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Abstract

The 3-dimensional (3D) forward/inverse separable discrete transforms, such as Fourier transform,
cosine/sine transform, Hartley transform, and many others, are frequently the principal limiters that
prevent many practical applications from scaling to the large number of processors. Existing approaches,
which are based on 1D or 2D data decomposition, do not allow the 3D transforms to be scaled to the
maximum possible number of computer nodes. Based on the newly proposed 3D decomposition of an
N×N×N initial data into P ×P ×P blocks, where P = N/b and b ∈ [1, 2, ..., N ] is the blocking
factor, we systematically design unified, highly scalable algorithms for parallel implementation of any
forward/inverse 3D transform on the one-to-one correspondent P ×P ×P torus network of computer
nodes. All designed algorithms require 3P “compute-and-roll” time-steps, where each step is equal to
the time of execution in each node b4 fused multiply-add (fma) operations and concurrent movement of
O(b3) scalar data between nearest-neighbor nodes. The proposed 3D orbital algorithms gracefully avoid
a required 3D data transposition and can be extremely scaled up to the maximum number of N3 simple
nodes (fma-units) which is equal to the size of initial data.

1 Introduction

Three-dimensional (3D) discrete transforms (DT) such as Fourier transform, cosine/sine transform, Hartley
transform, Walsh-Hadamard transform, etc., are known to play a fundamental role in many application
areas such as spectral analysis, digital filtering, signal and image processing, data compression, medical
diagnostics, etc. Increasing demands for high speed in many real-world applications have stimulated the
development of a number of Fast Transform (FT) algorithms, such as Fast Fourier Transform (FFT), with
dramatic reduction of arithmetic complexity [9]. These recursion-based FT-algorithms are deeply serialized
by restricting data reuse almost entirely to take advantage from the sequential processing.

A recent saturation of the performance of single-core processors, due to physical and technological lim-
itations such as memory and power walls, demonstrates that a further sufficient increase of the speed of
FT-algorithms is only possible by porting these algorithms into massively-parallel systems with many-core
processors. However, by reason of complex and non-local data dependency between butterfly-connected
operations, the existing deeply serialized FT-algorithms are not well adapted for the massively-parallel im-
plementation. For example, it was recently reported in [34] that, by using two quad-core Intel Nehalem
CPUs, the direct convolution approach outperforms the FFT-based approach on a 512 × 512 × 512 data
cube by at least five times, even when the associated arithmetic operation count is approximately two times
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higher. This result demonstrates that, because of the higher regularity and locality in the computation and
data access (movement), the convolution achieves significantly better performance than FFT even with a
higher arithmetic complexity. Because cost of arithmetic operations becomes more and more negligible
with respect to the cost of data access or data movement, the conventional matrix-based DT-algorithms with
a simple, regular and local data movement are expected to be more suitable for scalable massively-parallel
implementation. As three-dimensional, N×N×N discrete transforms are computationally intensive prob-
lems with respect to N they are often calculated on large, massively parallel networks of computer nodes,
each of which includes at least one processor that operates on a local memory. The computation of a trans-
form on a network having a distributed memory requires appropriate distribution of the data and work among
the multiple nodes in the network as well as orchestrating of data movement during processing.

For parallel implementation of the 3D discrete transforms (at least for the very popular Fourier trans-
form), there are two distinct approaches which are differ in the way of data decomposition over the physical
network of computer nodes. One approach is the 1D or “slab” decomposition of a 3D N × N × N initial
data which allows scaling (or distribution of work) among np = P = N/b nodes, where a 2D slab of size
N × N × b, is assigned to each node (see Fig. 1 (a)). Here and below, b ∈ {1, 2, ..., N} is the blocking
factor. Different implementations of the 3D FFT with a “slab” decomposition can be found, for example, in
[14, 16, 17]. Although this approach has relatively small inter-node communication cost, the scalability of
the slab-based method or the maximum number of nodes is limited by the number of data elements along a
single dimension of the 3D transform, i.e. nmax

p = N when b = 1.
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Figure 1: 3D data distribution over np computer nodes: (a) 1D or “slab’ decomposition, (b) 2D or “pencil”
decomposition, and (c) 3D or “cube” decomposition.

Another approach, shown in Fig. 1 (b), is the 2D or “pencil” decomposition of a 3D N×N×N initial
data among a 2D array of np = P × P nodes (P = N/b) where a 1D “pencil” or “rod” of size N × b× b,
b ∈ {1, 2, ..., N}, is assigned to each node. Parallel 3D FFT implementations with a 2D data decomposition
are discussed in [13, 40, 32]. This approach overcomes the scaling limitation inherent into previous method
since it increases the maximum number of nodes in the system from N to N2. As a consequence, each node
requires less memory than in a “slab”-based approach. However, this increasing the number of nodes leads
to rising of the communication cost.

It is important to note that in both of these so-called “transpose” approaches, the computational part
and inter-node communication part are separated [6]. Moreover, a computational part on an assigned data
is implemented inside each node of a network by using either 2D or 1D fast (recursive) algorithms for
“slab”- or “pencil”-based decomposition, respectively, without any inter-node communication. However,
on completion of each computational part, in order to support contiguity of memory access, a transposition
of the 3D data array is required to put data in an appropriate dimension(s) into each node. At least one or
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two transpositions would be needed for the 1D or 2D data decomposition approaches, respectively. Each
of this 3D data transposition is implemented by “all-to-all” inter-node, message-passing communication.
This global data exchange imposes an overhead which is proportional to the number of nodes and can be
a dominant factor in the total time of processing for even small number of nodes [12]. As it was recently
reported [41], by using a 2D data decomposition approach, the communication part of a 5123 FFT on the
BlueGeene/P computer with up to 512× 512 = 262, 144 cores (processors) may require more than 95% of
the runtime.

The proposed in this paper a new, transpose-free approach for parallel implementation of the 3-dimensional
discrete transforms improves even further a (strong) scalability of the 3D transforms by increasing the max-
imum number of computer nodes from N2 to the extreme number of N3. It becomes possible due to

1. the 3D or “cubic” decomposition of an N×N×N initial data among np = P × P × P computer
nodes where a 3D data “cube” of size b× b× b is assigned to each node (see Fig. 1 (c));

2. computing of the basic one-dimensional N -size transform not on a single, but on the P = N/b
cyclically interconnected (for data reuse) nodes of a 3D torus network by employing not recursive,
but blocked matrix multiplication based algorithms with a well-structured data access/movement at
the expense of increasing the number of arithmetic operations;

3. integration of a local, intra-node computation with a nearest-neighbor inter-node communication at
each step of 3-dimensional processing.

A 3D transform is represented as three chained sets of the cubical tensor-by-matrix or matrix-by-tensor
multiplications which are executed in a 3D torus network of computer nodes by the fastest and extremely
scalable orbital algorithms. We call an algorithm as extremely scalable if it can be scaled to the maximum
number of computer nodes which is limited only by the size of initial data, i.e. in our case, N3. In other
words, the number of simultaneously executed scalar (basic for a given algorithm) operations may be equal
to the amount of initial data. Of course, exascale does not mean exaflop.

The paper is organized as follows. In Section 2, the scalar and block notations of the 3D forward and
inverse, separable transforms are described. It is shown that these notations are based on the multilinear
matrix multiplication. Section 3 shortly discusses a systematic way for selection the fastest and extremely
scalable matrix-matrix multiplication algorithms and its chaining. Section 4 introduces a 3D block data
partition of the three-way tensor and proposes orbital, highly-scalable algorithms for parallel implementation
of the 3D forward and inverse transforms on a 3D network of toroidally interconnected computer nodes. The
paper concludes in Section 5.

2 3D Separable Transforms

Let X = [x(n1, n2, n3)], 0 ≤ n1, n2, n3 < N , be an N×N× N cubical grid of input data or three-way
data tensor [24]. A separable forward 3D transform of X is another cubical grid of an N×N×N data or
three-way tensor

...
X = [

...
x(k1, k2, k3)] where for all 0 ≤ k1, k2, k3 < N :

...
x(k1, k2, k3) =

N−1∑
n3=0

N−1∑
n2=0

N−1∑
n1=0

x(n1, n2, n3) · c(n1, k1) · c(n2, k2) · c(n3, k3) (1)

In turn, a separable inverse or backward 3D transform of three-way tensor
...
X = [

...
x(k1, k2, k3)] is expressed

as:

x(n1, n2, n3) =
N−1∑
k3=0

N−1∑
k2=0

N−1∑
k1=0

...
x(k1, k2, k3)c(n1, k1) · c(n2, k2) · c(n3, k3) (2)
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where 0 ≤ n1, n2, n3 < N and X = [x(n1, n2, n3)] is an output N×N×N cubical tensor.
There is a direct correspondence between the equations (1), (2) and the so-called symmetric multilinear

matrix multiplication, which is used to represents three-way data tensor X or
...
X in different bases and where

an N × N matrix C = [c(ns, ks)] = [c(n, k)], s = 1, 2, 3 is a (non-singular) change-of-basis matrix
(see [24, 33, 22] for more details). It is also interesting to mention that equations (1) and (2) can be viewed
as the so called Tuker’s 3D tensor decomposition which is represented in the form of three-way tensor-by-
matrix multiplication [24, 30]. Moreover, the equation (1) or (2) represents the so-called three-way tensor
contraction which is widely used in ab initio quantum chemistry models [5, 35, 47].

The separable transforms differ only by the transform coefficient (change-of-basis) matrixC = [c(n, k)]
which can be

• symmetric, i.e. C = CT , and unitary, i.e. C−1 = C∗T , C∗ is a complex conjugate of C, like in the
Discrete Fourier Transform (DFT), where c(n, k) = exp [−2πi

N (n · k)] = cos(2πnkN ) − i sin(2πnkN )

and i =
√
−1, or in the Discrete Hartley Transform (DHT), where c(n, k) = cos(2πnkN )− sin(2πnkN );

• unitary and real, i.e. orthogonal, like in the Discrete Cosine Transform (DCT), where coefficient
c(n, k) = cos [ π2N (2n+ 1) · k] and C 6= CT ;

• consists only ±1 and be symmetric and orthogonal, like in the Discrete Walsh-Hadamard Transform
(DWHT).

We will abbreviate the generic form of a discrete transform as DXT without taking into account the specific
features of a coefficient matrix, i.e. we will use direct algorithms for the 3D transforms (1) and (2) with an
arithmetic complexity of O(N4) instead of using the so-called “fast” DXT algorithms, like 3D FFT, with
O(N3 logN) complexity.

n1 n2

n3

N N

N

N1
n1

N2

b

n3

N2

N3

P

PPN

N

P

b

b

(a) (b) (c)

Figure 2: Partitioning of an N × N × N initial data (a) into P slabs along N2-axis with the size of an
N × b×N each (b) and P × P × P cubes with the size of b× b× b each (c).

The first step to design a scalable 3D DXT is to represent it in a block matrix notation where the
conventional scalar form (1) or (2) is the only one extreme case of a block notation. To formulate our
problem in this block notation we firstly divide an N ×N × N input data volume or three-way tensor
X = [x(n1, n2, n3)] into P × P × P data cubes, where each cube X(N1, N2, N3), 0 ≤ N1, N2, N3 < P,
has the size of b× b× b, i.e. b = N/P and 1 ≤ b ≤ N/2 is the blocking factor. Then the forward 3D DXT
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(3D FDXT) can be expressed as a block version of the multilinear matrix multiplication:

...
X(K1,K2,K3) =

P−1∑
N3=0

P−1∑
N2=0

P−1∑
N1=0

X(N1, N2, N3)× C(N1,K1)×C(N2,K2)×C(N3,K3), (3)

where 0 ≤ K1,K2,K3 < N and C(Ns,Ks) = C(N,K), s = 1, 2, 3, is an (Ns,Ks)-th block of the
transform matrix C.

It is clear that a 3D block inverse transform (3D IDXT) can be written as:

X(N1, N2, N3) =

P−1∑
K3=0

P−1∑
K2=0

P−1∑
K1=0

...
X(K1,K2,K3)× C(N1,K1)×C(N2,K2)×C(N3,K3), (4)

where 0 ≤ N1, N2, N3 < P . As it can be seen from (3) and (4), both 3D transforms are implemented in
a 6D computational index space I6D = {(N1, N2, N3,K1,K2,K3) : 0 ≤ N1, N2, N3,K1,K2,K3 < P}
with the number of index points ‖I6D‖ = P 6. Each index point in this 6D space is associated with three
cubical tensor-by-matrix multiplications.

Due to separability of the linear transforms, the dimension of a computational index space can be re-
duced from six to four by splitting a 3D transform into three data dependent sets of 1D transforms as it is
shown below for the 3D FDXT (3).

At the first stage, the P × P 1D FDXT of X(N1, N2, :) are performed for all (N1, N2) pairs, 0 ≤
N1, N2 < P, as block cubical tensor-by-matrix multiplication:

Ẋ(N1, N2,K3) =
P−1∑
N3=0

X(N1, N2, N3)×C(N3,K3), (5)

where 0 ≤ N1, N2,K3 < N . It is clear from (5) that this stage is implemented in a 4D computational index
space

I I
4D = {(N1, N2, N3,K3) : 0 ≤ N1, N2, N3,K3 < P}

with an embedded 3D input data tensor {X(N1, N2, N3), 0 ≤ N1, N2, N3 < P} as one out of eight 3D faces
of 4D index space I I

4D. This cubical tensor is shown in red color in Fig. 3(a). For simplicity, a graphical
example here is provided for P = 2, i.e. blocking factor b = N/2.

At the second stage, the P × P 1D FDXT of Ẋ(:, N2,K3) are implemented for all (N2,K3) pairs,
0 ≤ N2,K3 < P, as second block tensor-by-matrix multiplication:

Ẍ(K1, N2,K3) =
P−1∑
N1=0

Ẋ(N1, N2,K3)×C(N1,K1), (6)

where 0 ≤ K1, N2,K3 < N . This stage is also implemented in a 4D index space

I II
4D = {(N1, N2,K3,K1) : 0 ≤ N1, N2,K3,K1 < P}

with a common to the previous stage 3D face I I/II
3D = I I

4D

⋂
I II
4D = {(N1, N2,K3) : 0 ≤ N1, N2,K3 < P}

which is shown in yellow in Fig. 3(b).
At the third stage, the P × P 1D FDXT of Ẍ(K1, :,K3) are implemented for all (K1,K3) pairs, 0 ≤

K1,K3 < P, as third block tensor-by-matrix multiplication:

...
X(K1,K2,K3) =

P−1∑
N2=0

Ẍ(K1, N2,K3)×C(N2,K2), (7)
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Figure 3: United 4D (mesh-based) computational index space of the 3D DXT: (a) index space for the first
stage with an initial cubical data grid shown in red; concatenation of the 4D index spaces for the (b) first
and second and (c) second and third stages with a common intermediate cubical data shown in yellow and
green, respectively; (d) the final index space with a computed data cube shown in blue.
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where 0 ≤ K1,K2,K3 < N . A 4D computational index space for this final stage is

I III
4D = {(K1, N2,K3,K2) : 0 ≤ K1, N2,K3,K2 < P}.

This index space includes a common to the previous stage 3D face I II/III
3D = I II

4D

⋂
I III
4D = {(K1, N2,K3) :

0 ≤ K1, N2,K3 < P} (shown in green in Fig. 3(c)) and a 3D output data tensor {
...
X(K1,K2,K3), 0 ≤

K1,K2,K3 < P} which is depicted in blue color in Fig. 3(d).
It is clear that, in general, these three stages can be implemented in any of six possible orders of summa-

tion and the total number of block cubical tensor-by-matrix multiplications is reduced from P 6, as for the
direct computing by (3) or (4), to 3P 4 which is equal to the number of index points in a combined 4D index
space

I4D = I I
4D

⋃
I II
4D

⋃
I III
4D. (8)

By slicing cubical data, i.e. representing three-way tensors as the set of matrices, it is possible to
formulate a 3D transform (3) or (4) as conventional block matrix-by-matrix multiplication. In this case, an
initial P×P×P data grid or three-way tensor {X(N1, N2, N3), 0 ≤ N1, N2, N3 < P}, is divided into P 1D
“slices” or “slabs” or “matrices-of-cubes” along one of axises, for example, along N2-axis, such that each
b × b × b data cube X(N1, N2, N3) can be referred as a block element X(N1, N3)N2 of the N2-th P × P
matrix, where N2 ∈ [0, P ) (see Fig. 2). Then a 3D FDXT (3) can also be computed in three data-dependent
stages as chaining sets of the block matrix-by-matrix products with a 3D computational index space for each
product.

(a) (b) (c)

N1

N3

N2

K3

N1

K1

N2

K3

K2

K1

N2

K3

Figure 4: Partition of the mesh-based 4D computational index space into the set of 3D disjoint index spaces
(opposite parallel cubical sides) for the first (a), second (b), and third (c) stages of computing.

At the first stage, since there is no dependency in 1D transforming data between all N2-slabs, the
cubical tensor-by-matrix multiplication (5) can be presented as P, independent on N2, block matrix-by-
matrix multiplications:

Ẋ(N1,K3)N2 =
P−1∑
N3=0

X(N1, N3)N2 × C(N3,K3) (9)
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where the same change-of-basis matrix C = [C(N3,K3)], 0 ≤ N3,K3 < P, is used for all N2-slices,
N2 ∈ [0, P ). As it follows from (9), each block matrix-by-matrix product in a N2-th slab is implemented in
its own 3D index space with P 3 index poins

I I
3D(N2) = {(N1, N3,K3) : 0 ≤ N1, N3,K3 < P}.

It is clear that all these cubical index spaces are disjoint, i.e.⋂
0≤N2<P

I I
3D(N2) = Ø,

and, therefore, an associated with each 3D index space set of computing can be implemented independently
or in parallel.

For the smallest 2×2 matrix case, i.e. when b = N/2 and, therefore, P = 2, the 3D index spaces I I
3D(0)

and I I
3D(1) can be seen in Fig. 4(a) as opposing parallel sides (cubes in bold lines) along the N2-axis. In

these 3D grids of index points, each point p = (N1, N3,K3)
T ∈ I I

3D(N2) is associated with a conventional
block matrix-by-matrix multiply-add

Ẋ(N1,K3)N2 ← X(N1, N3)N2 × C(N3,K3) + Ẋ(N1,K3)N2 , (10)

where an addition or accumulation is performed along N3-direction and a block matrix Ẋ(N1,K3)N2 is a
cubical b × b × b data tensor which should be zeroed initially. Now, for the original first stage (5), the 4D
computational index space can be defined as

I I
4D =

⋃
0≤N2<P

I I
3D(N2).

A 3D index space for the computed on this stage intermediate cubical tensor Ẋ(N1, N2,K3) can be seen in
Fig. 3(b) in yellow color.

At the second stage, the original tensor-by-matrix product (6) is computed by the set of P, also in-
dependent on N2, block matrix-by-matrix multiplications in the following form which keeps the required
row-by-column index agreement:

Ẍ(K1,K3)N2 =

P−1∑
N1=0

C(N1,K1)
T × Ẋ(N1,K3)N2 . (11)

It can be seen from (11) that the same coefficient matrix C = [C(N1,K1)], 0 ≤ N1,K1 < P, is used
for all N2-slices, N2 ∈ [0, P ). As in the previous stage, computing for each N2-slab is implemented in a 3D
index space

I II
3D(N2) = {(N1,K1,K3) : 0 ≤ N1,K1,K3 < P}.

The same as above, all these 3D index spaces are disjoint, i.e.⋂
0≤N2<P

I II
3D(N2) = Ø,

and, therefore, the related to each 3D index space set of computing can also be implemented independently.
The 3D index spaces I II

3D(0) and I II
3D(1) are shown for P = 2 in Fig. 4(b) as two opposing parallel sides

(cubes) along the same as in the prior stage N2-axis. Each index point p = (N1,K1,K3)
T ∈ I II

3D(N2) is
associated here with a block multiply-add computing

Ẍ(K1,K3)N2 ← C(N1,K1)
T × Ẋ(N1,K3)N2 + Ẍ(K1,K3)N2 . (12)
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In this stage, an addition is performed along N1-direction and a block matrix Ẍ(K1,K3)N2 is a b × b × b
data tensor which should be zeroed initially. For the original stage (6), the 4D computational index space is
defined as

I II
4D =

⋃
0≤N2<P

I II
3D(N2).

A 3D index space for the computed on this stage intermediate cubical tensor Ẍ(K1, N2,K3) can be seen in
Fig. 3(c) in a green color.

At the third stage, the final tensor-by-matrix multiplication (7) should be implemented inside the 4D
index space by summation data along N2-direction. This can be done by 1D slicing or partition of the
computed at the previous stage (see Fig. 3(c)), cubical tensor Ẍ(K1, N2,K3), 0 ≤ K1, N2,K3 < P, along
K3-axis, such that each K3-th slab will keep the all nedeed data at the index points along N2-direction, i.e.

Ẍ(K1, N2,K3) =
⋃

0≤K3<P

Ẍ(K1, N2)K3 .

With this data partition, the tensor-by-matrix product (7) is implemented as the set of P, independent onK3,
block matrix-by-matrix multiplications:

...
X(K1,K2)K3 =

P−1∑
N2=0

Ẍ(K1, N2)K3 × C(N2,K2), (13)

where the same P × P matrix C = [C(N2,K2)], 0 ≤ N2,K2 < P, is used for all K3-slices, K3 ∈ [0, P ).
A computing in each K3-slab is implemented in its own 3D index space

I III
3D(K3) = {(K1, N2,K2) : 0 ≤ K1, N2,K2 < P}.

Again, all these 3D index spaces are disjoint, i.e.⋂
0≤K3<P

I III
3D(K3) = Ø,

and, therefore, the associated with each 3D index space set of computations can also be implemented inde-
pendently.

For the case of P = 2, the 3D index spaces I III
3D(0) and I III

3D(1) are shown in Fig. 4(c) as opposing
parallel sides along the K3-axis. Here, each index point p = (K1, N2,K2)

T ∈ I III
3D(K3) is associated with

a block matrix-by-matrix multiply-add
...
X(K1,K2)K3 ← Ẍ(K1, N2)K3 × C(N2,K2) +

...
X(K1,K2)K3 . (14)

In this final stage, an addition is performed alongN2-direction and a block matrix
...
X(K1,K2)K3 is a b×b×b

data tensor which should be zeroed initially. It is clear that for the original stage (7), the 4D index space is
defined as

I III
4D =

⋃
0≤K3<P

I III
3D(K3).

A 3D index space for the resulting cubical tensor
...
X(K1,K2,K3) is shown in Fig. 3(d) in a blue color .

Note that in (9), (11) and (13) each of P products is three-way b × b × b tensor by b × b matrix mul-
tiplication [4]. Moreover, for each N2-slice of a cubical data X, the first two stages perform independently
the canonical 2D FDXT in the form of triple matrix multiplication with one matrix transposed, i.e., in the
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matrix form, Ẍ = CT×X×C. It is clear that in the first stage (9), N3-axis from the original basis is con-
verted into K3-axis of the new basis, i.e. transforming [N3 → K3] is implemented. In the second stage
(11), changing [N1 → K1] is performed (see Fig. 5 (a)). Before the third stage, where the final chang-
ing [N2 → K2] should be executed, an 1D slicing or working partition of the intermediate cubical tensor
Ẍ along N2-axis is algorithmically changed to the required by (13) N2-summation by using an 1D parti-
tion along K3-axis (see Fig. 5 (b)). This changing of partition and summation direction is possible because
Ẍ(K1,K3)N2 ≡ Ẍ(K1, N2)K3 , i.e. the same b×b×b data cube simultaneously belongs toN2- andK3-slices
or slabs. Actually, a slab’s sub-index in the above equations is used only to represent a 3D DXT computing
in the form of canonical (planar) matrix-by-matrix multiplication where the row-by-column summation in-
dex agreement is required. It is clear that this slab’s sub-index can be included in the main 3-dimensional
index when direct multilinear multiplication of a three-way tensor by a 2D matrix is utilized [33, 39].

N1 N2

N3

K1 N2

K3

(a) (b)

K3

K1 K2

Figure 5: Partition of a 3D data tensor into slabs (slices) of cubes (a) along N2-axis for the first and second
stages and (b) along K3-axis for the third stage.

It is important to mention that an initial slicing or 1D partition of a given cubical tensor affects the order
in which the data dependent sets of 1D transforms are implemented. Excluding an existing in our cubical
tensor (super)symmetry [24], the selected above initial data partition along N2-axis or the so-called lateral
slicing [24], leads to the following 3-stage transform order:

[N3 → K3]⇒ [N1 → K1]⇒ [N2 → K2].

A partition of the same cubical tensor along N1-axis or frontal data slicing, will result the order:

[N3 → K3]⇒ [N2 → K2]⇒ [N1 → K1].

Finally, a cubical data partition along N3-axis or horizontal slicing, will demand the order:

[N2 → K2]⇒ [N1 → K1]⇒ [N3 → K3].

It is clear that an inverse 3D transform (IDXT) (4) is implemented in the reverse order, i.e. as rolling
back of a forward 3D DXT. By keeping the slicing of an initial cubical P × P × P tensor

...
X(K1,K2,K3)

along K3-axis, a 3D IDXT would require implementation of the following three stages:

Stage I: for all pairs (K1, N2) at slabs K3 ∈ [0, P ) do

Ẍ(K1, N2)K3 =

P−1∑
K2=0

...
X(K1,K2)K3 × C(N2,K2)

T , 0 ≤ K1, N2 < P.
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This first stage for a 3D IDXT is computed in the same as for the third stage of a 3D FDXT (7) 4D index
space

I III
4D = {(K1,K2,K3, N2) : 0 ≤ K1,K2,K3, N2 < P}.

After completion, a resulting in this stage cubical tensor Ẍ(K1, N2,K3) is used as sliced into 1D slabs along
N2-axis.
Stage II: for all pairs (N1,K3) at slabs N2 ∈ [0, P ) do

Ẋ(N1,K3)N2 =
P−1∑
K1=0

C(N1,K1)× Ẍ(K1,K3)N2 , 0 ≤ N1,K3 < P.

The same as for the equation (6), this stage is implemented in a 4D index space

I II
4D = {(K1, N2,K3, N1) : 0 ≤ K1, N2,K3, N1 < P}

with a common 3D face I III/II
3D = I III

4D

⋂
I II
4D = {(K1, N2,K3) : 0 ≤ K1, N2,K3 < P}.

Stage III: for all pairs (N1, N3) at slabs N2 ∈ [0, P ) do

X(N1, N3)N2 =
P−1∑
K3=0

Ẋ(N1,K3)N2 × C(N3,K3)
T , 0 ≤ N1, N3 < P.

The final third stage of the 3D IDXT is implemented in the same as for the first stage of a 3D FDXT (5) 4D
index space

I I
4D = {(N1, N2,K3, N3) : 0 ≤ N1, N2,K3, N3 < P}

with a common 3D face I II/I
3D = I II

4D

⋂
I I
4D = {(N1, N2,K3) : 0 ≤ N1, N2,K3 < P}.

It is easy to verify that the total number of P × P block matrix-by-matrix multiplications in a forward
or inverse 3D DXT is 3P 4. Each block matrix-by-matrix multiplication is a b × b × b tensor-by-matrix
product which require an execution of b4 scalar fused (indivisible) multiply-add (fma) operations, where
b = N/P is a blocking factor. The total number of such scalar fma-operations for a 3D DXT is, therefore,
3P 4 · b4 = 3N4, i.e. blocking does not change an arithmetic complexity of the transformation. Obviously,
this is because our 3D DXT implementation is totally based on a matrix-by-matrix multiplication. At each
stage of computing, the maximal degree of reusing of the N3 data elements or an arithmetic density can be
estimated as N4/N3 = N scalar multiply-add operations per data element. Note that the existing so-called
“fast” algorithms for the 3D DXT, like 3D FFT, require an execution of O(N3 logN) scalar arithmetic
operations, i.e. an arithmetic density is only O(logN) operations per data element. This low degree of data
reusing is one of the main reasons of low efficiency and poor scalability of parallel implementations of the
fast DXT algorithms.

3 Exa-Scalable Matrix-by-Matrix Multiplication and 3D Transforms

3.1 Fast Matrix-by-Matrix Multiplication

It is clear from the above discussion that a 3D FDXT of a cubical data array or three-way tensor X can be
expressed as multilinear matrix multiplication

...
X =

3D FDXT: N2→K2︷ ︸︸ ︷(
CT ×

1D FDXT: N3→K3︷ ︸︸ ︷(
X× C

) )
︸ ︷︷ ︸

2D FDXT: N1→K1

×C, (15)
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and a 3D IDXT as

X =

3D IDXT: K3→N3︷ ︸︸ ︷(
C ×

1D IDXT: K2→N2︷ ︸︸ ︷(...
X × CT

) )
︸ ︷︷ ︸

2D IDXT: K1→N1

×CT . (16)

Recall that this fixed order of parentetization directly corresponds to 1D initial partition (slicing) of the input
three-way tensor along N2-axis which has been selected above as one of three possible 1D partitions (see
Fig. 2 (b)).

From the equations (15) and (16) it is evident that to implement a 3D transform under unlimited or
extreme parallelism, i.e. when the maximum number of simultaneous operations is limited only by the size
of data, the answers to the following questions should be found:

• What is (are) the fastest and technologically justified parallel matrix-by-matrix multiply-add (MMA)
algorithm(s) with the maximal data reuse and extreme scalability?

• How to design a collection of parallel MMA algorithms with different transposed/non-transposed
scenarios, like in a famous GEneral Matrix-matrix Multiplication (GEMM) from the Level-3 BLAS
[11]?

• How the different sets of MMA operations can be chained in time-space to effectively implement fast
multilinear matrix multiplication (15) and (16) without any data transposition?

• How it can be possible to map three, concatenated by a common 3D data, 4D computational index
spaces I I

4D

⋃
I II
4D

⋃
I III
4D of a 3D DXT (see Figures 3 and 4) into a 3-dimensional physical (spatial)

space of execution or processor space?

Some answers to these questions can be found in our previous paper [46] where extremely scalable scalar
MMA algorithms for the two-dimensional DXT on a 2D torus array processor have been systematically
designed and evaluated. The main results related to the systematic design of the scalable MMA algorithms
are described below. In [46] , it was formally shown that for the following three forms of the matrix-by-
matrix multiply-add:

C ← A×B + C, where c(i, j)←
n−1∑
k=0

a(i, k) · b(k, j) + c(i, j); (17a)

A← C ×BT +A, where a(i, k)←
n−1∑
j=0

c(i, j) · b(k, j) + a(i, k); (17b)

B ← AT × C +B, where b(k, j)←
n−1∑
i=0

a(i, k) · c(i, j) + b(k, j); (17c)

where A = [a(i, k)], B = [b(k, j), and C = [c(i, j)] are matrices of the same n × n size, there exist three
classes of the fastest MMA algorithms which are efficiently implemented on a planar n×nmesh/torus array
processor in n time-steps. These three classes are differ in linear arrangements (time-step scheduling) of
the partially-ordered set of n3 scalar indivisible (fused) multiply-add operations which are algorithmically
“located” in a cubical n× n× n computational index space I3D = {(i, j, k)T : 0 ≤ i, j, k < n}. Actually,
every scheduling class defines for each step(p) ∈ {0, 1, 2, ..., n − 1} the set of n2 “active” index points
p = (i, j, k)T ∈ I3D with an associated data-triplet {a(i, k), b(k, j), c(i, j)}, where partial computing of
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(17) is implemented by concurrent execution of n2 scalar multiply-add operations from the corresponding
set:

c(i, j)← a(i, k) · b(k, j) + c(i, j); (18a)

a(i, k)← c(i, j) · b(k, j) + a(i, k); (18b)

b(k, j)← a(i, k) · c(i, j) + b(k, j). (18c)

The scheduled at each time-step set of n2 “active” index points directly defines an associated data distri-
bution in 3D index space including an initial data placement, which is equal to the data allocation at the
first time-step. Additionally, this set of index points also defines, but indirectly, a specific for each class of
scheduling way of data reuse. As a result of indirect definition of data reuse, the different scenarios of its
physical implementation may exist as it will be shown below.

The time-step scheduling function is used in the linear or modular form:

step(p) = (αT · p) or step(p) = (αT · p) mod n,

respectively, where α = (αi, αj , αk)
T is a scheduling vector and (·) is a scalar product of two vectors.

Based on the different space-time data arrangements in a 3D index space I3D, the following classification
of MMA algorithms can be established (see [46] for details).

• Broadcast-Broadcast-Compute (BBC) class:

– the rank-one [48] or outer-product [19] update is used here where computational index space
I3D is represented as a 3D mesh of points;

– there is only one linear scheduling function for this class: step(p) = k, i.e. α = (0, 0, 1)T ;

– linear projection of the 3D index space along summation axis into a 2D physical space gives a
well-known broadcast- or replication-based MMA implementation on a planar array processor
[2, 48];

• Broadcast-Compute-Roll (BCR) class:

– a computational index space I3D is a 3D cylindrically interconnected points;

– there are two (orthogonal) modular scheduling functions: step(p) = (k − i) mod n and
step(p) = (k − j) mod n, i.e. α = (−1, 0, 1)T or α = (0,−1, 1)T ;

– a 3D → 2D projection of the cylindrical index space also along summation axis into a 2D
physical space gives the well-known Fox’s algorithm on a non-planar, semi-toroidal, array pro-
cessor [15];

• Compute-Roll-All (CRA) or orbital class:

– an index space I3D is a 3D toroidally interconnected points;

– excluding a symmetry, there are four distinct modular scheduling functions:
step(p) = (±i±j ±k) mod n, i.e. α = (±1,±1,±1)T ;

– different admissible linear 3D → 2D projections of the torus index space into a 2D physical
space produce a variety of Cannon-like algorithms [7, 46] on a 2D torus array processor.
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Recall that all three MMA forms (17) are equally scheduled, i.e. if transposition is required, a corresponding
operation (17b) or (17c) is implemented with the same initial data distribution in a 3D index space and with
the same data movement pattern as for (17a), i.e. actual matrix transposition is avoided.

Different linear or modular arrangements (schedules) of n3 data dependent scalar operations impose a
different style in reusing of the matrices A and B for concurrent updating n2 elements of a matrix C at each
time-step 1. That is, at each of n iterations or consecutive time-steps of computing:

• an algorithm from the BBC class reuses (by data replication or copying, since αi = 0 and αj = 0)
n data elements (one vector-column) of a matrix A and n data elements (one vector-row) of a matrix
B, i.e. totally 2n elements are reused for updating n2 elements of a matrix C which are then shifted
(since αk = 1) within a cubical index space I3D to the next iteration step;

• algorithms from the BCR class reuse n data elements (vector-diagonal) of a matrix A or B (by repli-
cation, since αj = 0 or αi = 0) and all n2 elements of a matrix B or A, respectively, i.e. n2 + n
elements are reused for updating n2 elements of a matrix C and, after updating, the all 2n2 elements
of matrices C and B or A, respectively, are circularly shifted or rolled (since αk = 1 and αi = −1
or αj = −1) inside cylindrical index space I3D to the next step along or opposite corresponding
direction (orbit) according to the sign;

• algorithms from the CRA class reuse all elements of matrices A and B, i.e. totally 2n2 data elements
are reused here for updating n2 elements of a matrix C and, after updating, the all 3n2 elements of the
matrices A,B and C are circularly shifted (since αi = ±1, αj = ±1, αk = ±1) inside torus index
space I3D to the next step also along or opposite corresponding direction (orbit) according to the sign.

Note that the well-known planar systolic MMA algorithms [26, 28, 27], which are belong to the so-called
All-Shift-Compute (ASC) class, require 3n − 2 time-steps on a mesh array processor and, therefore, they
are not as fast as other discussed here n-steps algorithms. Moreover, in the systolic array processors, the
initial data streams should be appropriately skewed and, in some cases, scattered before main processing is
started. An additional, non-trivial parallel memory, surrounding a systolic array processor, is usually needed
to keep and form these initial/final data streams. These challenging requirements sufficiently complicate a
practical implementation of systolic array processors. Note that ASC class is a localized (pipelined) version
of the BBC class where the time-step function is defined as step(p) = i+ j + k, i.e. α = (1, 1, 1)T .

The provided classification makes it clear that MMA algorithms from BBC class are the most economi-
cal in terms of the quantity of reusing data but, at the same time, this class require a global, i.e. depending on
the size of the problem, data replication among n2 different operations. This global data replication can be
physically implemented by either data broadcast (“one-to-all”) or by its antipode, concurrent access (“all-
to-one”) to this reusable data in a shared memory. If MMA computing is implemented on a synchronous
system where the signal propagation time between different components is no longer than the clock period
then signal/data replication by broadcast or by shared access can be implemented, in principle, within a
single cycle. In other words, MMA algorithms from the BBC class would be effective in any synchronous
system which size is limited and adjusted for the single clock period. This synchronous system acts as a
single node. Because technically, concurrent access to the shared memory is much faster than data replica-
tion by broadcast within the same limited size of system, a hierarchical shared memory approach is widely
used in today high-performance CPU and GPU processors. However, it is clear from the existing physical
constrains, such as finiteness of the speed of light, that a global data broadcast or its alternative, global data
sharing, will prevent a computer system to be extremely scaled to any relatively big size (far beyond the

1An explanation here is related to the canonical form (17a), but form (17b) or (17c) can be equally considered.
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synchronization area or volume) when the number of concurrent operations is equal to the size of problem,
i.e. the size of matrices.

From the above classification it is also follows that the only Compute-Roll-All schedule defines at each
time-step a global circulation by local movement of all 3n2 matrix elements without any redundant data
replication. Therefore, only MMA algorithms from the CRA class, which are supported by appropriate
asynchronous local data exchange, can be extremely scaled on the system without a global clock. Note that
due to cyclical (modular) nature of the orbital CRA-based MMA algorithms, the all rolled at each time-
step data elements are finally (after n “compute-and-roll” time-steps) returned to the originating (initial)
positions in a 3D torus index space. This unique for the orbital processing property is effectively used for
chaining of the different matrix products (see [46] for details). It is clear that BCR class of parallel MMA
algorithms is a combination of n-data replication and n2-data circulation, i.e. mixing of the BBC and CRA
classes.

Note that to effectively realize the set of highly-repetitive in MMA algorithms scalar operations (18), the
following forms of fused multiply-add (fma) instructions should be considered: form 123 does c← a ·b+c,
form 321 does a← c · b+ a and form 132 does b← a · c+ b. The ordering number is just the order of the
operands on the right side of the expression.

3.2 Exa-Scalable Implementation of the 3D Transforms in a 4D Computational Space

Due to extreme scalability, a Compute-and-Roll (CRA) approach will be used for the orbital implementation
of a block multilinear matrix multiplication (15) and (16). As it was previously shown (see Fig. 4), a 4D
computational index space I4D of the 3D DXT from (8) can be represented in each of three data dependent
stages as disjoint sets of the 3D index spaces. Each 3D index space represents an independent matrix-by-
matrix multiplication. All these disjoint index spaces should be properly, i.e. conflict-free, planned for
execution by applying one of a few possible for CRA class modular scheduling functions which will define
an orbital way of processing. A scheduled for execution 4D torus computational space, which is composed
of many 3D tori of index points, should be finally mapped into a 3D space of physical implementation by
using a corresponding 4D→ 3D linear projection for each consecutive stage of processing.

At the first stage of a 3D DXT computing (9), the index points p = (N1, N2,K3)
T ∈ I3D from each

N2-th 3D computational index space

I I
3D(N2) = {(N1, N3,K3) : 0 ≤ N1, N3,K3 < P}, N2 ∈ [0, P ),

are scheduled for execution and data transferring by using one of the admissible modular functions. This
modular (circular) scheduling converts each cubical, mesh-based index space I I

3D(N2) into 3D torus or
orbital index space. The same scheduling function is used as for all P disjoint 3D index spaces as well as
for all stages of processing. As an example, the modular scheduling function step(p) = (αT · p) mod P
with the scheduling vector α = (1, 1, 1)T is used here for the smallest case when P = N/b = 2. For
the first stage (see equation (9)) of orbital computing, the result of this space-time scheduling is shown
schematically in Fig. 6 for each of two disjoint 3D orbital index spaces by indicating “active” index points,
which are filled in black, and directions of data movement in two different time-steps (a) and (b). At every
time-step, each “active” index point is associated with a matrix-by-matrix multiply-add which is defined
by (10). After computing part, blocks of the matrix data X(N1, N3)N2 , C(N3,K3) and Ẋ(N1,K3)N2 are
rolled along K3-, N1-, and N3-orbits, respectively. These positive directions of data rolling are defined by
the given scheduling vector α = (1, 1, 1)T . Recall that in the first stage, an accumulation of the matrix-by-
matrix products is implemented along N3-axis or orbit.

It is clear that at each time-step only P 2 index points are active in each 3D torus index space I I
3D(N2),

and, therefore, totally, P 3 index points are active in all index spaces. As it can be seen later, this condition
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holds for all three stages of orbital processing. Therefore, for every stage of the 3D DXT processing, no
more than P 3 computer nodes would be needed at each of P time-steps to implement all P 4 operations
associated with all index points in each I I/II/III

4D . For the first stage, the P unconnected (disjoint) orbital index
spaces I I

3D(N2) is scheduled such that “compute-and-roll” processing in each N2-th 3D torus index space
begins at step(p) = N2, i.e. starting time is skewed for each index space. As it can be seen from Fig. 6
on time-step (a), a cubical index space I I

3D(0) is scheduled to start from step(p) = 0 while an index space
I I
3D(1) is planned to start from step(p) = 1. This initial time skewing in the orbital scheduling guaranties

that all index points with the same coordinates in different 3D orbital spaces will have different time-steps
during all processing. After P “compute-and-roll” time-steps, i.e. after finishing of the first stage, blocks of
intermediate matrix data Ẋ(N1,K3)N2 will be located in a 4D index space as it is required by the second
stage. Actually, due to the cyclical nature of data movement, these updated blocks are finally, i.e. after P
time-steps, returned to the original positions (indexes).

The second stage of orbital computing (11) is performed by following the same as for the first stage
scheduling policy for each of P disjoint by N2-axis 3D torus index spaces

I II
3D(N2) = {(N1,K1,K3) : 0 ≤ N1,K1,K3 < P}, N2 ∈ [0, P ).

A time-space scheduling of “active” index points is shown in Fig. 6 for time-steps (c) and (d). It can be seen
that there is no difference between two stages as in positioning of the independent 3D torus index spaces
in a 4D space as well as in scheduling of the index points with the same coordinates, despite the fact that
N3-axis was replaced after the first stage by K1-axis. Here, at each consecutive time-step, every “active”
index point is associated with a given by (12) matrix-by-matrix multiplication. For this stage, according
to the scheduling vector α = (1, 1, 1)T , a corresponding initial distribution and cyclical movements of an
intermediate matrix Ẍ(K1,K3)N2 along N1-axis and a coefficient matrix C(N1,K1)

T along K3-axis are
required. A previously computed matrix Ẋ(N1,K3)N2 is rolled at this stage along the “same” K1-axis. An
updating of the intermediate matrix Ẍ(K1,K3)N2 is implemented by accumulation of the matrix-by-matrix
products along N1-axis. It is clear that P additional “compute-and-roll” time-steps are needed to finish
second stage of orbital processing in a 4D index space. On completion of this stage, N1-axis is replaced by
K2-axis.

For the third stage of a 3D DXT computing, we keep the same scheduling function for all index points
in a 4D index space I III

4D as for two previous stages. However, a required by (13) accumulation of products
along N2-axis has to be implemented in the differently oriented 3D torus index spaces

I III
3D(K3) = {(K1, N2,K2) : 0 ≤ K1, N2,K2 < P},

which are disjoint now along K3-axis, K3 ∈ [0, P ). The “active” index points and directions of data
movement are shown schematically in Fig. 6 for the final time-steps (e) and (f) . Each “active” by the given
scheduling index point from a 3D torus index space is associated here with a matrix-by-matrix multiplication
(14). Besides, a selected at the beginning of processing modular scheduling function defines not only an
initial data distribution, but also directions of moving of a resulting matrix

...
X(K1,K2)K3 along N2-axis

and a coefficient matrix C(N2,K2) along K1-axis. An updated at previous stage matrix Ẍ(K1, N2)K3 is
rolled along the “same” K2-axis. It is clear that P additional “compute-and-roll” time-steps is required
for this final stage and, therefore, totally, 3P such steps are needed for computing of a 3D DXT in a 4D
P × P × P × P orbital index space.

4 A Scalable 3D DXT in 3D Torus Network of Nodes

The next step in the Algorithm/Architecture co-design is mapping a described above 4D logical implemen-
tation into the 3D physical space. This mapping is achieved by proper projection of the 4D scheduled orbital
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Figure 6: A 4D computational index space for the 3D DXT as disjoint sets of the 3D orbital index spaces;
distribution of active index points (filled in black) as well as directions (orbits) of circular data movement
at each “compute-and-roll” time-step (a), (b), (c), (d), (e), (f) for the scheduling vector α = (1, 1, 1)T and
P = 2; orbits for products accumulation are shown in red; for the given smallest 2 × 2 × 2 torus grid,
wrap-around connections are just opposite to specified direction of data circulation.
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index space to the 3D computer space where no more than one “active” index point is projected into a sin-
gle computer node. We used the well-known 3D → 2D linear projection method [28, 31, 45] which is
extended here to support a 4D → 3D transform. For the first and second stages of processing, each N2-th
3D torus index space is projected onto 2D space along K3-axis (see Fig. 6 (a), (b), (c), (d)) This parallel
mapping results in P different 2D torus networks of P × P computer nodes each such that N2-slices of a
combined 3D torus of P 3 simple nodes independently and concurrently implements two transforms in 2P
“compute-and-roll” time-steps. The third stage is implemented on all P parallel K3-slices (which are or-
thogonal toN2-slices) of this 3D torus of computer nodes by mapping eachK3-th 3D torus index space (see
Fig. 6 (e), (f)) into correspondingK3-slice alongK1-axis. The location of computer nodes in a 3D physical
space are indicated by triplet (Q,R,S), where 0 ≤ Q,R,S < P. Below, an orbital implementation of the
Forward and Inverse N × N × N linear transforms on a 3D torus of P × P × P computer nodes, where
P = N/b and b ∈ [1, N ] is a blocking factor, is formally described.

S

RQ

Figure 7: A 4 × 4 × 4 array of computer nodes with toroidal interconnection in a 3D (Q,R,S) space;
different colors are used to indicate nodes with distinct initial values of the given orbital function T =
(Q+R+ S) mod 4 ∈ {0 (red), 1 (blue), 2 (green), 3 (yellow)}.

4.1 3D Block Forward Transform

At the beginning, each computer node CN(Q,R,S) in a P×P×P torus array (see Fig. 7 for P = 4) holds
in a local memory the four b× b× b data cubes:

• X = X(Q,R,S) = X(N1, N2, N3),

• Ẋ = Ẋ(Q,R, T ) = Ẋ(N1, N2, T ) = O,

• Ẍ = Ẍ(S,R, T ) = Ẍ(N3, N2, T ) = O,

•
...
X =

...
X(S,Q, T ) =

...
X(N3, N1, T ) = O,

as well as the three b× b change-of-basis matrices of transform coefficients:
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• CI = C(S, T ), CII = C(Q,S), and CIII = C(R,Q),

where O is a cubical b× b× b tensor with all its entries being zero. The initially selected and used modular
function for space-time scheduling of a 4D computational index space defines one of possible functions

T = (αT · p) mod P = (±Q±R± S) mod P,

where α = (αR, αQ, αS)T = (±1,±1,±1)T is the scheduling vector and p = (Q,R,S)T is a node’s
position in a 3D physical index space (see Fig. 7). Each computer node CN(Q,R,S) in a 3D torus network
has six bi-directional links labeled as ±Q,±R,±S. During processing some blocks of tensor and matrix
data are rolled, i.e. cyclically shifted, along (+) or opposite (−) axis (orbit) according to the scheduling
vector α (see [46] for more details). As it can be seen from the assignment above, the P × P matrices CI
and CII are replicated among P parallel along R-axis slabs of computer nodes while P × P matrix CIII
is duplicated among P parallel along S-axis slabs. These change-of-basis matrices CI, CII, and CIII are
preloaded into torus array only once for practically possible many 3D transforms.

A three-stage orbital implementation of the 3D forward DXT in a 3-dimensional network of toroidally
interconnected nodes {CN(Q,R,S) : 0 ≤ Q,R,S < P} under the scheduling function T = (Q +R +
S) mod P , i.e. α = (αQ, αR, αS)T = (1, 1, 1)T , is described below (see also Fig. 8 for the smallest case:
P = 2, where red colored links show an accumulation or summation direction).

Stage I. Ẋ(Q,R, T ) =
∑

0≤S<P X(Q,R,S)× C(S, T ) :

• for all P 3 CN(Q,R,S) do P times:

1. compute: Ẋ← X× CI + Ẋ

2. data roll: +S:αS=1⇐= Ẋ −S⇐= ‖ +Q:αQ=1⇐= CI
−Q⇐=

Stage I is an orbital implementation in a physical space of the equation (5) or (9). This implementation is
achieved by linear projection of the disjoint 3D torus index spaces I I

3D(N2), 0 ≤ N2 < P, which are shown
for different time-steps in Fig 6 (a) and (b), onto planar processor or execution space along K3-axis. Each
mapped 3D torus index space I I

3D(N2) defines its own N2-th 2D torus processor.

Stage II. Ẍ(S,R, T ) =
∑

0≤Q<P C(Q,S)T × Ẋ(Q,R, T ) :

• for all P 3 CN(Q,R,S) do P times:

1. compute: Ẍ← CTII × Ẋ + Ẍ

2. data roll:
+Q:αQ=1⇐= Ẍ −Q⇐= ‖ +S:αS=1⇐= Ẋ −S⇐=

Stage II is an orbital implementation of the equation (6) or (11) by projection of the 3D torus index spaces
I II
3D(N2), 0 ≤ N2 < P , shown in Fig 6 (c), (d), onto the same as above 2D processor space along K3-axis.

Stage III.
...
X(S,Q, T ) =

∑
0≤R<P Ẍ(S,R, T )× C(R,Q) :

• for all P 3 CN(Q,R,S) do P times:

1. compute:
...
X← Ẍ× CIII +

...
X

2. data roll: +R:αR=1⇐=
...
X −R⇐= ‖ +Q:αQ=1⇐= Ẍ −Q⇐=
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Figure 8: An orbital or circular data communication between nodes for the 3D FDXT.

Stage III represents an orbital implementation in a physical space of the equation (7) or (13) by using linear
projection of the 3D torus index spaces I III

3D(K3), 0 ≤ K3 < P , shown in Fig 6 (e), (f, ) onto a new 2D
execution space along K1-axis.

Recall that due to the orbital (cyclical or rotational) nature of processing, after completion of each
stage, i.e. after P “compute-and-roll” steps, all rotated data are returned to the same originated nodes and,
therefore, a computed intermediate cubical tensor can be immediately used for the next stage of a cyclical
3D processing. Note that initial tensor X = X(N1, N2, N3) = X(Q,R,S) is assigned to the nodes in the
canonical (in-order) layout whereas all intermediate and final tensors, Ẋ, Ẍ and

...
X, will be distributed in the

skewed (out-of-order) layouts. It is also important to note that because at any stage each cubical tensor-by-
matrix multiplication is separated into the set of independent matrix-by-matrix products, the “compute” and
“data roll” parts can also be splitted and effectively overlapped by software pipelining.
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Figure 9: An orbital or circular data communication between nodes for the 3D IDXT.

The first two stages implement the set of P space-independent 2D FDXTs on P parallel along R-axis
(orbit) slabs, 0 ≤ R < P , with the P × P toroidally interconnected computer nodes {CN(Q, ∗,S)R :
0 ≤ Q,S < P} each (see Fig. 8 for the stages I and II). Totally, 2P “compute-and-roll” time-steps are
needed for each R-th slab-of-nodes to independently implement a 2D FDXT (stages I and II) of the R-th
slab-of-cubes X(N1, N3)R=N2 .

As it was discussed, to make data distribution of the intermediate cubical tensor Ẍ consistent with the
required distribution of this tensor on Stage III, eachR-th 2D FDXT is implemented in time-skewed manner
such that after 2P time-steps, the b×b×b blocks of a cubical tensor Ẍ will be correctly distributed among all
P 3 computer nodes in a 3D torus network. This required initial, intermediate and final data distributions are
controlled by the modular (orbital) scheduling function T . By using this scheduling, no data redistribution
is needed during processing and the final P independent sets of 1D FDXTs in Stage III can be immediately
started by P, now parallel along S-axis (0 ≤ S < P ), slabs of the P×P toroidally interconnected computer
nodes {CN(Q,R, ∗)S : 0 ≤ Q,R < P} each (see Stage III in Fig. 8 for P = 2).
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4.2 3D Block Inverse Transform

An orbital computing of the 3D inverse DXT is implemented as rolling back of the described above 3D
forward DXT where skewed (out-of-order) distribution of the final cubical tensor

...
X among computer nodes

will correspond to the initial three-way tensor distribution for the 3D IDXT (see also Fig. 9 for P = 2).
Obviously, the change-of-basis matrices CI, CII, and CIII are the same as for the 3D FDXT.

Stage I. Ẍ(S,R, T ) =
∑

0≤Q<P
...
X(S,Q, T )× C(R,Q)T :

• for all P 3 CN(Q,R,S) do P times:

1. compute: Ẍ←
...
X × CTIII + Ẍ

2. data roll: +R⇐=
...
X −R⇐= ‖ +Q⇐= Ẍ −Q⇐=

Stage II. Ẋ(Q,R, T ) =
∑

0≤S<P C(Q,S)× Ẍ(S,R, T ) :

• for all P 3 CN(Q,R,S) do P times:

1. compute: Ẋ← CII × Ẍ + Ẋ

2. data roll: +Q⇐= Ẍ −Q⇐= ‖ +S⇐= Ẋ −S⇐=

Stage III. X(Q,R,S) =
∑

0≤T <P Ẋ(Q,R, T )× C(S, T )T :

• for all P 3 CN(Q,R,S) do P times:

1. compute: X← Ẋ× CTI + X

2. data roll: +S⇐= Ẋ −S⇐= ‖ +Q⇐= CI
−Q⇐=

Note that at the last stage of the 3D IDXT, an accumulation or T -summation is implemented inside each
computer node. After 3P “compute-and-roll” time-steps, i.e. after completion of a 3D IDXT, the resulting
cubical tensor X will be distributed in a 3D processor space in the canonical (in-order) layout. As a conse-
quence, the frequently required by many real-world applications Forward/Backward looping, 3D FDXT 

3D IDXT, can be implemented on a 3D torus network of computer nodes in a very natural and efficient way.

4.3 Complexity and Scalability Analysis

An orbital implementation of the forward or inverse block N × N × N 3D DXT on a P × P × P torus
network of computer nodes requires totally 3P block “compute-and-roll” time-steps, where P = N/b and
1 ≤ b ≤ N is the blocking factor. Each “compute-and-roll” time-step involves the left or right multiplication
of a 3D b× b× b tensor by a b× b coefficient matrix with a possible matrix transpose. In turn, each of this
tensor-by-matrix multiplication requires execution by every computer node exactly b4 scalar fused multiply-
add (fma) operations and rolling of either b3 + b2 or 2b3 scalar data. Each node implements a data rolling
by concurrently sending and receiving data to/from two predefined nearest-neighbor nodes. Actually, each
computer node doesn’t “feel” the size of a network, because at each time-step only local computing and
topologically nearby (contact) data movement operations are implemented which can be done independent
from the total size of a system. In this respect and by analogy with Strassen’s 2 × 2 matrix multiplication
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algorithm 2, it is enough to organize a parallel data processing for the smallest, but fundamentally basic,
2 × 2 × 2 case which can be recursively scaled then to the bigger sizes with a proportional escalating of
algorithm’s time and space complexity.

The required memory space in one computer node, which is proportionally to 4b3 + 3b2, might be suffi-
ciently reduced by using the well-known “compute-in-place” approach. Note that for simplicity, we assumed
here that there is no shared memory between nearest-neighbor nodes, i.e., after computing, a local data
must be exchanged (rolled) by using a message-passing. However, if upgrading of data (a “compute” part)
precedes a movement of this data (a “roll” part) and there exist a shared memory between nearest-neighbor
nodes then data upgrading can be directly done in this shared memory, which will replace a time-consuming,
message-passing, “roll” part of this data by quick inter-node synchronization. For the other unchangeable,
but moved data, “roll” part(s) can be implemented concurrently with a “compute” part (see description of
the 3D DXT algorithms above), making all nearest-neighbor data movements totally overlapped with a local
computing. This way of sharable data exchange should be very promising for massively-parallel solution of
relatively small problems.

If blocking factor b = 1, i.e. P = N , our 3D transform algorithms achieve the highest or extreme
degree of parallelization with a total processing time equals to 3N scalar “compute-and-roll” steps on an
N ×N ×N torus array of very simple computer nodes. This fastest, fine-grained implementation will
require an fma-unit in each computer node to be with one-step or one-cycle latency which is possible for
fixed-point arithmetic, like in “Anton” supercomputer [49]. Moreover, only in this extreme case, the size
of required in each computer node memory is independent from the size of problem. For floating-point
arithmetic, however, the pipelined fma-units usually require a few cycles of latency as in today advanced
microprocessors [42, 20, 10, 8, 38, 37], which force the size of blocking factor b to be more then one in
order to hide this pipeline latency by concurrent execution of a few independent fma-instructions on the
same fma-unit (usually, b ≥ 4).

If, in contrast, a blocking factor b = N , i.e. P = 1, the proposed implementation of a 3D transform is
degenerated to a serial algorithm which is executed on a single computer node in 3N4 fma-steps. It is clear
that independently on the size of the blocking factor b ∈ [1, 2, ..., N ] and, therefore, degree of parallelization,
any implementation of a 3D transform in the form of three-way tensor-by-matrix product requires execution
of 3N4 fma-operations.

5 Conclusions

We have systematically designed massively-parallel and extremely-scalable orbital block algorithms to ef-
ficiently perform any 3D separable transform and its inverse in a 3D network of toroidally interconnected
computer nodes. The designed orbital algorithms preserve all advantages of the previously popular sys-
tolic array processing [28, 26] such as simplicity, regularity, nearest-neighbor data movement, scalable
parallelism, pipelining, etc. However, unlike systolic processing, our orbital computing keeps all initial,
intermediate, and final data inside the same 3D torus array processor allowing a simultaneous access to all
data, reusing data by its circulation, and an effective space-time chaining of different parts of processing.

Our basic 3D DXT algorithms are structurally represented in a 4-dimensional computational index space
which is partitioned into the 3D disjoint sets of index points. A modular (orbital) scheduling of these index
points for execution and data movement as well as appropriate 4D→3D projections allow to map a com-
plex three-stage data-dependent processing into a single 3D physical network of toroidally interconnected

2In Strassen’s algorithm, the time of a 2 × 2 matrix-by-matrix multiplication is decreased by reducing the number of multipli-
cations in the price of increasing the number of more cheap addition/subtractions operations and irregular data access; in our case,
however, we directly reduce this time by overlapping (indivisible) multiply-add operations combined with a local and regular data
movement.
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nodes. A multidimensional torus interconnection has always been widely used in the past and present
distributed-memory supercomputers, for example, in Cray T3E (3D torus) [44], IBM Blue Gene/L (3D
torus) [1] and Blue Gene/Q (5D torus), D.E. Shaw Research “Anton” (3D torus) [49], Fujitsu K-computer
(6D torus) [18, 3]. It is expected that direct implementation of our coarse-grained (b � 1) forward and
inverse three-dimensional DXT algorithms on supercomputers with a multidimensional torus interconnect
would be beneficial with respect to other existing implementations which are based on a 1D or 2D data
decomposition. We reserve this porting and performance evaluation as a future work. Note that instead of
using widely available and deeply optimized “fast”, but internally serial, DXT algorithms (as in 1D or 2D
decomposition approaches), our 3D decomposition technique allows to use within each node, also widely
available and practically even more deeply optimized and, therefore, more fast and efficient, GEMM-based
algorithms [29, 36].

Moreover, our extremely scalable solution (b ∼= 1) for a fine-grained 3D DXT implementation on a
cubical “mesh-of-tori” network 3 [43] of very simple execution nodes (each with one multiply-add unit and
a few, inter-node connected, registers) is perfectly suited for forthcoming 3-dimensional VLSI technology
[25], Giga-size sensor arrays with parallel read-out [21] and many real-world applications (including em-
bedded) with multidimensional data. Note that preliminary, but promising results of FPGA implementation
of a 3D torus array processor for the fine- and coarse-grained 3D Discrete Cosine Transform (3D DCT) has
recently been reported [23].

One of the notable characteristics of our unified and extremely scalable 3D DXT algorithms is in the
possibility to implement concurrently a few distinct transforms on the same cubical data by using different
matrices of transform coefficients. Additionally, if it is required by application, the different transforms for
different cubical data dimensions can be easily implemented at the same time.
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