,F F,H F,F 

E22 F,H H,H F,F F,H F,H F,H F,H H,F F,H F,H H,H H,H F,H H,F H,H 

E23 H,F F,H H,H H,H H,H H,F H,F F,H H,H H,F F,F H,H H,H F,H F,H 

E24 F,H H,F H,H H,H H,H F,H F,H H,F F,F F,H H,H F,F H,H H,F H,F 

E25 

E26 

H,H H,H H,H H,H F,F F,F F,F F,F F,F F,F F,F F,F F,F H,H H,H 

E26 

 

F,F F,F F,F F,F F,F F,F F,F H,H H,H H,H H,H H,H H,H F,F F,F 

E27 H,H H,H H,H H,H F,F F,F H,H F,F F,F H,H H,H H,H H,H F,F H,H 

E28 F,F H,H H,H H,H H,H F,F H,H H,H H,H F,F H,H H,H H,H H,H F,F 

E29 H,H F,F H,H H,H H,H H,H H,H H,H H,H H,H F,F F,F H,H H,H H,H 

E30 H,H H,H F,F F,F F,F H,H H,H H,H H,H H,H H,H H,H F,F H,H H,H 
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clusters (including those we omitted for showing) except two of them (grey-

lighted by a grey background of characters); all pp-solutions in these two 

clusters have E14 = F.  

In addition, in the left grey-lighted cluster all (in our case, just two) pp-

solutions have E1=E9=E17=B26=B28=F and in the right grey-lighted cluster all 

pp-solutions have E1=E12=E17=B26=B30=F. In order to recognize the pattern as 

an r-invariant, in some way, pp-solutions with E14 = F should be eliminated in 

the RUC. Such effect eliminations can be reached in an NR which overlaps 

the RUC and includes the edges mentioned above as internal ones. 

Redundancy eliminations in such an NR removing pp-solutions with, for 

example, B26=B28=F and E1=E17=F, provides the necessary result; we call 

such eliminations 2F pair eliminations. In fact, the result could be provided by 

any pair from (E1, E9, E17, B26, B28) instead of B26=B28=F and any pair from (E1, 

E12, E17, B26, B30) instead of B1=B17=F.  

Considering Fig.11 as an example of the NR region and applying some 

redundancy elimination scheme, we can obtain that in each of the following 

pairs, edges are never simultaneously equal to F:  

(E1,E4), (E1,E15), (E2,E17), (E2,E21), (E4,E21), (E5,E15), (E5,E23), (E15,E17), (E17,E23), (E21,E23).  

In addition, by “rotating” the elimination scheme, we can get six different sets 

of such pair types;   among them is  

(E1,E16), (E1,E20), (E3,E6), (E3,E20), (E4,E14), (E4,E22), (E6,E14), (E14,E16), (E16,E22), (E20,E22).    

For arranging an NR (see Fig. 12 (a)-(d)), we select a part of its B-edges 

inside RUC and extend the overlapping subregion into a basic region (as a 

rule, with RRI ≥ 1) possessing pairs of edges that can unblock the invariant 

recognition in the RUC. Fig.12 (a) depicts the Fig.11 region as a basic one 

and an NR including E1, E3, E15 and E20 as its B-edges and B26 and B28 as its 

internal edges. The redundancy eliminations, we are trying to find in this NR, 

are related (the edges involved are blue) to E17=B26=F (for the right grey-

lighted cluster) and one of the following cases: E9=E17=F, E9=B26=F, E9=B28=F, 

E17=B26=F, E17=B28=F and B26=B28=F (for the left grey-lighted cluster).  

Fig.12 (b) also depicts the Fig.11 region as a basic one and the NR including 

E7, E11, E12, E15 and E21 as its B-edges and B26 and B28 as its internal edges. 

The NR redundancy eliminations involved are related to any two pairs: one of 

which is taken from E1=E17=B26=F and another from E1=E9=E17=B26=B28=F.  

Fig.12 (c) is similar to Fig.12 (b). The difference is in the RUC pp-solution 

elimination applied in advance for the right grey-lighted cluster (of Table 7). As 

a result, the redundancy eliminations (REs), we are trying to find in the NR, 

are related to any two pairs: one of which is taken from E1=E4=E9=E17= 
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E20=B26=F (the green elements of the pp-solution preserved in the right grey-

lighted cluster) and another from E1=E9=E17=B26=B28=F (the green elements 

of pp-solutions in the left grey-lighted cluster). In all cases related to Fig.12 (a-

c), the pair sets are overlapped; therefore, some single pairs are attempted for 

both clusters.   

a) b) 

 c)  d) 

Fig.12. Examples of arranging NRs 

In the examples provided, edges involved in the invariant pattern have been 

excluded from the NRs. However, the arrangement of NRs with such edges 

located internally is also possible. Fig.12 (d) depicts such a case, where the 

REs we are trying to find are related to any two pairs: one of which is taken 

from E1=E9=E12=E17=B26=F and another from E1=E9=E17=B26=B28=F (such an 

NR can be considered as another basic region).   

The first step of arranging the NR, as a rule, includes considering a few 

directions (of “top, bottom, left and right” types) from RUC for getting a joint 

elimination impact of a few NRs; in Fig. 13 (a), these directions are presented 

by NR(t), NR(b), NR(l) and NR(r). In addition, to enhance this impact, 

alternative eliminations are checked for each direction to decrease the 

number of blocking pp-solutions in the RUC and in a corresponding NR.  The 

joint elimination failure leads (for the second step) to searching all directions 

from an  NR  with  minimum  number  of  blocking  pp-solutions. In Fig. 13 (b),  
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Fig.13. Directions of arranging NRs 

NR(t) is presented as such an NR and NR1(t),  NR1(l) and  NR1(r) as its 

directions for getting a joint elimination impact. The new joint elimination 

failure leads, in its turn, to considering the directions from a new NR which is 

selected among all “boundary” NRs (in Fig.13 (b), they are NR1(t), NR1(l), 

NR1(r), NR(b), NR(l) and NR(r)).   In such a way (like a minimum spanning 

tree), NRs covering the graph and their tree-type chains are organized. Other 

details of the NR arrangement within NR chains are presented in the next 

subsection. 

5.3. 2F pair eliminations in the neighboring regions  

2F pair eliminations are based on Hamiltonicity-preserving REs applying in an 

NR or in a remote NR (with impact through a chain of NRs) for removing pp-

solutions blocking the invariant recognition in the basic region. Eliminating the 

NR pp-solutions is related to the edge pair values of the Bj=Bk=F (and/or 

Ei=Ep=F, Ei=Bp=F) type.  

- Successful REs in the NR unblock pp-solutions in the RUC and allow 

discovering the RUC invariants. In order to reach this goal, we check REs 

for each edge pair (above mentioned type) related to each blocking pp-

solution in the RUC (pairs are from an overlapping area of the RUC and 

NR). The success means that in the remaining NR pp-solutions, there are 

not pair edges (in the area pointed to) simultaneously equal to F. Such 

success for one pair is enough for removing a related blocking pp-solution.   

In fact, REs for each direction from RUC and their joint impact are 

checked. 

- Unsuccessful REs (or partially successful REs) lead to selecting an NR 

with a minimum number of blocking pp-solutions and to extracting from 

this NR pp-solutions which block the success at the current step; these 

pp-solutions are based on edge pairs from the NR area which is not 

overlapped with the RUC.  These pairs are applied for removing the 

blocking NR pp-solutions by REs in a new NR (the new NR direction is 

selected on rules mentioned in the previous subsection). Successful REs 

a) b) 
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(including the joint REs) in this new NR leads to unblocking pp-solutions in 

a chain of the previous NRs and discovering the invariant in the RUC. 

A blocking NR pp-solution is valid, if it is not involved in internal circles of a compound region 

including the RUC and NRs (see Appendix 4). 

The unblocking failure leads to a new-new NR and so on. In such a way, a 

chain (a tree branch) of NRs is created and extended. In each NR of the chain, 

a set of blocking pp-solutions is discovered (removing these pp-solutions 

unblocks blocking pp-solutions in the previous NRs and in the RUC).  The 

chain is extended until the unfavorable conditions are discovered in the 

newest NR, then another chain is activated (the unfavorable conditions are the 

large number of blocking pp-solutions or absence of the graph space (including fully 

covering the graph)).      

- Fig.14 illustrates 2F pair elimination issues related to the NR chain growth 

(at each step we show one direction related to an NR with the minimum 

number of blocking pp-solutions). At Fig.14 (a) a RUC is a point for 

starting an NR chain.  An invariant pattern (let it be E14 = H) is based on 

the edge from RUC(b) (the bottom part of the RUC). Edge pairs that can 

eliminate the RUC pp-solutions with E14 = F are in RUC(t) (the top part of 

the RUC), as well as in the b-part of the first NR (NR1(b)) overlapped with 

RUC(t); let them be E17=B26=F and E9=E17=F (E17=B26=F is related to one 

part of the RUC pp-solutions with E14 = F, and E9=E17=F is related to 

another part; the parts can be overlapped). 

               

                    a)                                                              b)   

Fig. 14. Examples of the NR chains 

- The failure to eliminate all pp-solutions in NR1 with simultaneous values of 

E17=B26=F and E9=E17=F leads to discovering the NR1(t) edge pairs that 

can be applied for possible eliminations of pp-solutions in NR2; let them 

be E27=B36=F, E27=B38=F and E33=E36=F. Then we attempt to eliminate all 

pp-solutions in NR2 with simultaneous values of E27=B36=F, E27=B38=F 

and E33=E36=F. The failure leads to discovering the NR2(t) edge pairs that 
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can be applied for possible eliminations of pp-solutions in NR3. In this way, 

we can go through the whole graph. In Fig.14 (b) the NR chain makes a 

loop by returning to the RUC (in fact, the return can be to any previous 

NR).    

- The failure to discover the unblocking pp-solutions in NRk-1 requires 

finding the 2F pairs in the left part of NRk-1 (NRk-1(l) which is overlapped 

with NRk(r) (the right part of NRk)). Then, the absence of blocking pp-

solutions is searched for in NRk.  

The successful search means that among these pp-solutions there are no 2F 

blocking pairs from NRk-1(l) and corresponding REs unblock pp-solutions in 

NRk-1,…, NR2, NR1.  Such a remote impact allows recognizing the invariant 

pattern in the RUC.  

The unsuccessful search leads to a deadlock finding the 2F pairs in the RUC 

pp-solutions. This means that removing pp-solutions depends on removing 

themselves. Then, we cancel the return to the RUC and take another direction 

(if the graph space is available) or activate another chain.  

In such a way, we continue arranging the NR chains (based on directions of 

an NR with minimum number of blocking pp-solutions) for covering a larger 

and larger part of G and discovering the unblocking pp-solutions.   

However, we can assume a special aspect of the search. It is related to 

including all NR pp-solutions in blocking pp-solutions. Such a situation can be 

assumable because of REs and some other operations (see the next 

subsection) used for recognizing previous invariant patterns.  

All NR pp-solutions in blocking pp-solutions mean that the 

current invariant pattern cannot be recognized.  

Then, we return to the RUC for selecting a complementing invariant pattern 

(for example, for E14 = H it can be E13 = H).  

Complementing patterns cover all possible pp-solutions (as well as, 

global solutions); failures to recognize all complementing patterns 

mean the absence of Hamiltonicity.   

In the next subsection, we continue the consideration of covering graph G by a tree-

type composition of the region chains for recognizing an invariant pattern in the root 

region of this composition. For this goal, Hamiltonicity-preserving operations of the 

regional redundancy and the redundancy with a remote impact are employed. They 

allow obtaining pp-solutions in all regions and recognizing the invariant pattern or 

discovering a Hamiltonian cycle.  For the smooth composition of the tree-type chains, 
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a flexible region arrangement based on including additional graph space into a region 

or on redesigning the regional neighborhood is naturally expected.  

 

5.4. Invariant pattern recognition in tree-type chains 

As we have already mentioned, the minimum number of blocking pp-solutions 

is applied as a criterion for   arranging the tree-type chains of NRs covering 

the graph.  At each step of this arranging, all “boundary” NRs are analyzed for 

selecting an NR which is attached to a corresponding chain. The arranging 

goal is in discovering the confirmation of 2F pair eliminations related to 

blocking pp-solutions of the RUC. A partial or full success unblocks 

corresponding RUC pp-solutions remotely through the chain.  

In such a way, we arrange and scan all regions covering graph G, and within 

this process can get success presented by necessary unblocking recognitions 

of 2F pair eliminations and applying them. On the other hand, after arranging 

and scanning regions covering graph G, we can get failure presented by 

existence of blocking pp-solutions in leaf regions of the tree chains. This 

means that the invariant pattern cannot be recognized because of potential 

existence of global solutions including the blocking pp-solutions in the RUC. 

The only chance is to show that all these global solutions are invalid.  

In order to reach this goal, we attempt to solve the Hamiltonicity problem on 

graph G, but at employing in the regions only the blocking pp-solutions. First, 

we require the involvement of all RUC’s pp-solutions infeasible for the 

invariant pattern (because the presence of these pp-solutions blocks the 

invariant pattern recognition). Then, in each NR, we also take into account all 

blocking pp-solutions and exclude other pp-solutions.  

Involving a pp-solution, which is not a blocking one in an NR, 

means an assumption of a global solution skipping all 

blocking pp-solutions in this NR; but this skipping leads to 

unblocking the blocking pp-solutions in a chain of NRs and 

in the RUC.  

After that, based only on blocking pp-solutions, in the RUC and each NR, a 

necessary number of r-invariants are extracted. Then, a system of the 

equations is composed and solved.  Existence of a solution gives us a 

Hamiltonian cycle; absence of a solution recognizes the invariant pattern in 

the RUC. The number of the blocking pp-solutions in a region is less that the 

number of all pp-solutions. This is favorable for extracting r-invariants from the 

blocking pp-solutions. Nevertheless, we can assume that there are not 
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enough r-invariants for composing the system of equations. Then, we select 

an NR, as a new basic region (a new RUC), and an invariant pattern in it (in 

fact, the old RUC and a new invariant pattern in it can be applied for 

exhausting the RUC possibilities). After that, we repeat all operations 

presented above for recognizing the invariant pattern in the new RUC (and 

invariant patterns in NRs) and solving the Hamiltonicity problem related to the 

new slice of blocking pp-solutions.  

It is important to note, that there are two fundamental points in our approach. 

The first is related to the polynomial complexity. We pay special attention to it 

in the next subsection. The second is related to lossless solution operations, 

which are based on Hamiltonicity-preserving eliminations and on separations 

of blocking pp-solutions from pp-solutions recognizing the invariant patterns. 

The separation operations (as well as the elimination ones) can apply 

alternative choices for arranging the blocking pp-solution slices across the 

regions. However, any choice is sufficient for recognizing the invariant pattern 

(in a case of non-Hamiltonicity of the graph where only the blocking pp-

solutions in the regions are used) or for getting the problem solution (in a case 

of Hamiltonicity of the graph just mentioned). 

5.5. Polynomial complexity of the approach  

In order to demonstrate the polynomial complexity of the approach, we 

present it in two parts. In the first part, we create a binary tree with a 

polynomial number of nodes representing Hamiltonicity subproblems. 

Different nodes are represented by different slices of pp-solutions employed 

across all regions of graph G.  The “thickness” of the leaf node slices allows 

discovering the necessary number of r-invariants. This discovering is 

performed in the second part, which also includes composing the systems of 

equations for the leaf nodes and solving the systems.  In addition, a final 

result, based on results in the nodes, is obtained. Splitting the problem into a 

polynomial number of subproblems depends on possible schemes related to 

recognizing the invariant patterns. Fig. 14 -16 depicts four basic schemes. 

Scheme 1 (Fig. 15) assumes that blocking pp-solutions, extracted at each 

step, and pp-solutions recognizing the invariant pattern, are split into two 

(more or less equal) parts in each NR.  Then, within the first part, the splitting 

step is based on selecting a new invariant pattern (in one of the regions) and 

discovering subsets of corresponding blocking and recognizing pp-solutions. 

In such a case, after log2N steps the number of pp-solutions in each NR is 

decreased by factor N. The number of leaf nodes in the scheme tree is of the 

2log
2
N = N level (if necessary, we can take even more steps; for example, 

log2N + n steps with n < log2N; in any case, the number of pp-solutions in an 

NR is much lesser than N2). As a result, within the second part, it is 

discovered that the number of pp-solutions in each region of each leaf node is 
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decreased to allow extracting the necessary invariants and solving the 

corresponding system of equations. A positive solution, at least in one leaf 

node, gives us a Hamiltonian cycle; negative solutions in all leaf nodes means 

that the graph is non-Hamiltonian.  

     

Fig. 15. Two views of the subproblem nodes in scheme 1 

         

Fig. 16. Two views of the subproblem nodes in scheme 2 

Scheme 2 (Fig. 16) assumes that blocking and recognizing pp-solutions are 

split into two (very unequal) parts in each NR.  Then, within the first part, the 

number of pp-solutions in some NRs can be decreased very slowly and in 

others very fast. This bias can be stable for some regions. Then, we can 

assume that the number of splitting steps is of the Π level (Π is the minimum 

number of blocking or recognizing pp-solutions in NRs at the moment of the 

process beginning; it is much less than N2). However, the number of the 

scheme leaf nodes is not of the 2Π level, but the 2Π level. This is because at 

each splitting step, the second part operations are employed for extracting 

invariants in all regions of two nodes of the tree scheme and for solving the 

corresponding systems of equations. As a result, from four nodes of each 

level only two are used in splitting for the next level.  
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Fig. 17.  Subproblem nodes in a combination of schemes 1 and 2 

Scheme 3 (Fig. 17) is a combination of schemes 1 and 2. First, it is assumed 

that blocking and recognizing pp-solutions are split into two (more or less 

equal) parts for k steps (k < log2N). Then, in each scheme node of step k, 

scheme 2 is implemented. The number of these scheme nodes is evaluated 

by 2k and the minimum number (Π’) of blocking and recognizing pp-solutions 

in NRs by Π/2k (Π is the minimum number of blocking and recognizing pp-

solutions at the moment of the scheme 1 beginning). In other words, within 

the first part, the total number of the scheme leaf nodes created after Π’ steps 

of scheme 2 is of the 2×2kΠ/2k = 2Π level and, within the second part, the 

number of nodes, where extracting the invariants and solving the systems of 

equations are possible, is also of the 2Π level.  

Scheme 4 is similar to scheme 2; it assumes that blocking and recognizing  

pp-solutions are split into two (unequal) parts in each NR, but the part 

inequality is not extremal; for example, in proportion 1 to 3 (or 1 to 4). Then, 

within the first part (under conditions of the stable bias of a worse case for us), 

the fastest decrease of the pp-solutions in corresponding regions requires p 

steps to reach factor N with 4p = N and p = (log2N)/2 and the slowest 

decrease requires m steps to reach factor N with (4/3)m = N and m = 

(log2N)/log2(4/3). As a result, within the second part, the number of the 

scheme leaf nodes involved can be estimated by O(N1/2log2N); this is because 

N1/2 is the number of the scheme nodes at level p, log2N(1/log2(4/3) – ½) is 

the number of the levels after level p, 2N1/2 is the number of chains going 

down after level p and (log2N(1/log2(4/3) – ½))/2 is an average number of leaf 

nodes in chains mentioned above.  

Any other combinations of these basic schemes and schemes with systematic 

or chaotic changes of biases in splitting the pp-solutions align (in some sense) 

pp-solution slices and also lead to polynomial numbers of the leaf nodes.  
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6. About correctness of the approach 

Our approach is based on the existence of redundancy in the graph regions, 

on Hamiltonicity-preserving eliminations of the redundancy and on discovering 

regional invariants within the process of the eliminations and the pp-solution 

splits across the regions. This allows efficient reducing of the Hamiltonicity 

problem to a polynomial number of the subproblems, which are related to 

different slices of pp-solutions and solved as the systems of linear algebraic 

equations. The following points are behind the approach. 

Statement 1: Redundancy eliminations in regions preserve at least one 

Hamiltonian cycle in the graph, if such cycles exist. Data dependence on 

decisions in neighbouring regions excludes introducing incompatibility, which 

is not derived from the graph features.  

Statement 2: An r-invariant extracted from a set of pp-solutions in a region is 

valid on any subset of these pp-solutions. Removing additional pp-solutions 

from the set preserves the r-invariant extracted.  

Statement 3: An r-invariant discovered in a region is valid for pp-solutions of 

any region including edges of the r-invariant.  

Statement 4: Removing blocking pp-solutions in any region induces 

removing blocking pp-solutions in a chain of regions leading to a root region 

from where recognizing an invariant pattern has been initiated. This allows 

lossless consideration of the subproblems, based not on decomposing the 

graph, but on splitting the sets of pp-solutions across the regions.  

Statement 5: The non-Hamiltonicity is discovered by recognizing failures for 

the complementing invariant patterns in a region or by inappropriate solutions 

of the systems of equations. 

All steps of the approach have polynomial complexity including memory we 

should expend for saving pp-solutions in all possible sets of overlapping 

regions; a rough layout of estimations gives us the following:  

- The number of basic regions < N: we need N/2 r-invariants to compose a 

system of M equations (for graph G M=3N/2); the r-invariants should be 

from all regions of the graph; let the average number of nodes in such a 

region be Δ, then N/Δ regions can cover graph G without overlapping; 

overlapping with four neighbouring regions (as we applied) can involve 

two additional layers of the graph tiling to get 3N/Δ regions; in any case, 3 

< Δ,  
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- The number of neighbouring regions in tree chains (TCs) for one basic 

regions < N:   this is because of the previous item; the total number of the 

regions covering graph G is less than N, 

- The number of pp-solutions in a region is O(N2):  the number of different 

B-set values is estimated by 2δ,  where δ  is  the number of the region B-

edges; we consider regions with  ϭ0log2N   (ϭ0 ≤ 1) B-edges, this means 

that  2δ is O(N); the number of different pp-solutions for each  feasible B-

set value is estimated by 2ω,  where ω+1 is the number of region interior 

faces; we consider regions with RR-index = ©+1 (0≤©≤©, © is a 

constant); this means that  ω = ©+log2N and 2ω = 2©N = O(N); in fact, an 

essential number  of expected pp-solutions is involved in internal cycles of 

H-valued edges or incompatible with n-invariants. In any case, the product 

of the number of different B-set values and the number of different pp-

solutions for each feasible B-set value gives us O(N2). 

- The time to obtain these pp-solutions is O(N2(log2N)3); O((log2N)3) is the 

time for solving the regional system of equations for obtaining a pp-

solution, 

- Total number of pp-solutions in a basic region and in all neighboring 

regions related to TCs is O(N3), the total number of pp-solutions in all 

basic regions and in all related NRs is O(N4) (in fact, arranging the region 

reuse can allow the corresponding pp-solutions’ reuse, too; then N4 can 

be replaced by N3), 

- The number of operations for selecting the blocking edge pairs in all NRs 

for all basic regions (under the condition that pp-solutions in the TCs’ 

regions obtained) is O(N6(log2N)2): in each region involved, the number of 

edges is of log2N level and the number of 2F pairs is O((log2N)2) ; the 

number of  comparisons in pp-solutions of one NR for all pairs is 

O(N2(log2N)2) and for N NRs and N basic regions is O(N4(log2N)2).  K 

splitting steps for N/2 invariant patterns leads to O(K×N5(log2N)2) (K < N2). 

  

7. Conclusion 

A regional invariant method based on redundancy eliminations has been 

presented and the polynomial solution of the graph Hamiltonicity problem has 

been demonstrated. The method includes searching basic and neighboring 

regions, considering all possible partial solutions (pp-solutions) within such 

regions, and removing redundant pp-solutions. Based on the concept of 

boundary communicators, a feasible set of the pp-solutions is arranged for 

each boundary case of the region. The redundancy elimination preserves only 

one representative pp-solution from each of such sets. Introducing H and F 
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symbolic parameters allows applying systems of linear algebraic equations for 

the incompatibility and redundancy eliminations, extracting regional invariants 

from the representative pp-solutions, as well as for composing a system of the 

linear equations and solving a Hamiltonicity problem as a whole. Within the 

method, the invariant pattern recognition based on arranging the region 

chains for 2F pair eliminations of a remote impact is also applied. 2F pair 

eliminations employ a large-scale type of redundancy which is related not to 

decomposing the graph, but to splitting the sets of pp-solutions across the 

regions. This allows efficient reduction of the Hamiltonicity problem to a 

polynomial number of the subproblems, which are solved as the systems of 

linear algebraic equations.  

 

Existence of redundancy and how to eliminate it have been demonstrated. In 

fact, this is an answer to questions about where the complexity disappears to 

and why P=NP. Different NP-complete problems are related to different types 

of redundancy. Therefore, solving such problems should commence with 

discovering corresponding types of redundancy and related equations with 

symbolic parameters, as well as with understanding usefulness of possibly 

failed retrieval operations. 
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Appendix 1 

 

 

A subset of rules for reasoning about edge values 

 

Ej = F - H + Ek  →   Ej = F, Ek = H 

 

Ej = 2H - Ek      →   Ej = H, Ek = H 

 

Ej = 3H - Ek - En  →  Ej=Ek=En= H  

 

Ej = H–2F + Ek + En → En=Ek= F,  Ej = H 

 

Ej = 2Ek – En     →   Ek = En  

 

Ej = (F + Ek)/2   →   Ej = Ek= F 

 

Ej = (Ek + En)/2   →   Ek = En 

 

Ej = (4H + F - 3Ek)/2   →   invalid 

 

Ej = (Ek+En + H)/3  →  Ej=Ek=En=H  

 

(Ej = 2H+F - En - Ek) & (Ez = En + Ek 

- F)    →    Ej=Ez=H, En + Ek = F + H 

 

(Ek + En = F + H) & (Ek + Ej = F + H) 

→  En = Ej 

 

Ej = 3H + F – Ek - 2En  →   En = H   

 

 

Ej = ∑ 𝑐𝑘
𝑖=1 iHi - ∑ 𝑑𝑝

𝑡=1 tHt   → ∑ 𝑐𝑘
𝑖=1 i - 

∑ 𝑑𝑝
𝑡=1 t = 1 (ci, dt – integers; Hi, Ht – 

edges or H or F) 

 

Ej = H - F + Ek  →   Ej = H, Ek = F 

 

Ej = 2F - Ek      →   Ej = F, Ek = F 

 

Ej = 2H - 3Ek + 2En →  Ej = Ek = En = H  

 

Ej = 2H-F + En - Ek  →  Ej=Ek=H, En = F 

 

Ej = 2H + F - 2Ek      →   Ej = F, Ek = H 

 

Ej = (2H + F - Ek)/2   →   Ej = H, Ek = F 

 

Ej = (Ek + 3En –2F)/2 → Ej = Ek = En =F 

 

Ej = (2Ek + 2En – F)/3  →  Ej=Ek=En = F  

 

Ej = zH - E1-E2 -…- Ez-1 →  Ej=E1=…=Ez-1=H  

 

(Ej = En + Ek – H) & (En + Ek = H+F) →   

Ej = F 

 

(Ej = 2H + F - En - Ek) & (En = Ek) →   

En = Ek = H, Ej = F 

 

(Ej = 3H + F – Ek - 2En) & (Ez = Ek+3En 

- 2H - F)  →  En = H,  Ek = F                   

 

Ej = Ek - En + H + F   →   invalid 
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Appendix 2 

 

Maximal possible number of irremovable pp-solutions for k pairs of H-valued 

B-edges 

 

k=1: s1 = 1 

k=2: s2 = 3s1 – 1 = 3 – 1 

k=3: s3 = 3(3 – 1) – 1 = 32 – 3 - 1  

k=4: s4 = 3(32 – 3 -1) – 1 = 33 - 32 – 3 - 1 

k=5: s5 = 3(33 - 32 – 3 -1) – 1 = 34 - 33 - 32 – 3 - 1 

… 

k=p: sp = 3(3p-2 – 3p-3 – …– 3 -1) – 1 = 3p-1 – 3p-2 –… – 32 – 3 – 1 = 3p-1/2 +1/2 

 

 

 
 

Fig. A. Schemes of irremovable pp-solutions for 1 and 2 pairs of H-valued B-edges 

 

 

 
 

Fig. B. Schemes of irremovable pp-solutions for 3 pairs of H-valued B-edges 

 
The number of irremovable pp-solutions for a B-set value with 2k H-valued B-edges 

(1≤k≤p) and 2p+1 faces is limited by 3k-1/2+1/2 and the total number of (removable and 

irremovable) pp-solutions is  limited by 22p (k and p are of a logarithmic level). Inequality 

22p > 3k-1/2+1/2 is enhanced for regions with greater values of RR-index. 
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Appendix 3 

 
2F pair eliminations in the NR chains 

1. In each pp-solution intended for the elimination (that is a pp-solution blocking 

an invariant recognition in a BR (basic region)), we find all pairs (Ej,Ek) of 

edges (from overlapping area of NR-BR) with Ej=Ek=F values; the pairs of all 

pp-solutions are united in one set (let their number be φ).  

2. For each pair (Ep,Ez)  of the set, we check all clusters of pp-solutions in the 

NR for possible REs’ removal of the BR pp-solutions that block the invariant 

recognition. Within a cluster, REs are fully performed only if there are not 

decision alternatives. Otherwise, eliminations with alternative pp-solutions 

(where Ep=Ez=F is invalid) are postponed (for flexibility in further operations). 

As a result, for each pair we find a number (which can be 0) of blocking pp-

solutions with Ep=Ez=F. The pairs are sorted by ascending value of the 

number: P1,  P2,  P3,  …, Pφ,   

3. A subset of pairs, with the zero sum of the numbers and related to all blocking 

pp-solutions in the RUC, leads to recognizing the invariant pattern in RUC, 

under conditions of independency of REs induced by different pairs. 

4. In cases with dependencies, for each pair Pj (1 ≤ j ≤ φ) from step 2,  

sequences of the following type are created: 

                                 P1,  P2,  P3,  …, Pφ 

                                 P2,  P1,  P3,  …, Pφ 

                                       … 

                                 Pj,  P1,  P2,  …, Pj-1, Pj+1, …, Pφ 

                                       … 

                                 Pφ,  P1,  P2,  …, Pφ-1.  

Then, REs on the NR are performed according to each sequence and the 

number of blocking pp-solutions remaining is extracted. After that, a 

sequence with the minimum of the blocking pp-solutions is selected for further 

operations in a new NR.  

5. In the new NR, steps 1, 2, 3, and 4 are performed in areas that are arranged 

by replacing the BR by the NR and the NR by a new NR. A remaining pp-

solution is recognized as such, if it is not involved in local cycles (within the 

compound region including BR and chain’s NRs). 

6. This step is repeated for new regions until recognizing the invariant pattern or 

covering the graph by the tree construction of the region chains.  

 

2F pair eliminations in the NR chains are Hamiltonicity-preserving eliminations that 

support arranging remote relations of blocking/unblocking types between pp-

solutions. Blocking relations provide a set of pp-solutions in G-region with a 

conditional impact on a set of pp-solutions in D-region. The conditional impact means 

that removing (because of some reason) the set from G-region leads via an NR chain 

to removing the corresponding set from D-region. Unblocking relations provide a set 

of the D-region pp-solutions that are a basis for discovering, via an NR chain, the G- 

region pp-solutions, which unconditionally (because of redundancy eliminations) 

remove the D-region pp-solutions. 
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Appendix 4 

Involvement of the blocking NR pp-solutions in internal H-valued circles 

Here, we clarify checking possible involvement of the blocking NR pp-

solutions in internal H-valued circles of a compound (c-) region including the 

RUC and NRs. Such involvement eliminates blocking pp-solutions related and 

avoids additional operations for taking them into account. The checking is 

performed at each step of the NR chain construction.  

In the first step from the blocking RUC pp-solutions, we extract B-

communicator pairs of B-edges that are internal to NR1(b) (see Fig. 14 (a)). 

Then based on these pairs for each blocking NR1 pp-solution, we check its 

involvement in the cycles within the c-region of NR1-RUC. In addition, B-

communicator pairs (being internal in NR2(b)) of the c-region NR1-RUC pp-

solutions are saved (if any).   

In the second step, based on the B-communicator pairs saved, we check the 

involvement of blocking NR2 pp-solutions in the circles within c-region NR2-

NR1-RUC and preserve its B-communicator pairs (being internal in NR3(b)).  

Other steps are similar to the previous ones. In fact, instead of a pp-solution 

of NRk, its part (a pp-solution of NRk(t)) is employed. The B-communicator 

pairs saved at step k represent returning paths within c-region NRk-…-NR2-

NR1-RUC.  

H-valued circles can be discovered not only in the linear chains, but also in 

the NR chain loop (like at Fig. 14 (b)). For reaching this goal, in addition to the 

returning paths, we save B-communicator paths, each of which has an 

internal for NRj+1(b) B-edge of c-region NRj-NRj-1-…-NR1-RUC and  an 

internal for NRk(r) B-edge of the same c-region.  With such data saved, we 

can efficiently discover the internal cycles inside some c-regions. 

 

 

 

 

 

 

 


