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Extremely Scalable GEMM-based Algorithms

for 3-Dimensional Discrete Transforms

in Torus Networks

Stanislav G. Sedukhin

Abstract

The 3-dimensional (3D) forward/inverse separable discrete trans-

forms, such as Fourier transform, cosine/sine transform, Hartley trans-

form, and many others, are frequently the principal limiters that pre-

vent many practical applications from scaling to the large number of

processors. Existing approaches, which are based on a 1D or 2D data

decomposition, do not allow the 3D transforms to be scaled to the max-

imum possible number of processors. Based on the newly proposed 3D

decomposition of an N×N×N initial data into P×P×P blocks, where

P = N/b and b ∈ [1, 2, ..., N ] is a blocking factor, we design unified,

highly scalable, GEMM-based algorithms for parallel implementation of

any forward/inverse 3D transform on a P×P×P network of toroidally

interconnected nodes in 3P “compute-and-roll” time-steps, where each

step is equal to the time of execution of b4 fused multiply-add (fma) op-

erations and movement of O(b3) scalar data between nearest-neighbor

nodes. The proposed 3D orbital algorithms can be extremely scaled to

the maximum number of N3 simple nodes (fma-units) which is equal to

the size of data.

1 Introduction

Three-dimensional (3D) discrete transforms (DT) such as Fourier Transform,

Cosine/Sine Transform, Hartley Transform, Walsh-Hadamard Transform, etc.,

are known to play a fundamental role in many application areas such as spec-

tral analysis, digital filtering, signal and image processing, data compression,
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medical diagnostics, etc. Increasing demands for high speed in many real-world

applications have stimulated the development of a number of Fast Transform

(FT) algorithms, such as Fast Fourier Transform (FFT), with drastic reduction

of arithmetic complexity [1]. These recursion-based FT-algorithms are deeply

serialized by restricting data reuse almost entirely to take advantage from the

sequential single-core processing.

A recent saturation of the performance of single-core processors, due to

physical and technological limitations such as memory and power walls, demon-

strates that a further sufficient increase of the speed of FT-algorithms is

only possible by porting these algorithms into massively-parallel systems with

many-core processors. However, by reason of complex and non-local data de-

pendency between butterfly-connected operations, the existing deeply serial-

ized FT-algorithms are not well adapted for the massively-parallel implementa-

tion. For example, it was recently reported in [2] that, by using two quad-core

Intel Nehalem CPUs, the direct convolution approach outperforms the FFT-

based approach on a 512×512×512 data cube by at least five times, even when

the associated arithmetic operation count is approximately two times higher.

This result demonstrates that, because of the higher regularity and locality in

the computation and data access (movement), the convolution achieves signifi-

cantly better performance than FFT even with a higher arithmetic complexity.

Because cost of arithmetic operations becomes more and more negligible with

respect to the cost of data access, we envision that the conventional matrix-

based DT-algorithms with simple, regular and local data movement would be

more suitable for scalable massively-parallel implementation.

As three-dimensional, an N×N×N discrete transforms are computationally

intensive problems with respect to N they are often calculated on large, mas-

sively parallel networks of computer nodes, each of which includes at least one

processor that operates on a local memory. The computation of a transform

on a network having a distributed memory requires appropriate distribution

of the data and work among the multiple nodes in the network as well as

orchestrating of data movement during processing.

For parallel implementation of the 3D discrete transforms (at least for the

very popular Fourier transform), there are two distinct approaches which are

differ in the way of data decomposition over the physical network of computer
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nodes. One approach is the 1D or “slab” decomposition of a 3D N×N×N

initial data which allows scaling (or distribution of work) among P nodes,

where a 2D slab of size N×N×(N
P

), 2 ≤ P ≤ N, is assigned to each node.

Different implementations of the 3D FFT with a “slab” decomposition can be

found, for example, in [3], and [4]. Although this approach has relatively small

communication cost, the scalability of the slab-based method or the maximum

number of nodes is limited by the number of data elements along a single

dimension of the 3D transform, i.e. Pmax = N .

Another approach is the 2D or “pencil” decomposition of a 3D N×N×N

initial data among a 2D array of P ×P nodes, where a 1D “pencil” of size

N×(N
P

)×(N
P

), 2 ≤ P ≤ N, is assigned to each node [5], [6]. This approach

overcomes the scaling limitation inherent into previous method since it in-

creases the maximum number of nodes in the system from N to N2. However,

this increasing the number of nodes leads to rising of the communication cost.

It is important to note that in the both above mentioned, so-called “trans-

pose” approaches, the computational and communication parts are separated.

Moreover, a computational part is usually implemented inside each node of a

network by using the 2D or 1D fast DXT algorithms for “slab”- or “pencil”-

based decomposition, respectively, without any inter-node communication.

However, after completion of each computational part, a transposition of the

3D matrix is required to put data in an appropriate dimension(s) into each

node. That is, one or two 3D matrix transpositions would be needed for the

1D or 2D data decomposition approaches, respectively. Each of the 3D ma-

trix transposition is implemented by “all-to-all” inter-node, message-passing

communication. This global communication imposes an overhead which is pro-

portional to the number of nodes and can be a dominant factor in the total

time of processing for even small number of nodes [7].

The proposed in this paper a new, transpose-free approach for parallel im-

plementation of the 3D discrete transforms increases even further a scalability

in the maximum number of nodes from N2 to the theoretical limit of N3 by

using, firstly, the 3D or “cubical” decomposition of an N×N×N initial data

and, secondly, fusion of a local, intra-node computation with a nearest-neighbor

inter-node communication at each step of processing. The 3D transforms are

represented as three chained sets of (general) matrix-matrix multiplications
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(GEMM) which are executed in a 3D torus network by the fastest orbital

algorithms. An algorithm is extremely scalable if it can be scaled to the max-

imum number of nodes which is limited only by the size of initial data, i.e.

N3.

The paper is organized as follows. In Section 2, the scalar and block no-

tations of the 3D forward and inverse, separable transforms are described.

Section 3 shortly discusses a systematic way for selection the fastest and

extremely scalable matrix-matrix multiplication algorithms and its chaining.

Section 4 introduces a 3D block data partition and proposes orbital, highly-

scalable GEMM-based algorithms for the 3D forward and inverse transforms

on a 3D network of toroidally interconnected nodes. The paper concludes in

Section 5.

2 3D Separable Transforms

Let X = [x(n1, n2, n3)], 0 ≤ n1, n2, n3 < N , be an N ×N × N volume of

input data. A separable, forward 3D transform of X is another volume of an

N×N×N matrix
...
X = [

...
x (k1, k2, k3)] where for all 0 ≤ k1, k2, k3 < N :

...
x (k1, k2, k3) =

N−1∑
n3=0

N−1∑
n2=0

N−1∑
n1=0

x(n1, n2, n3) · c(n1, k1) · c(n2, k2) · c(n3, k3) (1)

In turn, a separable, inverse 3D transform is expressed as:

x(n1, n2, n3) =
N−1∑
k3=0

N−1∑
k2=0

N−1∑
k1=0

...
x (k1, k2, k3) · c(n1, k1) · c(n2, k2) · c(n3, k3) (2)

where 0 ≤ n1, n2, n3 < N and X = [x(n1, n2, n3)] is an output N×N×N

matrix.

The separable transforms differ only by the transform coefficient matrix

C = [c(ns, ks)] = [c(n, k)], s = 1, 2, 3, which can be

• symmetric, i.e. C = CT , and unitary, i.e. C−1 = C∗T , C∗ is a complex

conjugate of C, like in the Discrete Fourier Transform (DFT), where

c(n, k) = exp [−2πi
N

(n · k)] = cos(2πnk
N

) − i sin(2πnk
N

) and i =
√
−1, or

in the Discrete Hartley Transform (DHT), where c(n, k) = cos(2πnk
N

) −

sin(2πnk
N

);
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• unitary and real, i.e. orthogonal, like in the Discrete Cosine Transform

(DCT), where coefficient c(n, k) = cos [ π
2N

(2n+ 1) · k] and C 6= CT ;

• consists only ±1 and be symmetric and orthogonal, like in the Discrete

Walsh-Hadamard Transform (DWHT).

We will abbreviate the generic form of a separable transform as DXT without

taking into account the specific features of a coefficient matrix, i.e. ignore the

“fast” DXT algorithms.

The first step to formulate a 3D DXT in scalable form is to represent a

given transform in block matrix notation such that a scalar form (1) or (2)

would be a specific case only. To implement this block notation we divide an

N×N× N input data volume X = [x(n1, n2, n3)] into P×P×P data cubes,

where each cube X(N1, N2, N3), 0 ≤ N1, N2, N3 < P, has the size of b× b× b,

i.e. b = N/P and 1 ≤ b ≤ N/2. Then a block notation of the forward 3D DXT

(3D FDXT) can be expressed as:

...
X(K1, K2, K3) =

P−1∑
N3=0

P−1∑
N2=0

P−1∑
N1=0

X(N1, N2, N3)×

C(N1, K1)×C(N2, K2)×C(N3, K3), (3)

where 0 ≤ K1, K2, K3 < N and C = [C(Ni, Ki)] = [C(N,K)], i = 1, 2, 3, is an

(Ni, Ki)-th block of the transform matrix C.

It is clear that a 3D block inverse transform (3D IDXT) can be written as:

X(N1, N2, N3) =
P−1∑
K3=0

P−1∑
K2=0

P−1∑
K1=0

...
X(K1, K2, K3)×

C(N1, K1)×C(N2, K2)×C(N3, K3), (4)

Figure 1: Partitioning of an N ×N ×N initial data volume (left) into P slabs

with the size of an N × b × N each (middle) and P × P × P cubes with the

size of b× b× b each (right) for parallel 3D DXT.
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where 0 ≤ N1, N2, N3 < P .

Now it is possible to formulate a 3D transform as conventional matrix-

matrix multiplication. An initial P×P×P data volume X(N1, N2, N3), 0 ≤

N1, N2, N3 < P, is divided into P 1D slabs, for example, along N2-axis, i.e.

X(N1, N2, N3) can be referred as X(N1, N3)N2 for N2 ∈ [0, P ) (see Fig. 1 for

details). Then a 3D FDXT (3) can be computed in three data-dependent

stages as chaining sets of matrix-matrix products:

1. for all cubes 0 ≤ N1, K3 < P at slabs N2 ∈ [0, P ) do

Ẋ(N1, K3)N2 =
P−1∑
N3=0

X(N1, N3)N2 × C(N3, K3);

This stage is implemented in a 4D index space

II4D = {(N1, N2, N3, K3) : 0 ≤ N1, N2, N3, K3 < P}.

2. for all cubes 0 ≤ K1, K3 < P at slabs N2 ∈ [0, P ) do

Ẍ(K1, K3)N2 =
P−1∑
N1=0

C(N1, K1)
T × Ẋ(N1, K3)N2 ;

This stage is implemented in a 4D index space

III4D = {(N1, N2, K3, K1) : 0 ≤ N1, N2, K3, K1 < P}.

3. for all cubes 0 ≤ K1, K2 < P at slabs K3 ∈ [0, P ) do

...
X(K1, K2)K3 =

P−1∑
N2=0

Ẍ(K1, N2)K3 × C(N2, K2);

This stage is implemented in a 4D index space

IIII4D = {(K1, N2, K3, K2) : 0 ≤ K1, N2, K3, K2 < P}.

The first two stages implement a classical 2D FDXT of a cubical matrix X

in the form of triple matrix multiplication with transposition, Ẍ = CT×X×C.

Before the third stage, an 1D partition along N2-axis is logically changed to an

1D partition along K3-axis since Ẍ(K1, K3)N2 ≡ Ẍ(K1, N2)K3 , i.e. the same

data cube simultaneously belongs to N2- and K3-slabs. Actually, a slab’s sub-

index is used only to represent a 3D DXT computing in the form of canonical

(planar) matrix-matrix multiplication where the index agreement is required.
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This slab’s sub-index would be converted into corresponding main index when

multiplication of a 3D matrix by a 2D matrix and vice-verse are utilized.

It is clear that a 3D IDXT (4) is implemented as rolling back of a 3D FDXT:

1. for all cubes 0 ≤ K1, N2 < P at slabs K3 ∈ [0, P ) do

Ẍ(K1, N2)K3 =
P−1∑
K2=0

...
X(K1, K2)K3 × C(N2, K2)

T ;

This stage is implemented in a 4D index space

IIII4D = {(K1, K2, K3, N2) : 0 ≤ K1, K2, K3, N2 < P}.

2. for all cubes 0 ≤ N1, K3 < P at slabs N2 ∈ [0, P ) do

Ẋ(N1, K3)N2 =
P−1∑
K1=0

C(N1, K1)× Ẍ(K1, K3)N2 ;

This stage is implemented in a 4D index space

III4D = {(K1, N2, K3, N1) : 0 ≤ K1, N2, K3, N1 < P}.

3. for all cubes 0 ≤ N1, N3 < P at slabs N2 ∈ [0, P ) do

X(N1, N3)N2 =
P−1∑
K3=0

Ẋ(N1, K3)N2 × C(N3, K3)
T .

This stage is implemented in a 4D index space

II4D = {(N1, N2, K3, N3) : 0 ≤ N1, N2, K3, N3 < P}.

It is easy to verify that the total number of P × P block matrix-matrix

multiplications in a forward or inverse 3D DXT is 3P 4. Each (b×b)×b block

matrix-matrix multiplication requires an execution of b3 · b = b4 scalar fused

(indivisible) multiply-add (fma) operations, where b = N/P is a blocking fac-

tor. The total number of such fma-operations for a 3D DXT is, therefore,

3P 4 · b4 = 3N4, i.e. blocking doesn’t change an arithmetic complexity of the

transformation. Obviously, it is because a 3D DXT is based completely on a

matrix-matrix multiplication. At each stage of computing, the maximal degree

of reusing of the N3 data elements or an arithmetic density can be estimated

as N4/N3 = N multiply-adds/ (data element). Note that a 3D Fast DXT, like

FFT, required an execution of the O(N3 logN) scalar arithmetic operations,

at the best, i.e. an arithmetic density is only O(logN). This low degree of

data reusing is one of the reasons of low efficiency and low scalability of parallel

implementations of the fast DXT algorithms.
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3 Matrix Multiplication and 3D Transforms

From the above discussion we can conclude that in the matrix form a 3D FDXT

can be expressed as

...
X =

3D FDXT: N2→K2︷ ︸︸ ︷(
CT ×

1D FDXT: N3→K3︷ ︸︸ ︷(
X × C

) )
︸ ︷︷ ︸

2D FDXT: N1→K1

×C,

and a 3D IDXT as

X =

3D IDXT: K3→N3︷ ︸︸ ︷(
C ×

1D IDXT: K2→N2︷ ︸︸ ︷(...
X × CT

) )
︸ ︷︷ ︸

2D IDXT: K1→N1

×CT .

Note that this fixed order of parentetization directly corresponds to an 1D

decomposition of the 3D initial data along N2-axis which was selected above

as one possible case.

From the forward and inverse 3D DXT equations it is clear that to im-

plement a 3D transform under unlimited parallelism, i.e. when the maximum

number of simultaneous operations is limited only by the size of data, the

following should be found:

• The fastest matrix-matrix multiply-add (MMA) algorithm or algorithms

with a maximal data reuse;

• These MMA algorithms should include the different forms of transposi-

tion, like in a General Matrix-matrix Multiplication (GEMM) from the

Level-3 BLAS [8];

• A time-space coordinated chain of MMA multiplications for the quadru-

ple matrix products;

• Mapping three, concatenated by data-dependency, 4D computational in-

dex spaces II4D
⋃
III4D

⋃
IIII4D into a single 3D physical processor space.

The solutions to all these problems can be found in our previous paper [9]

where the fastest scalar MMA algorithms for the 2D DXT on a 2D torus array

processor have been systematically designed and investigated. Moreover, it
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was formally shown that for the following forms of the n × n matrix-matrix

multiply-add:

C ← A×B + C; (5a)

A← C ×BT + A; (5b)

B ← AT × C +B; (5c)

there exist three classes of the fastest MMA algorithms which are implemented

on an n × n mesh/torus array processor in n time-steps and which are differ

in scheduling of the partially-ordered set of n3 indivisible, scalar multiply-add

operations in a 3D computational index space. These three classes are

• Broadcast-Broadcast-Compute (BBC) class which is based on the rank-1

updates [10], [11];

• Broadcast-Compute-Roll (BCR) class, which includes a few Fox-based

algorithms [12];

• Compute-Roll-All (CRA) or orbital class, which includes a big variety of

Cannon like algorithms [13].

Note that if transposition is required, a corresponding MMA operation (5b) or

(5c) is implemented in a 3D computational index space without actual matrix

transposition. Note also that MMA’s computational index space is a 3D mesh

for the BBC class, a 3D cylinder for the BCR class, and a 3D torus for the

CRA class.

Different scheduling of the MMA computations imposes a different data

reuse of the matrices A and B for updating n2 elements of a matrix C 1. That

is, at each of n iterations or time-steps:

• an algorithm from the BBC class reuses (by replication, i.e. by broadcast)

only n data elements (one column) of a matrix A and n data elements

(one row) of a matrix B;

• algorithms from the BCR class reuse n data elements (diagonal) of a

matrix A or B (by broadcast) and all n2 elements of a matrix B or A

(by rolling), respectively;

1This example is provided for the canonical form (5a), but other MMA forms can be

equally considered.
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• algorithms from the CRA class reuse all elements of matrices A and B

(by rolling), i.e. 2n2 data elements.

Note that the well-known planar systolic MMA algorithms, which belong to

the All-Shift-Compute (ASC) class, require 3n− 2 time-steps on a mesh array

processor and, therefore, is not as fast as other discussed algorithms.

From the provided classification, the only Compute-Roll-All schedule de-

fines at each time-step a circular movement of all 3n2 matrix elements without

any data broadcast or replication. From the physical constrains it is clear that

a global data broadcast or its alternative, data sharing, should be avoided in

any extremely (unlimited) scalable system. The CRA class of the orbital MMA

algorithms is selected for designing the scalable GEMM-based 3D transforms.

Due to cyclical nature of the orbital CRA-algorithms, the all rolled data

elements are finally returned to the initial positions in a 3D torus index space.

This unique for the orbital processing characteristic is effectively used for chain-

ing of the different matrix products.

Below, a nontrivial extension of the scalar orbital MMA algorithms to the

block MMA algorithms for the 3D DXT on a 3D array of toroidally intercon-

nected nodes is introduced.

4 3D Data Partition and Scalable Computing

The proposed in this paper a new approach increases a scalability in the num-

ber of nodes from N2 to the theoretical maximum of N3 by using the 3D or

“cubical” decomposition of an N×N×N initial data and fusion of the com-

putation with a local, nearest-neighbor communication at the each time-step.

In our approach, an N×N×N volume of initial data is, firstly, partitioned

into the P ×P ×P data cubes with the size of each is (N
P

)× (N
P

)× (N
P

) and

2 ≤ P ≤ N . Then each of P 1D “slab-of-cubes” is assigned not to a single

node as in the “slab” decomposition above, but to the P×P array of toroidally

interconnected nodes such that each data cube is assigned to the appropriate

node. The P of such P ×P torus arrays of nodes independently implement

the set of P 2D DXTs in 2P block “compute-and-roll” time-steps in the same

way as it was described in [9] for the scalar (P = N) case. For the block

implementation, however, each computational step requires an execution of b4
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scalar, indivisible (fused), multiply-add operations, where b = N
P

is a block-

ing factor. Moreover, to provide a 3D data consistency with the remaining

1D DXT, all these P independent 2D DXTs should be appropriate skewed in

space-time. The discussed below algorithms for the 3D DXTs are designed

with this required skewing.

Figure 2: A 4× 4× 4 array of computing nodes with toroidal interconnect in

a 3D (Q,R,S) space.

4.1 3D Block Forward Transform

At the beginning, each computing node CN(Q,R,S) in a P×P×P torus array

(see Fig. 2 for P = 4) has in the local memory the four b×b×b data cubes:

• X = X(Q,R,S) = X(N1, N2, N3),

• Ẋ = Ẋ(Q,R, T ) = Ẋ(N1, N2, T ) = Ø,

• Ẍ = Ẍ(S,R, T ) = Ẍ(N3, N2, T ) = Ø,

•
...
X =

...
X(S,Q, T ) =

...
X(N3, N1, T ) = Ø,

as well as the three b×b matrices of transform coefficients:

• CI = C(S, T ), CII = C(Q,S), and CIII = C(R,Q),
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where Ø is a b×b×b matrix of all zeros and T is one of the orbital or modular

scheduling functions:

T = (αT · p) mod P ∈ (±Q±R± S) mod P,

α = (αR, αQ, αS)T = (±1,±1,±1)T is the scheduling vector and p = (Q,R,S)T

is a node position in a 3D physical index space. Each computing node CN(Q,R,S)

in a torus system has six connection links labeled as ±Q,±R,±S. During pro-

cessing a block of matrix data is rolled along or opposite corresponding axis

(orbit) according to the scheduling vector α (for more details see [9]).

A proposed here three-stage orbital implementation of the 3D forward DXT

on a 3-dimensional network of toroidally interconnected nodes {CN(Q,R,S) :

0 ≤ Q,R,S < P} under the scheduling function T = (Q+R+S) mod P , i.e.

α = (αQ, αR, αS)T = (1, 1, 1)T , is described below (see also Fig. 3 for P = 2

where red colored links show an accumulation or summation direction):

Stage I. Ẋ(Q,R, T ) =
∑

0≤S<P X(Q,R,S)× C(S, T ) :

• for all P 3 CN(Q,R,S) do P times:

1. compute: Ẋ ← X × CI + Ẋ

2. data roll:
+S:αS=1⇐= Ẋ

−S⇐= ‖ +Q:αQ=1⇐= CI
−Q⇐=

Stage II. Ẍ(S,R, T ) =
∑

0≤Q<P C(Q,S)T × Ẋ(Q,R, T ) :

• for all P 3 CN(Q,R,S) do P times:

1. compute: Ẍ ← CT
II × Ẋ + Ẍ

2. data roll:
+Q:αQ=1⇐= Ẍ

−Q⇐= ‖ +S:αS=1⇐= Ẋ
−S⇐=

Stage III.
...
X(S,Q, T ) =

∑
0≤R<P Ẍ(S,R, T )× C(R,Q) :

• for all P 3 CN(Q,R,S) do P times:

1. compute:
...
X ← Ẍ × CIII +

...
X

2. data roll:
+R:αR=1⇐=

...
X
−R⇐= ‖ +Q:αQ=1⇐= Ẍ

−Q⇐=

Note that due to an orbital (cyclical) nature of processing, on completion of

each stage, i.e. after every P “compute-and-roll” steps, all rotated data are
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returned to the same nodes and, therefore, are ready for the next stage of

processing. Note also that an initial cubical matrix X is assigned to the nodes

in the canonical (in-order) layout whereas all intermediate and final matrices,

Ẋ, Ẍ and
...
X, will be in the skewed (out-of-order) layouts.

Figure 3: An orbital communication between nodes for the 3D FDXT.

4.2 3D Block Inverse Transform

It is clear that an orbital computing of the 3D inverse DXT can be imple-

mented as rolling back of the above described process for a 3D forward DXT

(see also Fig. 4 for P = 2) with the same initial data distribution among nodes:
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Figure 4: An orbital communication between nodes for the 3D IDXT.

Stage I. Ẍ(S,R, T ) =
∑

0≤Q<P
...
X(S,Q, T )× C(R,Q)T :

• for all P 3 CN(Q,R,S) do P times:

1. compute: Ẍ ←
...
X × CT

III + Ẍ

2. data roll:
+R⇐=

...
X
−R⇐= ‖ +Q⇐= Ẍ

−Q⇐=

Stage II. Ẋ(Q,R, T ) =
∑

0≤S<P C(Q,S)× Ẍ(S,R, T ) :

• for all P 3 CN(Q,R,S) do P times:

1. compute: Ẋ ← CII × Ẍ + Ẋ

2. data roll:
+Q⇐= Ẍ

−Q⇐= ‖ +S⇐= Ẋ
−S⇐=
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Stage III. X(Q,R,S) =
∑

0≤T <P Ẋ(Q,R, T )× C(S, T )T :

• for all P 3 CN(Q,R,S) do P times:

1. compute: X ← Ẋ × CT
I +X

2. data roll:
+S⇐= Ẋ

−S⇐= ‖ +Q⇐= CI
−Q⇐=

Note that at the last stage of the 3D IDXT, an accumulation or T -summation

is implemented inside each computing node. Note also that an initial 3D

matrix
...
X is defined here in a skewed layout as unchanged result of a 3D

forward transform, but on completion, a resulting 3D matrix X will be in

the canonical (in-order) layout. A frequently required by many real-world

applications looping: 3D FDXT 
 3D IDXT, is a very natural in this orbital

implementation.

4.3 Complexity and Scalability Analysis

An orbital implementation of the forward or inverse block N × N × N 3D

DXT on a P × P × P torus array of nodes requires totally 3P “compute-

and-roll” time-steps, where P = N/b and 1 ≤ b ≤ N is a blocking factor.

Each “compute-and-roll” time-step involves the left or right multiplication of

a 3D b× b× b matrix by a b× b coefficient matrix with a possible transpose.

In turn, each of this matrix-matrix multiplication requires execution by every

node exactly b4 scalar, fused multiply-add (fma) operations and movement

(rolling) of either b3 + b2 or 2b3 scalar data between nearest-neighbor nodes.

The required memory space in one node, which is proportionally to 4b3 + 3b2,

might be reduced to 2b3 + 3b2 by using the well-known “compute-in-place”

approach.

Note that we have provided our solution under the assumption that there

is no direct memory access (DMA) between nearest-neighbor nodes, i.e. local

data must be exchanged (rolled) by using the message-passing. However, if

upgrading of a data (a “compute” part) precedes a movement of this data (a

“roll” part) and DMA is allowed then data upgrading can be directly done in a

shared between nearest-neighbor nodes memory, which will eliminate a “roll”

part of this data. For the other unchangeable, but moved data, “roll” part(s)

can be implemented concurrently with a “compute” part (see description of
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the DXT algorithms above), making a data movement totally overlapped with

a computing.

If blocking factor b = 1, i.e. P = N , our 3D transform algorithms have the

highest degree of parallelization with a total processing time of 3N “compute-

and-roll” steps on an N×N×N torus array of simple nodes. This fastest,

fine-grained implementation will require the fma-unit in each node to be with

one-step or one-cycle latency which is possible for fixed-point arithmetic, like

in Anton computer [14]. For floating-point arithmetic, the pipelined fma-units

in today advanced microprocessors have a few cycles of latency [15, 16, 17, 18,

19, 20, 21, 22, 23, 24], which forces the size of blocking factor b to be more then

one to hide this pipeline latency by concurrent execution of a few independent

fma-instructions on the same fma-unit (usually, b ≥ 4).

On the other hand, if b = N , i.e. P = 1, the 3D transform is represented

as a serial algorithm which is executed on a sequential computer in 3N4 fma-

steps. It is clear that independently on the size of a blocking factor b ∈

[1, 2, ..., N ] and, therefore, degree of parallelization, any implementation of the

3D transform requires execution of 3N4 fma-operations. The degree of the

data reuse is P 4/P 3 = P , i.e. the maximal data reuse will be when b = 1 and,

therefore, P = N .

Depending on the node’s architecture, the time and space optimal paral-

lel MMA algorithms for the intra-node implementation may be not from the

CRA-class, i.e. orbital, but from the BBC-class, i.e. broadcast-based. Due

to the minimal amount of reusing data (see discussion above), broadcast or

rank-1 update MMA algorithms are the fastest and most efficient ones for

computers with a hierarchical memory organization, e.g. for multi-core CPUs

with a shared memory and relatively small number of fma-units [25],[26],[20]

as well as for GPUs with many-hundred of fma-units, hierarchically intercon-

nected by shared cache memories [27], [28], [29], [30]. It is clear that here,

a shared between multiple fma-units memory replaces the required by BBC

algorithm data broadcast (“one-to-all”) by a shared access to this data (“all-

to-one”). This replacement, however, is technically justified only when the

number of these “all” is relatively small. Moreover, a deep memory hierarchy

leads to the multiple data replication which increases the size of a problem to

be effective solved on this computer. Currently, a parallel, cache-based MMA
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implementation on the advanced GPUs is only effective (around 90% of peak

performance) for the relatively big matrices with the size of O(103). It is obvi-

ous that a cache-coherent, hierarchical approach can not be extremely scaled

to unlimited parallelism.

It is important to note that length of the existing wrap-around toroidal

connections, which is proportional to the torus size (see Fig. 2) and, therefore,

might be a physical obstacle for the fast data movement, can be equalized (lo-

calized) with a length of the internal (nearest-neighbor) connections by using

double (for a 2D torus) or triple (for a 3D torus) folding [31]. This well-known

technique, however, destroys an integrity (locality and regularity) of multidi-

mensional data which are stored in an unfolded, mesh-like torus. Recall that a

cubical matrix data for a 3D DXT is stored initially in a canonical (in-order)

layout which will be destroyed after folding. To make torus interconnect to

be regular, modular, and, therefore, scalable, like a 2D or 3D mesh, the pro-

posed recently adaptable “mesh-of-tori” interconnect [32] and corresponding

folding/unfolding data manipulation can be used for effective local implemen-

tation of the discussed multidimensional transforms (see Fig. 5 as an example

of a 2D “mesh-of-tori” which can be easily extended to the 3D case).

5 Conclusions

We have introduced massively-parallel, efficient, and extremely-scalable orbital

block algorithms to perform any 3D separable transform and its inverse in a

3D network of toroidally interconnected nodes. These proposed algorithms

preserve all advantages of the previously popular systolic processing such as

simplicity, regularity, nearest neighbor data movement, scalable parallelism,

pipelining, etc. However, unlike systolic processing, an orbital processing keeps

all initial, intermediate, and final data inside a 3D torus array processor. More-

over, because our orbital GEMM-based algorithms are logically represented

and scheduled in a 3D torus computational index space, these algorithms are

naturally (one-to-one) mapped into a 3D network of toroidally interconnected

nodes.

A multidimensional torus interconnect has always been widely used in the

past and present supercomputers, for example, in Cray T3E (3D torus) [33],

17



Figure 5: A 2D mesh of 3×3 µ-cells isolated by membranes, where each µ-cell

is a smallest 2 × 2 torus (a); a single macro-cell as 6 × 6 double-folded torus

which was formed by fusion of 3×3 µ-cells. Cell division is an opposite process.
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IBM Blue Gene/L (3D torus) [34] and Blue Gene/Q (5D torus), Fujitsu K-

computer (6D torus) [35], [36]. We expect that direct implementation of our

coarse-grained 3D DXT block algorithms (b > 1) on supercomputers with

a 3D torus interconnect would be beneficial with respect to other existing

implementations with a 1D or 2D data decomposition and we reserve this

porting and analysis as a future work.

On the other hand, our extremely scalable solution (b = 1) for a fine-

grained 3D DXT implementation on a 3D “mesh-of-tori” of very simple proces-

sors (fma-units) is perfectly suited for forthcoming 3D micro/macro-electronics

technologies [37], [38] and real-world applications with multidimensional data.

Note that the preliminary results of FPGA implementation of a 3D torus array

processor for the fine- and coarse-grained 3D Discrete Cosine Transform (3D

DCT) has recently been reported [39].

One of the notable characteristics of our unified 3D DXT algorithms is in

the possibility to implement concurrently a few distinct transforms on the same

cubical data by using differently defined matrices of transform coefficients.

Moreover, if a new discrete separable transform is proposed, it can be easily

tested, verified, and compared with other existing transforms.
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