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Abstract: - The paper offers a new methodology of designing in CMOS technology analog-

digital artificial neurons learnable to arbitrary logical threshold functions of some number of 

variables.  The problems of functional ability, implementability restrictions, noise stability, and 

refreshment of the learned state are formulated and solved. Some functional problems in 

experiments on teaching an artificial neuron to logical functions are considered. Recommendations 

on selection of testing functions and formation of teaching sequences are given. All results in the 

paper are received using SPICE simulation. For simulation experiments with analog/digital CMOS 

circuits, the transistor models MOSIS BSIM3v3.1, 0.8µm, level 7 are used. 

 

Key-Words: - artificial neuron, CMOS implementation, learnable synapse, excitatory and 

inhibitory inputs, learning process, learning sequence, refreshment process, test function, threshold 

logical element, threshold logical function, Horner's scheme, Fibonacci sequence.  

 

1 Introduction 

Hardware implementation of an artificial neuron has a number of well-known advantages over 

software implementation [1–5]. In its turn, a hardware artificial neuron can be implemented as a 

special purpose programmable controller or digital/analog circuit (device). Each of these 

implementations has its advantages, drawbacks, and fields of application. Commercially available 

neurochips can be of any of these two types. The comparative analysis of characteristics and 

application fields of various neurochips is beyond the scope of this paper. We will just note that 

digital/analog implementation has one obvious advantage over all other implementations, which is 

high performance. 

On the other hand, digital/analog implementation, due to its internal analog nature, has rigid 

limitations on the class of realizable threshold functions. These limitations considerably decrease 

the functional possibilities of neural nets with fixed number of neurons. 
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Functional power of neurochip equally depends on the number of neurons that can be placed on 

one VLSI and functional possibilities of a single neuron. Unfortunately, it has not been properly 

studied yet how much these parameters affect the functional power of the neurochip. However, it is 

evident that decreasing area/synapse and extending the functional possibilities of a neuron are prior 

aims when creating new neurochips. 

In [6, 7], a new type of threshold element (
β

-driven threshold element, 
β

-DTE) has been offered 

that required one transistor per logical input. Its circuit was based on representing a threshold 

function in ratio form. In [8–11], a CMOS learnable neuron has been suggested on the base of 
β

-

DTE that consisted of synapses, a 
β

-comparator, and an output amplifier.  The learnable synapse of 

this neuron had 5 transistors and one capacitor. The neuron had one remarkable property: its 

implementability depended only on the threshold value and did not depend on the number of logical 

inputs and their weights. This fact and relatively low complexity made this neuron very attractive 

for usage in the next generation of digital-analog neurochips.  

Frankly speaking, an artificial neuron destined for implementation of logical threshold functions 

it is more correct to call learnable threshold element (LTE). During learning, this device forms 

analog weights for binary (digital) input variables. Obviously, a real artificial neuron can be 

constructed on the base of LTE. 

The goal of this paper is improving the LTE circuit in terms of its learnability to complicated 

logical threshold functions (with big value of the minimum threshold), noise-stability and ability of 

keeping the learned state for a long time.  

When the function threshold is high, the noise-stability becomes especially important. It is 

determined by the smallest change of the output voltage V∆min  of the 
β

-comparator at the 

threshold. Bigger V∆min  is attained by increasing sharpness of the 
β

-comparator characteristic in 

the threshold zone. This is provided by incorporating into the 
β

-comparator two extra transistors 

and selecting their functional modes.  

The noise stability and, hence, the implementability of given logical functions by the LTE 

depends not only on the V∆min  value but also on the threshold position of the 
β

-comparator 

characteristic relatively to the threshold of the output amplifier. In the paper, a way of teaching the 

LTE to a given logical function is offered. This teaching method allows not only automatic 

positioning of the amplifier threshold to the middle of V∆min  but also increasing V∆min  up 

to V∆minmax , which is attained when finding the minimum threshold of the function and is 

determined by the steepness of the 
β

-comparator characteristic. The method is based on using three 

output amplifiers with different thresholds, which provide threshold hysteresis. The width of this 

hysteresis determines the value of V∆min  attained during learning. 
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Some additional problem are stated and solved in the paper. One of the problems is maintaining 

the LTE in the learned state for a long time (refreshing the analog memory on capacitors). The 

solution of the problem uses the same idea of applying threshold hysteresis of output amplifiers. 

Another problem is connected with possibility to speed up LTE learning to given logical 

threshold functions. This problem is solved by parallel forming weights of several input variables 

and by changing learning step value during learning. 

The problem of functional abilities of LTE is also stated in the paper. It is obvious that LTE can 

implement only threshold logical functions. According to the theory of switching functions all 

threshold functions are monotonous. The minimum representation of monotonous functions 

coincides with their concise form. If the concise form of a threshold function contains only positive 

variables, the function is called isotonous (subclass of monotonous functions). The LTE with the 

simplest synopses, each of which contains only one capacitor as a memory element, can be learned 

only to isotonous threshold functions. As it will be shown below, using more complicated synapse 

circuit with two memory elements for keeping positive and negative weights it is possible to 

construct LTE learnable to arbitrary threshold function of some number of variables. 

Finally, some functional problems in experiments on teaching LTE are considered.  A set of 

recommendations how to choose testing functions and how to construct teaching sequences is 

given.  

All results in the paper are received with help of SPICE simulation. For simulation experiments, 

transistor models MOSIS BSIM3v3.1 0.8µm (level 7) for analog/digital circuits were used. In most 

experiments on LTE teaching, logical threshold Horner’s function of 7 and 10 variables were 

applied as test functions.  

 

2 LTE Learnable to Isotonous Threshold Functions 

2.1 Threshold Element with Controllable Input Weights 

The conventional mathematical model of a neuron, starting from the work by McCulloch and 

Pitts [12], is the threshold function: 
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where jw is the weight of the j-th input and T is the threshold value. 

Representing a threshold function as (1) implies that a threshold element is traditionally 

implemented by the structure shown in Fig.1. 
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Figure 1. General structure of the neuron threshold model. 

 

It is shown in [6, 7] that any threshold function can be represented in ratio form, as follows: 
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where S is a certain subset of indexes
1
 such that∑ ∈

=
Sj j Tw . From (2) it immediately follows that 

CMOS implementation of a threshold element can be like that in Fig.2.  

 

Figure 2. The 
β

-driven threshold element (
β

-DTE). 

 

The voltage outV at the 
β

-comparator output is determined by the ratio of steepnesses ( nβ  

and pβ ) of n- and p-circuits. Namely by this reason, the threshold element is called 
β

-driven (
β

-

DTE). The steepnesses are formed by connecting transistors of respective width in parallel. 

In [8, 9], to build a threshold element with controllable input weights, a reduced ratio form is 

introduced: 
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that leads to the 
β

-comparator circuit shown in Fig.3a where βωβ jnj = ; ∑ =
= n

j jjn x
1
ωββ ; 

ββ =p . 

                                                 
1
 To construct S it is sufficient to take any hypercube vertex that lies in the separating hyperplane and to include in S 

indexes of the variables having the value 1 on the vertex. 
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Figure 3. The 
β

-comparator: CMOS implementation (a); equivalent circuit (b). 

 

In Fig.3b, a circuit is shown equivalent to that in Fig.3a. The output voltage of the 
β

-comparator 

is determined by the value pn ββα /=  in the following way: 
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If the output voltage of a CMOS couple (Fig.3b) 2/ddout VV ≈ , this means that both the 
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In [6] these equations were analyzed and it was shown that the suggested comparator circuit has 

sensitivity 2−≈
αd

dVout V in the point .1/ == pn ββα  Hence, at the threshold level )2/( ddout VV =  

the reaction of the 
β

-comparator to a unit change of the weighted sum TVout /2≈∆ V, i.e. it linearly 

decreases as the threshold grows. 

The analysis of 
β

-DTE stability to parameter variations made in [5] showed that only 
β

-DTE 

with small thresholds ( ≤ 3, 4) can be stably implemented. However, an artificial neuron is a 

learnable object and variations of many parameters (for example, technological) can be 

compensated during learning. 

The learnable LTE on the base of 
β

-DTE [8, 9] has a sufficiently simple control over the input 

weight (Fig.4): the control voltage changes the equivalent 
β

 of the respective synapse. Since the 

                                                 
2
 For simplicity let's assume that the threshold voltage is the same for the both transistors. 
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synapse can be in one of two states, conducting or non-conducting, the output voltage outV  of the 
β

-

comparator is formed only by the synapses which are conducting in this given moment. 

 

Figure 4. 
β

-driven LTE. 

 

Easy to understand that after the threshold is reached, adding new synapses does not change the 

LTE output state. It follows from this that the implementability of 
β

-DTE and, hence, of the LTE on 

its base depends only on the threshold value and does not depend on the number of inputs and sum 

of their weights (this fact was established in [6]). The essential aspect is the sensitivity of the 
β

-

comparator to the current change at the threshold point. Since the range of 
β

-comparator output 

voltage is limited within ( ddV−0 ), the only way of increasing the 
β

-comparator steepness at the 

threshold point is increasing non-linearity of the dependency of the 
β

-comparator output voltage on 

the ratio pn ββα /= . 

 

2.2 Increasing 
β

-comparator Sensitivity 

To increase sensitivity of the 
β

-comparator, its transistors should be in the saturated mode when 

the output voltage is in the threshold zone of output amplifier switching. This can be demonstrated 

by an example of the equivalent circuit in Fig.3b. 

Let the gates of both the transistors be fed not by ground and voltage supply but by voltages p

gsV  

and n

gsV , such that both the transistors are in the saturated mode when 2/ddout VV = . Let us assume 

for simplicity that gs

n

gs

p

gs VVV == , th

n

th

p

th VVV == , and 2/0 ddthgs VVV <−< . Then the equations for 

the currents flowing through the transistors can be represented as 

),1()( 2

outnthgsnn VVVI λβ +−=  

[ ], )(1)( 2

outddpthgspp VVVVI −+−−= λβ                                            (5) 

.0=+ pn II  

where the parameters nλ  and pλ  reflect the small increase of the transistor currents that takes place 

when grows. From these equations we find 
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Let 
V

1 03.0=nλ  and 
V

1 11.0=pλ .
3
 For 2/ddout VV = , it is easy to calculate from (6) that 

15.1=α . Parameter α  does not equal to one at this point since the values of nλ  and pλ  are 

different. When 5=ddV V and 5.7−=
αd

dVout V. Thus, the sensitivity of the 
β

-comparator has 

increased by 3.75 times. The less nλ  and pλ , the more the sensitivity. 

In the LTE circuit (Fig.4), every synapse consists of two transistors. The gate of one transistor is 

fed by the input variable jx ; the gate of the other one is fed by the voltage cjV  that controls the 

variable weight (current in the synapse).  

Let us first consider the lower part of the LTE 
β

-comparator where the synapse currents are 

summed and replace the couples of transistors, which form synapses, by equivalent transistors with 

characteristics shown in Fig.5. These characteristics were obtained by SPICE simulation. 

 

 

Figure 5. Characteristics of the transistor that is equivalent to the transistor couple. 

 

To the left of the mode switching line, the transistors are in the non-saturated mode; to the right 

— in the saturated mode. It is easy to see from these characteristics that when 5.2=outV V the 

equivalent transistors are in the saturated mode, if the control voltage 5.2<CV V, and in the non-

saturated mode, if 5.2>CV V. Thus, the saturated mode condition restricts the range of control 

voltage change. Breaking this restriction leads to decreasing the output signal of the 
β

-comparator 

                                                 
3
 The values of these parameters were taken from the used transistor models. 
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because the currents are re-distributed among the synapses. Indeed, let the smallest weight 

corresponds to synapse current minI  and adding this current to the total current of the other synapses 

must cause the switching of the LTE. If the synapse with the biggest current is not saturated, 

decreasing outV  because of the total current increases makes the current of this synapse smaller. The 

currents of other non-saturated synapses also decrease. As a result, the total current increases by a 

value, which is considerably smaller than minI . This leads to decreasing the output signal of the 
β

-

comparator. 

The range, in which the control voltages of the synapses change, can be extended with help of 

extra n-channel transistor M3 incorporated into the circuit as it is shown in Fig.6.  

 

Figure 6. The modified 
β

-comparator. 

 

The gate of this transistor is fed by voltage 1refV  such that when the current provides 2/ddout VV ≈ , 

the transistor is saturated under reaction of the voltage Σ−= VVV refgs 1 . Increasing the total current 

through the synapses by adding a synapse with the smallest current makes ΣV  smaller, so that gsV  

becomes bigger. The extra transistor opens and the extra increase of the total current compensates 

the change in ΣV . Thus, due to the negative voltage feedback, the extra transistor stabilizes ΣV  and 

therefore stabilizes the currents through the synapses. 

In Fig.6, when the control voltage of the synapse has its maximum value ( 5=CV V), the current 

through the synapse depends on outV as it is shown in Fig.7. It looks like a transistor characteristic 

having two zones: the linear zone and zone of saturation. It is easy to see that when 5.2≈outV V, the 

synapse is in the saturated mode. When the voltage 1refV  gets smaller, the synapse current decreases 

and a change of the synapse current range narrows down. When 1refV  increases, the synapse current 

grows and the linear zone of the characteristic becomes wider that may cause the lost of current 
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stabilization in the working point. Thus, there is an optimum value of 1refV . In all experiments 

31 =refV V. 

 

Figure 7. Dependence of the synapse current on outV  when 5=CV V. 

 

Now let us consider the p-channel part o f the modified 
β

-comparator (Fig.6).  In the working 

point ( 2/ddout VV ≈ ) it should provide a current corresponding to the maximum value of the 

threshold of realized functions. For this goal, one p-channel transistor can be used with the 

reference voltage refV  providing its saturation in the working point. However, in this case the 

steepness of the characteristic )(IVout  in the working point will be insufficient for good stabilization 

of the threshold value of the current. By this reason, the modified 
β

-comparator circuit (Fig.6) uses 

the idea of a cascode amplifier [13, p.287]. It has two p-channel transistors M1 and M2 referenced 

by voltages 2refV  and 3refV  respectively. These reference voltages are selected so that as the 

comparator current grows, the transistor Ml is saturated first and then M2 becomes saturated. In 

SPICE experiments 5.32 =refV V, 5.23 =refV V. 

The dependence of voltage 1dMV  on the current at the drain of Ml is shown in Fig.8 (Curve 2). 

 

 

Figure 8. Curve 1 – dependency )(IVout ; Curve 2 – dependency )(1 IVdM ; 

Curve 3 – dependency )(IVΣ . 
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As soon as 1M  comes into the saturation zone, the voltage gsV of M2 begins to change with higher 

speed because of 13 dMrefgs VVV −= . The voltage drop on M2 sharply grows increasing the steepness 

of  )(IVout  (Curve 1 in Fig.8). Curve 3 in Fig.8 shows rather good stabilization of the voltage drop 

)(IVΣ  on the synapses. 

For comparison, Fig.9 contains experimental characteristics of the old and new 
β

-comparators 

adjusted to the function threshold T=89.  

 

 

Figure 9. Comparator characteristics: curve 1 for the old comparator; curve 2 for the new one. 

 

This experiment shows how the comparator output outV  depends on the number of switched 

synapses whose control inputs were fed by the voltage cVmin  corresponding to the smallest weight 

of a variable. For the old comparator (Curve 1), the leap of the output voltage in the threshold point 

is 32mV. The characteristic of the new comparator has a much higher steepness in the threshold 

zone; the voltage leap in the threshold point is about 1V. 

 

2.3 LTE Circuit and the Way of Teaching  

Circuits used for forming control voltages determining weights of input variables of artificial 

neurons just slightly depend on the way of synapse implementation. Some of these circuits were 

published (for example, in [14]) and they are of about the same structure. The difference between 

them is mainly associated with a type of a memory element they use (a capacitor or a transistor with 

floating gate) and with a way of representing the values of input binary variables ({0,1} or {-1,+1}). 

In Fig.10, the full LTE circuit is given, which experiments were conducted with. Every its synapse 

contains 5 transistors and a capacitor.  Two of the transistors form one of the parallel branches of 

the 
β

-comparator.  The input variable arrives at the gate of the lower transistor and the control 

voltage arrives at the gate of the upper one. This usage of the transistors, as compared to the 
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opposite, makes the synapse current dependable on the control voltage more linearly, reducing to 

several times the influence of the input variable change on the control voltage. 

 

Figure 10. The LTE circuit. 

 

During teaching, the voltage that controls the synapse current (i.e. variable weight) accumulates 

on a capacitor. The capacitor charge is allowed to change only when the synapse is active, i.e. when 

the input variable equals to "1". The capacitor charge increase or decrease is realized by 

approximately the same quanta that determine a learning step. The learning step is appointed on the 

base of required accuracy of setting the control voltages. Its value can be controlled by choosing 

amplitude and duration of "increment" and "decrement" signals. 

When teaching LTE to fairly complicated threshold functions (with a big value of sum of 

weights and threshold), the learning step should be small. Usually, algorithms of LTE teaching are 

built so that as soon as the output signal of the LTE begins to coincide with the value of the learning 

function, the teaching stops. Due to the small learning step, in cases when the LTE fires after the 

variable with the smallest weight changes its value, the voltage leap at the output of the 
β

-

comparator can exceed the minimum permissible value, which is sufficient for amplifier firing, just 

by a very small value. 

To increase the margin of reliability after the teaching, the LTE circuit has three output 

amplifiers with different (high, middle and low) sensitivity thresholds. The value of the function 

produced by the taught LTE is taken from the output midF . The output signals highF  and lowF  are 

used only during teaching. After teaching, the voltage leap at the output of the 
β

-comparator that 

causes switching midF  will be not less than the difference between the threshold voltages of the 

other two amplifiers. 
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The control voltages, which have been set during teaching, are kept on the capacitors and can 

change due to parasitic leakage resistances. In this connection, one should organize the procedure of 

capacity memory refreshment. The three output amplifiers with different thresholds allow solving 

this problem, for example, by auto-correcting the control voltages using the output signal midF  as a 

learning sequence of function’s values. 

The general structural scheme used when simulating the process of teaching the neuron to a 

given threshold logical function is shown in Fig.11.   

 

 

Figure 11. General scheme for experiments. 

 

The generator of input signals periodically produces sequences of value combinations of input 

variables nxxx ,...,, 21  and the sequence of values that the given logical function Y takes on these 

combinations. Teaching/refresh switch passes to its output F either the signal Y (when teaching) or 

the output signal midF  (when refreshing). The comparator produces the signals "decrement" and 

"increment."   Passive values of these signals are equal to "0" and "1" respectively. Their logical 

description looks like 

Decrement = highFY ⋅  and Increment = lowFY ∨  when teaching; 

Decrement = highmid FF ⋅  and Increment = lowmid FF ∨  when refreshing. 

Physically, these signals are realized with limited amplitude and duration, determining the learning 

step. 

In experiments with LTE learning, there is an acute problem of selecting threshold functions for 

teaching what determines simulation time. The duration of experiments is very important because it 

is often measured in hours and even days. A threshold function for teaching should has 

- a short sequence of variable combinations checking all possible switches of the function value, 

- a wide range of variable weights, 

- a high threshold value for a given number of variables. 



 13 

In more detail, this problem will be investigated in the last section of the paper. It will be shown 

that a function, which can be represented by the Horner's scheme (...)))(( 4321 −−−− ∨∨ nnnnn xxxxx , 

satisfies to these requirements. For such functions, the sequence of integer values of variable 

weights and threshold with minimum sum forms the Fibonacci sequence. The length of the 

checking sequence is n + 1 for the Horner's function of n variables. 

 

2.4 SPICE Simulation Results of LTD Learning 

Two series of experiments on LTE teaching to given threshold functions are represented here. 

The goal of the first series was to show the necessity of using a threshold hysteresis when 

teaching the LTE and when providing the auto-support of the LTE state after the LTE is taught. The 

threshold hysteresis can be obtained using three output amplifiers whose characteristics have 

different thresholds as it is shown in Fig. 12.  

 

Figure 12. Static characteristics of the output amplifiers. 

 

When the movement to the threshold is from the left, the higher value of the threshold is used 

for learning; when from the right, the LTE learns to the lower value. This leads to stretching out the 

minimum leap outV∆min  of the 
β

-comparator output voltage in the threshold zone and to automatic 

positioning of the output amplifier threshold with the middle value midF  into the middle of this leap. 

Obviously, the hysteresis width should not exceed outV∆minmax , which is defined by the 

parameters of the p-channel part of the 
β

-comparator and by the minimum value minT  of the logical 

function threshold: )/(minmax minminmax TIIfV compout ==∆  where compI  is the comparator current 

in the threshold zone and minmaxI  is the maximum current of the synapse with the smallest weight. 

For the teaching, it was chosen the Horner's function of 7 variables: 

135723574576712345677 )))((( xxxxxxxxxxxxxxxxxxxxY ∨∨∨=∨∨∨= , 

124634656712345677 ))(( xxxxxxxxxxxxxxxxxY ∨∨∨=∨∨∨= .                           (8) 
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From all its possible representations in the form )(
7

17 ∑ =
−=

j jj TxwSignY  with integer values of 

weights and threshold, the representation 

 )21138532( 76543217 −++++++= xxxxxxxSignY                                  (9) 

is optimum by criterion of ∑ =
=+7

1
54)min(

j j Tw . For this representation, 21min =T . 

The checking sequence for this function contains 8 combinations. Their order is chosen in such 

a way that the sequence of the corresponding function values is alternate. The combinations in the 

checking sequence have one remarkable property: if the LTE is taught to the optimum 

representation of the function, their change must cause the voltage leaps at the comparator output, 

which are equal in amplitude. The teaching sequence is a periodically repeated checking sequence. 

To get illustrative and easily explainable results of the experiment, we had to reduce the 

steepness of the 
β

-comparator characteristic. In the experiment, the 
β

 -comparator parameters were 

chosen so that when the threshold was 21, outV∆minmax  was equal to 0.5V. The teaching was 

conducted with the step equal to 10mV. 

The results of teaching the LTE to the Horner's function of 7 variables with various hysteresis 

widths are given in Fig. 13.  

 

Figure 13.  Output signal of the LTE 
β

-comparator learned to the function of 7 variables:  

          without hysteresis (a), with hysteresis of 340mV (b) and of 450mV (c). 

 

When there was no hysteresis (Fig.13a), the LTE is learned to the function representation with 

threshold T=267 that strongly differed from the optimum. The voltage leaps at the comparator 

output vary on the checking sequence from mV28min =∆ outV ( )704.2732.2 −  up to outV∆max  

that exceeds 2V. Obviously, after such teaching, the LTE will have a very bad noise-stability. 
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In the second case (Fig.l3b), the neuron was taught with a 340mV wide hysteresis and learned to 

the function representation with threshold T=26. The dispersion of the voltage leaps at the 

comparator output considerable decreased ( V37.0min 0 =∆ utV ; V9.0max =∆ outV ) and the noise-

stability of the LTE significantly increased. 

In the third case (Fig.13c), the neuron was taught with the hysteresis of 450mV wide. The LTE 

was learned to a function representation, which was close to the optimum. All the voltage leaps at 

the output of the 
β

-comparator were approximately the same ( VVout 48.0min =∆ ; 

V55.0max =∆ outV ). 

By simulation it was checked the possibility to provide auto-support of the LTE in the learned 

state on the base of using threshold hysteresis. With this aim, the leakage resistances of control 

voltage capacitors were explicitly incorporated to the LTE circuit. The LTE was taught to the 

Horner's function of 7 variables with 450mV wide hysteresis of output amplifiers threshold. After 

the teaching, the learning mode was replaced by the refreshment mode. The neuron kept stably 

functioning on the periodically repeated checking sequence. Signals "Increment" and "Decrement" 

occurred from time to time correcting the control voltages on the capacitors and supporting them 

within the permissible limits. 

The result of correcting the control voltages is easily observable in Fig.14.   

 

Figure 14.  Correction of the control voltages in the refreshment mode of LTE operation. 

 

As it is seen from the picture, voltage level V485.2=outV corresponding to the value combination 

1010110 of input variables was not sufficient to switch the output signal lowF . As a result, the signal 

"Increment" occurred that increased by 10mV the voltages on the synapse capacitors 7C , 5C , 3C , 

and 2C  causing the decrease of outV  by 33mV and switching lowF .   On the next combination, 

1010100, the level V928.2=outV  was not sufficient to switch highF . The signal "Decrement" 

reduced by 10mV the voltages on 7C , 5C , and 3C  causing the increase of outV  by 30mV and 
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changing the value of highF . In spite of the correction of the control voltages, the values of the 

output signal midF  still corresponded to the values of the function on all combinations of the 

checking sequence. 

In the second series of the experiments, the LTE was taught to a threshold function of 10 

variables: 

;

))))((((

1246810346810568107810910

1234567891010

xxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxY

∨∨∨∨
=∨∨∨∨=

 

.

))))((((

135792357945796798910

1234567891010

xxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxY

∨∨∨∨∨
=∨∨∨∨∨=

                           (10) 

This function can be represented in the form 

)89553421138532( 1098765432110 −+++++++++= xxxxxxxxxxSignY .          (11) 

The checking sequence for the function must contain not less then 11 combinations, which are 

defined by the terms of  10Y  and 10Y  in (10).  To make the teaching sequence of function values 

interchanged it is needed to have the odd number of combinations in the checking sequence. For 

this purpose it is possible to add any combination, on which the function has the value “1”. It is well 

known that any threshold function is a star. The top vertex of the star is the most convenient 

candidate to be added to the checking sequence (this improves the learning time). Finally, the 

checking sequence for the function (10) is 

              1012345678910 Yxxxxxxxxxx  

1  0  0  0  0  0  0  0  0  0    0 

1  1  0  0  0  0  0  0  0  0    1 

1  0  0  1  1  1  1  1  1  1    0 

1  0  1  1  0  0  0  0  0  0    1 

1  0  1  0  0  1  1  1  1  1    0 

1  0  1  0  1  1  0  0  0  0    1 

1  0  1  0  1  0  0  1  1  1    0 

1  0  1  0  1  0  1  1  0  0    1 

1  0  1  0  1  0  1  0  0  1    0 

1  0  1  0  1  0  1  0  1  1    1 

1  0  1  0  1  0  1  0  1  0    0 

1  1  1  1  1  1  1  1  1  1    1 

 

The checking sequence is implemented as it is shown in Fig.15. The last graphic in it represents 

strobe-signal t that participates in forming “increment” and “decrement” signals.  

In the LTE circuit, the 
β

-comparator was adjusted to the maximum sensitivity providing at the 

threshold T=89 V1minmax ≈∆ outV  (Fig.9), the hysteresis width was 0.85V, and the learning step 

was adaptive.  

The learning step is defined by amplitude and duration of the “increment” and “decrement” 

signals.  These signals provide charging and discharging the capacitors with the current of 0.15uA  
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Figure 15. Single checking sequence of signal value combinations. 

 

and can have the maximum duration equal to the duration of the strobe-signal t (90ns). It gives for 

the capacitor of 1pF the maximum learning step equal to 13.5mV.  

The change of the control voltages on the synapse capacitors during the learning is shown in 

Fig.16. The dynamics of the leaning is easily observable. The control voltages stop changing in the 

  

 

Figure 16. Changes of the control voltages on the synapse capacitors during the learning. 

 

moment 0.28ms. This means that the learning process is over and it is possible to switch teaching 

mode to refreshing mode. More accurate the moment of mode switching can be defined with special 

control signal, which sets the switcher into refreshing mode, if the LTE output midF  coincides with 

the output F of the mode switcher on all combinations of some checking sequence. In the refreshing 

mode, if midF  and F not coincide on at least one combination of the checking sequence, this control 

signal sets the switcher into teaching mode. It means that the LTE lost the learned state and must be 

taught again. The refreshing mode of operation can be interrupted with evaluation process for 

calculation the value of logical function on some input combination. Obviously, that refreshing and 

evaluation have to interchange. During evaluation to receive correct results, the LTE output midF  

should be gated. 
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As it is easy seen from Fig.16, stable values of the control voltages approximately correspond to 

the weights of the variables in the optimum representation of the threshold function (the values are 

distributed close to Fibonacci numbers). At the time instance equal to 0.28ms, the teaching mode 

has been replaced by the refreshment mode. Starting from this moment, only rare signals 

"Increment" and "Decrement" appeared, correcting some control voltages. 

The output signals of the LTE and the output signal of its 
β

-comparator in one period of the 

checking sequence of the refreshment mode is given in Fig. 17. One can see that the smallest leap of  

  

 

Figure 17. Picture of the signals on the outputs of the 
β

-comparator  

                                             and the LTE in the refresh mode. 

 

outV  at the comparator output is 1V. The output signal midV  represents the values of the realized 

function. In cases when the output signals highF  and lowF  do not correspond to the function value, 

the control voltages are corrected. 

 

2.5 Implementability Limits of the LTE 

In order to study the functional power of the LTE, a number of experiments were carried out 

with SPICE simulation of its behavior. For all experiments with learnable threshold elements, the 

problem of choosing testing threshold functions is crucial. This problem will be discussed in the last 

section of the paper. As it was already noticed, a threshold test-function should match the following 

demands: 

— to have the short learning sequence, 

— to cover a wide range of input weights, 

— to have the biggest threshold for the given number of variables. 

Monotonous Boolean functions representable by Horner's scheme match all these demands. For 

such functions of n variables, the sequence of input weights and threshold forms Fibonacci 

sequence and the length of the shortest learning (checking) sequence is 1+n  (the number of   
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combinations of input variable values). Experiments were made with three threshold functions for 

10=n , 11 and 12: 

)89553421138532( 1098765432110 −+++++++++= xxxxxxxxxxSignF , 

)14489553421138532( 111098765432111 −++++++++++= xxxxxxxxxxxSignF ,              (12) 

)23314489553421138532( 12111098765432112 −+++++++++++= xxxxxxxxxxxxSignF . 

Since the learning process was not the object of these experiments, the optimum values of control 

voltages were set on the synapses. The logical inputs of the LTE were fed by checking (learning) 

sequences. 

In the first series of the experiments, outV∆minmax  (the maximum of the smallest change of 
β

-

comparator output voltage at the threshold level of 2.7V) was determined. The results of the 

experiments are given in the second column of Table 1. The implementability of the LTD is 

determined by the signal outV∆  value. According to the table, the LTE learnable to functions of 12 

variables is quite near the edge of implementability because of relatively small value of outV∆ . 

Table 1: Results of SPICE simulations.          

LTE type outV∆  
thVmax)(min÷  

ddVδ  

10F  1V 1.88÷3.7V 0.3% 

11F  0.525V 1.9÷3.68V 0.2% 

12F  0.325V 1.97÷3.65V 0.1% 

 

In the second series of the experiments, for fixed parameters of the comparator the range of 

admissible threshold voltages of the output amplifier midF  has been defined under stipulation that on 

the range borders the comparator produced outV∆min  not less then 100mV when the LTE was in 

the learned state. The results are given in the third column of Table 1. The conclusion is: deviation 

of the amplifier threshold (e.g. because of technological parameter variations) does not essentially 

influence upon LTE implementability. The LTE during learning is adjusted to any threshold of the 

output amplifier from these ranges. 

The other experiments were associated with the question: with what precision the voltages should 

be maintained for normal functioning of the LTE after learning.  First of all, the LTE stability to 

supply voltage variations should be investigated. With constant values of the reference voltages, 

when changing the voltage supply at ±0.1% (±5mV), the dependence of the voltage outV  from the 

current flowing through p-transistors of the comparator shifts along the axis of current at ±1.5% as 

shown in Fig. 10. For the LTE 12F  , the current in the working point is about min233I ; 1.5% of this 

value is min51.3 I , i.e. the shift of the characteristic is 3.5 times more than the minimum current of 



 20 

the synapse. Evidently, the LTE will not function properly when the working current changes like 

that. 

 

Figure 18. Behavior of the dependency )( pout IV  when the voltage ddV  

                                          changes in the interval ±0.1%. 

 

On the other hand, taking into account the way of reference voltages producing, it is natural to 

assume that the reference voltages must change proportionally to the changes of the voltage supply. 

The effect from reference voltage change is oppositely directed to the effect of supply voltage 

change and partially compensates it. The experiments carried out under these conditions showed 

that learned LTE 10F , 11F , and 12F  can function properly in respective ranges of supply voltage 

change shown in the fourth column of Table 1. To fix the borders of the ranges, the following 

condition was used: signal 2/outV∆  should be more or less than the output amplifier threshold by a 

value not less than 50mV. 

The control voltages of the synapses were set up with the accuracy of mV1 . With what accuracy 

should they be maintained after the learning? Evidently, the LTE will not function properly if with 

the same threshold of the output amplifier the total current of the synapses will drift by 2/minI  in 

one or the other side. Experiments were conducted to determine the permissible range CVδ± , in 

which the control voltage CV  of one of the synapses (with minimum and maximum currents) can 

change while the control voltages of the other synapses are constant. The condition for fixing the 

range borders was the same as in the previous series of experiments. The obtained results are given 

in Table 2. 

Table 2: Results of SPICE simulations.  

Type 
minSIδ  

minCVδ  maxCVδ  

10F  
min42.0 I±  46mV)( %3.5 ±±  17mV)( %60.0 ±±  

11F  
min40.0 I±  40mV)( %7.4 ±±  27mV)( %73.0 ±±  

12F  
min34.0 I±  32mV)( %8.3 ±±  10mV)( %23.0 ±±  
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In the second column of the table, the permissible ranges of synapse current change are shown. 

The third and fourth columns contain the limits of change of the control voltages. These limits 

define corresponding changes of current in synapses with minimum and maximum weights. 

It is possible to make the following conclusion basing on Table 2 data: since all the control 

voltages of synapses in the LTE should be maintained simultaneously, their maintenance as 

accurate as units of millivolts should. 

 

3 LTE Learnable to Arbitrary Threshold Functions 

A threshold function with positive input weights is an isotonous Boolean function. Such a 

function can be realized by an artificial neuron (LTE) with only excitatory inputs. However, most 

problems solved by artificial neural networks either require inhibitory inputs. If the input type 

(excitatory or inhibitory) is known beforehand, the problem of inverting the weight sign is solved 

trivially by inverting the respective variable. Otherwise, the neuron should have synapses capable of 

forming the weight and type of the input during the learning, using only increment and decrement 

signals. The possibility of building such synapses for the LTE is the subject of this section. 

 

3.1 Statement of the Problem 

The behavior of a 
β

-DTE is described by a threshold function in ratio form [6]. To build the 

LTE, it is convenient to represent threshold functions in reduced ratio form: 

∑ ∑
= =

==
n

j

n

j

jjjj xRtTxwRtF
1 1

)()/( ω                                                     (13) 

where Tw jj /=ω  and  




≥
<

=
.1 if  1

,1 if  0
)(

A

A
ARt  

The simplest and obvious way of solving this problem is doubling the number of variables (and 

synapses) feeding the LTE inputs by both jx  and their inversions jx with input weights ja  and jb  

respectively. Note that doubling the number of synapses does not lead to cutting down the number 

of realizable threshold functions because the implementability of LTE depends only on the 

threshold value and does not depend on the sum of the input weights or number of synapses. Quite 

the contrary, incorporating extra inverse inputs increases the number of realizable threshold 

functions of n variables by 2n times. 

    Let in a certain isotonous threshold function ∑ =

n

j jj xRt
1

)( ω  some variables Yxi ∈ are 

inverted while other variables  ),( XYZjiZx j =≠∈ U  are not. Then 
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where Tw jj /=ω  . It is easy to see from (14) that negative weights use can be reduced to inverting 

the variables and vice versa. Normalized threshold of a function represented by Rt-formula with 

negative weights is equal to ∑ ∈
−

Yx i
i

ω1 . 

    The circuit of a neuron synapse capable of forming both positive and negative weights of an input 

variable is made of two simple synapses as shown in Fig.19.  

 

 

Figure 19. Synapse forming positive and negative weights of the input variable. 

 

It is easy to see that the LTE with such synapses realizes the threshold function 
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where ja  and jb  are weights brought to the threshold. They are defined by voltages on the 

capacitors 1C  and 2C  for  jx  and jx  respectively. 

    On the other hand, for the case of doubling the synapses number, it follows from (14) that the 

threshold function realized by the LTE must be  
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(for keeping the limitations on weights and thresholds). 

It is easy to see that if in every pair ),( jj ba  one of the weights is equal to zero, then expressions 

(15) and (16) coincide and have a view: 
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It follows from the above that when teaching a LTE with such synapses it is desirable to change 

the input weights ),( jj ba  by such a way that one of the weights in each pare goes to zero. More 

over, as it will be shown below, this condition provides the maximum level of LTE 

implementability. 

It is difficult to conclude from (15) and (16) that synaptic weights affect the neuron 

implementability. Let us look how the 
β

-comparator operates (Fig.6). The sizes of p-transistors and 

reference voltages 2refV  and 3refV  determine the current thI  when the output voltage of the 
β

-

comparator is equal to the output amplifier threshold. As a first approximation, the smallest change 

of the current is TII th /0 =  and 0kIVout =∆  where k is the steepness of the 
β

-comparator voltage-

current characteristic at the threshold of the output amplifier. However, if 0≠ja  and 0≠jb  , then 

via each j-th synapse an additional current flows determined by the value of ),min( jj ba  . Thus, the 

approximate value of the smallest current can be obtained from the equation 

∑−=
j

jj
th baI

T

I
I ),min(00  

and 

∑+
=

j jj
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baT

I
I

)),min(1(
0 .                                                   (18) 

It follows from (18) that if the value of outV∆ is fixed, the biggest realizable threshold depends on 

),min( jj ba  as    

∑+∆
≤

j jjout

th

baV

kI
T

)),min(1(
.                                                (19) 

    Thus, keeping the implementability level requires either increasing thI  during the learning (that is 

actually associated with some difficulties) or providing 0),min( =jj ba  for any j by modifying the 

synapse circuit and changing the learning algorithm.  

In [20] several modifications of synapse circuits have been suggested and for each of them 

existence of stable decisions, which the LTE is able to keep to realize non-isotonous threshold 

functions, has been proved. Unfortunately, authors could not find on-chip learning algorithms 

leading to these decisions.  One of possible solutions is proposed in the next subsection. This 

solution provides on-chip learning process, which gives convergence independently from initial 

conditions and uses modified synapse circuit. 
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3.2 The Problem Decision  

The same general structure scheme, which is shown in Fig.11, is used when simulating the 

process of teaching the LTE to an arbitrary given threshold logical function. The “Input Signal 

Generator” periodically produces checking sequence of value combinations of input variables and 

the sequence of values that the given logical function takes on these combinations. The isotonous 

logical function (10) depending on 10 variables is chosen as a test function. The checking sequence 

for this function represented in Fig.15. Non-isotonous functions can be derived from this function, 

by inverting some variables with help of inverters.  The generator is supposed to be implemented 

separately from the LTE. Other blocks of the general scheme are assumed on-chip implemented. 

Bellow schematics for all of them are shown. In the schematics, widths of all transistors are pointed 

out to make experiments repeatable. 

The “Teach/Refresh Switch” passes to its output F either the signal Y (when teaching) or the 

signal midF  (when refreshing) and realizes the logical function 

TeachFTeachYF mid && ∨= . 

Its schematic is very simple and realized in Fig.20. 

 

 

Figure 20. Schematic of the switch. 

 

The “Comparator” produces “Decrement” and “Increment”. Its schematic is shown in Fig. 21. 

In the schematic the “Increment” signal is designated as pincr _  to point out that this signal 

controls p-channel transistors. Its function together with implementation description is 

tFFtFFpincr lowlow ∨⋅=∨∨=_  

where F  is the switch output and t  is the strobe-signal inversion. This function is realized on the 

transistors M1 – M6 and M19 – M22. The function logic contains embedded current mirror on the 

transistors M3 and M4, which restricts the “Increment” current through p-channel transistors 
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controlled by the signal pincr _ . The width of the transistor M3 provides the 0.15uA current 

through p-channel transistor of the minimum width (1.2u). 

 

 

Figure 21.  Schematic of the “Comparator”. 

 

“Decrement” signals consist of two signals: ndecr _  and nnincr _ . The main signal ndecr _  

has the logical function 

tFFtFFndecr highhigh ∨⋅=⋅⋅=_  

that is implemented on transistors M9 – M18. The function implementation contains the embedded 

current mirror on the transistors (M15, M18), which restricts the signal  ndecr _  amplitude. The 

transistor M18 of 117u width provides the “decrement” current 0.15uA through n-channel transistors 

of minimum width (1.2u) controlled by the signal ndecr _ . 

Additional “Decrement” signal nnincr _  is used to create an additional force that pulls down 

voltages of the capacitors corresponding to ),min( ji ba  up to the ground potential during LTE 

learning. It has the logical function 

tFFtFFnnincr midmid ∨⋅=⋅⋅=_  

and is implemented on transistors M19 – M30.  The last stage of the signal implementation contains 

the incorporated current mirror on transistors (M28, M30) that restricts to 0.11uA the current in n-

channel transistors of minimum width controlled by the signal. 

The LTE itself consists of 
β

-comparator with output amplifiers and synapses. The schematic of 

the 
β

-comparator is presented in Fig.22.  
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Figure 22. Schematic of the 
β

-comparator with output amplifiers. 

 

In this picture, all parameters of transistors and values of reference voltages are pointed out. All 

amplifiers are constructed as a serial connection of three inverters. The amplifier with the output 

midF  has the threshold equal to 2.7V. The thresholds of amplifiers with outputs lowF  and highF  are 

equal to 2.3V and 3.15V respectively. Thus, the width of threshold hysteresis is 850mV. 

The full synapse circuit of the LTE learnable to arbitrary threshold functions is introduced in 

Fig.23. It is constructed on the base of the synapse circuit in Fig.19. Voltages 1CV and 2CV  on the 

capacitors control the synapse current flowing through pairs of transistors (M5, M23) or (M6, M24). 

The circuit has to input logical variables x and x . The variable x  can be derived with help of an 

inverter. The voltages 1CV  and 2CV  on the capacitors C1 and C2 correspond to the positive a and 

negative b weights respectively. If  thC VV <1  or thC VV <2   (here  thV  is the threshold voltage of  n-

channel transistors), it means that  0=a  or 0=b  because the corresponding transistor pair will be 

closed.  

The signals pincr _  and ndecr _  increments and decrements the capacitor voltages through 

pairs of transistors (M1, M3), (M2, M4) and (M7, M25), (M8, M26) respectively depending on the 

value of input variables (x, x ).  

Two pseudo nMOS inverters on transistor pairs (M27, M37) and (M28, M38) are sensitive 

elements of capacitor voltages close to thV . Voltage V9.34 =refV fixes the conductivity of their p-

channel transistors. Output signals G1 and G2 of these elements control conductivity of two pairs of 

transistors (M15, M21) and (M16, M22) respectively. Each pair of these transistors opens when the 

voltage on corresponding capacitor ( 1CV or 2CV ) exceeds 675mV.  Two inverters (transistors M29, 



 27 

M39 and M30, M40) with outputs G3 and G4 invert the signals G1 and G2. These inverters control 

transistors M9 and M10, each of which open when the voltage of corresponding capacitor ( 1CV or 

2CV ) exceeds 635mV. Signals G3 and G4 write also the information about the sign of the synapse 

weight in the latch (outputs Q and Q ) on transistors (M31 – M36 and M41, M42). The latch keeps 

information when voltages of both signals G3 and G4 exceed the threshold of the latch inputs. When 

Q=Log.1, the weight sign is positive. If Q=Log.0, the sign is negative. 

 

Figure 23. The LTE Synapse implementation. 

 

Signals G1–G4, ndecr _ , nnincr _ , and the latch Q, and input variables ( xx, ) control 

conductivity of additional decrement chains for each capacitor. For the capacitor C1, these chains 

are described by the expression 25211913172515119 )MM(MM)MM(M(MM ∨∨∨ . For the capacitor 

C2 the expression for chains is 262220141826161210 )MM(MM)MM(M(MM ∨∨∨ . 

The initial setting signal is controls the transistors M43 and M44, which serve only for initial 

setting the voltages on the capacitors C1 and C2.  

During learning, the synapse works by the fallowing way. Let us suppose that initially thC VV <1  

and thC VV >2 . Then the signals G1 and G2 will be equal to “Log.1” and “Log.0” respectively and the 

latch Q will be in the state Q=Log.0 (negative weight sign). There are two cases. 
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First, the sign of input variable weight is negative, i.e. it coincides with the state of the latch. In 

this case the signal nnincr _  together with twice increased by amplitude signal ndecr _  pulls the 

voltage 2CV to the 0V by the chain (M9, M13, M19, M25) and by the chain (M9, M11, M15, M25) 

respectively. At the same time the signals pincr _  and ndecr _  try to set the voltage 2CV  

corresponding to the weight of the input variable x . 

Second, the sign of the input variable weight is positive, i.e. it does not coincide with the state of 

the latch. In this case, the learning sequence will provide that for the capacitor C1 increment steps 

caused by the signals pincr _  will prevail decrement steps caused by the signals ndecr _ , nnicr _  

and the voltage 1CV  will grow. As soon, as 1CV  will exceed thV  the sensitive inverter (M27, M37) 

closes the transistors M15, M21 stopping action of the signal ndecr _ by additional chain and the 

signal nnicr _ . This inverter also switches the inverter (M29, M39), which, in its turn, opens the 

transistor M10 enabling action of the signals ndecr _  by additional chain and the signal nnicr _ . 

After that, the voltage 1CV  will continue to grow up to the weight value and the signals ndecr _ , 

nnicr _  will pull down the voltage 2CV  by tree chains: (M8, M26), (M10, M14, M20, M26), and (M10, 

M12, M18).  

As soon, as the voltage 2CV reaches 675mV, the sensitive inverter (M28, M38) opens the 

transistors M16, M22 and, when mVVC 6352 = , switches the inverter (M30, M40), which, in its turn, 

closes the transistor M9 and switches the letch Q into the state Q=Log.1 (positive weight sign). 

Output signals of the latch close the transistors (M18, M20) and open the transistors (M17, M19). 

Difference of critical values of the voltage  2CV , which lead to switching the sensitive element (M28, 

M38) and the inverter (M30, M40), is very important because in this case switching of the letch only 

slightly changes the condition of the capacitor C2 discharging and voltage 2CV  continues  to go 

down up to ground potential.   

 

3.3 Results of SPICE Simulation 

All experiments on teaching of the LTE to non-isotonous (antitonous) threshold functions were 

made for functions obtained by inverting some variables in the isotonous threshold Horner's 

function (10) of 10 variables. Below results of SPICE simulating LTE learning are presented only 

for two test-functions: for the isotonous function (10) and for the non-isotonous function 

(antitonous) derived from (10) by inverting variables with even indexes  

124681034681056810781091010 xxxxxxxxxxxxxxxxxxxxY ∨∨∨∨= ; 

.13579235794579679891010 xxxxxxxxxxxxxxxxxxxxY ∨∨∨∨∨=                       (20) 
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Another form of the function (20) representation is 

)34553421138532( 1098765432110 −+−+−+−+−+−= xxxxxxxxxxSignY .            (21) 

The checking sequence for these two functions represented in Fig.15. In experiments, the 

duration of keeping one combination is 200ns and the checking sequence takes 2.4us.  The learning 

sequence is cyclically repeated checking sequence. 

Fig.24 shows the LTE learning process to the function (10) starting from the initial state, in 

which V021 == C
С VV  for all synapses. In this figure, designations jV∆  of curves denote voltage 

difference 21 CC VV −  for the synapse of j-th variable. 

 

 

Figure 24. The LTE learning to the function (10). 

 

It is easy to see from Fig.24 that all curves reach stable states for the time equal to 0.95ms or for 

395 learning cycles and the weights of all variables are positive. As measurements show, the 

decision is found for 0.75ms (313 cycles). It means that up to this time all thjj Vba <),min(  and do 

not act on producing the output signal of the 
β

-comparator. At the time instant, equal to 0.95ms, all 

V0),min( =jj ba . 

    Fig.25 illustrates the process of LTE learning to the function (20) starting from the same 

initial state.  

It is possible to conclude, analyzing Fig.25, that this learning process has the same time 

parameters as the process in Fig.24. Signs of variable weights and their values are determined 

correctly: all odd variables have positive weights and all weights of even variables are negative. 

For the proposed procedure of on-chip LTE learning to arbitrary threshold functions of some 

number of variables, it is incomprehensible how to prove its convergence analytically. A plenty of 

SPICE-simulation experiments have been done to be sure that this procedure possess of 

convergence and doesn’t depend from a type of threshold functions and initial conditions.  
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Figure 25. The LTE learning to the function (20) 

 

In Fig.26 the process of LTE learning to the function (10) is presented for one of the worst cases 

when from the initial state, in which all synaptic weights are the least negative ( V01 =CV , 

V52 =CV ), the LTE is taught to all positive weights. The picture shows correct result of the 

learning. 

 

Figure 26. The process of LTE learning to the function (10) from  

     the initial state of the least negative weights. 

 

Now it is possible to confirm that, if the LTE is taught to realize some threshold function, using 

its state as initial, it can be repeatedly taught to any other one.  

 

4 Some Functional Problems in Experiments with LTE Learning 

Developing a hardware implementation (e.g. CMOS) of artificial neurons with critical 

parameters such as threshold value of realizable functions, number of inputs, values and sum of  

input weights is a hard technical problem that nevertheless has to be solved [1-8]. While tasks of 

purely logical design can be solved more or less efficiently in an analytic way, tasks of physical 
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design necessarily require computer simulation (e.g. SPICE simulation). Computer simulation can 

and must answer the following questions:  

− What are the limiting parameters of an artificial neuron of certain type?   

− Are these parameters attainable during the teaching? 

A modern learnable artificial neuron, which is implemented as a hardware device and oriented 

to reproducing complicated threshold functions (sum of input weights and threshold >1000), is just 

a sophisticated analog-digital device, whose maximum functional power is attained, in many cases, 

by using effects of the second and even the third order in transistor behavior. This, in its turn, 

requires using models of higher levels (e.g. BSIM3v3.1). Therefore, the dependencies of neuron 

behavior on the synapse parameters are, generally speaking, non-linear. Because of this, the neuron 

for simulation should have a wide range of synaptic weights that covers all the range of values, 

which is studying. This, in its turn, requires that the neuron behavior should be simulated under all 

necessary combinations of the input signals. It should also be taken into account that simulation 

results strongly (and sometimes crucially) depend on the parameters of the transistor model in 

usage. Hence, to get results with a certain level of generality, a number of simulations using 

different models (e.g. of different manufacturers) should be conducted. Thus, to get an answer to the 

question about the maximum functional power of the artificial neuron, a serious experimental work 

is needed, which volume obviously depends linearly on the number of variable value combinations 

used in every experiment. 

The existence of a number of neuron circuit parameters, providing reproducing a threshold 

function of limiting complexity, does not mean yet that the voltages controlling the input weights 

and threshold for this function can be attained during the teaching. If a control voltage V can change 

in the interval maxmin VVV ≤≤  and maxw  is the maximum value of corresponding input weight (or 

threshold), then maxminmax /)( wVVV −=∆  is the value determining required precision of teaching. 

Taking into account the possible non-linearity of the dependence )(Vw  and necessity to 

compensate during teaching technological variations of transistor parameters (geometrical sizes, 

thresholds, etc.), precision of setting the control voltages should be VkV ∆=δ  (k < 1). A teaching 

system can be considered as a complex non-linear analog-discrete control system with feedback 

delay. Its analytic study is very difficult, so again one arrives to the necessity of computer 

simulation as the basic tool of his research.  

In order to provide required precision, the increment of the voltage controlling the synaptic 

weight in one-step of teaching (exposing one combination of variable values) should be Vδ≤ . 

Hence, to simulate the process of teaching the artificial neuron to reproduce a threshold function 

with 200100max ÷=w , every combination from the learning sequence should be exposed about 
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1000 times or even more, without respect to selecting the teaching strategy. Because of this, SPICE 

simulation of the teaching process takes hours. Naturally, duration of the simulation process linearly 

depends on the length of the learning sequence. 

Thus, if it is desirable to get reasonable simulation time for highly complicated artificial 

neurons, for test tasks one should look for threshold functions with learning sequences of the 

minimum length and with fixed values of maxw . Values of input weights should cover all the value 

range as tightly as possible. Functions of this type are the subject of the section. Some results of 

threshold logic that have been known many years ago, at least as scientific folklore, will be used. 

 

4.1  Bearing Sets of Threshold Functions and Checking Sequences 

The geometrical model of threshold functions ∑ =
−= n

j jj xwSignY
1

)( η  is a separating 

hyperplane with the equation∑ =
=−n

j jj xw
1

0η . If the combinations of variable values correspond 

to vertexes of a unit hypercube, the threshold function has the value "Log.1" on the vertices that 

have positive distance to the separating hyperplane (T set) and the value "Log.0" on those, whose 

distance to the separating hyperplane is negative (F set). Traditionally, the task of synthesizing a 

threshold element by given sets T and F is reduced to solving a linear programming task: 

finding 









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Note that the system of inequalities is redundant since some inequalities majorize some others. 

Without loss of generality, only threshold functions with 0>jw  will be discussed further. Such 

threshold functions correspond to isotonous Boolean functions (monotonous functions with only 

positive variables) and can be realized by neurons with only excitatory inputs. By definition, for 

monotonous functions )(Xf , from ij XX >  it follows that )()( ij XfXf ≥  where jX  and iX  are 

certain combinations of variable values. Or, for isotonous threshold functions 

∑∑
∈=∈=

−>−
ikjk Xx

kk

Xx

kk xwxw
11

ηη . 

A monotonous Boolean function in a unit hypercube corresponds to a "star", i.e. a set of 

subcubes that have at least one common vertex (star vertex) [23]. For an isotonous function, the star 

vertex is }1,...,1,1{max =X ; for an antitonous function (inversion of the isotonous one) –

}0,...,0,0{min =X . The vertex lying on the maximum diagonal of a subcube (at the maximum 

distance) from the top of the star will be referred to as bearing vertex. The set of bearing vertices for 
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star T will be called bearing set 0T  and for star F – bearing set 0F . It is easy to see that vertices 

0TX ∈  are the minimum and vertexes 0FX ∈  are the maximum in the respective subcubes. Hence, 

to solve the linear programming task, it is enough to use only the inequalities corresponding to the 

bearing sets.
4
 

A subcube of dimension m in an n-dimensional hypercube corresponds to a conjunction of range 

mn −  in the concise form of a Boolean function.
5
 This conjunction determines the bearing vertex, 

namely: for the set 0T , coordinate jx  has the value "Log.l", if jx  appears in the conjunction and 

"Log.0" otherwise; for the set 0F , coordinate jx  has the value "Log.0", if jx  appears in the 

conjunction and "Log.l" otherwise. For example, for 7=n , 1010010631 ⇔xxx , 

01001016431 ⇔xxxx . Thus, the number of vertices in the sets 0T  and 0F  equals to the number of 

terms in the minimum Boolean forms of the threshold function and its inversion. 

It obviously follows from above that, if the artificial neuron is taught to recognize bearing sets, 

it recognizes corresponding threshold function as well. A learning sequence that consists of input 

variable value combinations belonging to bearing sets will be referred to as a bearing learning 

sequence. The length of the bearing learning sequence can vary in a wide range: from 1+n  for the 

function ( )∑ =
−= n

j j nxSignY
1

  up to 
)!2/()!2/(

!2
2 2/

nn

n
C n

n

⋅=  for the function 

( )∑ =
−= n

j j nxSignY
1

2/  with odd n. 

 

4.2 Test Functions 

The length of the test sequence as a function of the number of variables means nothing, if it is 

not correlated with complexity of the threshold function. A natural question arises about estimating 

threshold function complexity. For simulation tasks, which are discussed here, this complexity is 

associated with implementability of an artificial neuron. It varies depending on a circuit solution. 

For a ν -CMOS artificial neuron [3-5], its implementability and, hence, threshold function 

complexity estimation is determined by the sum of the input weights. For a 
β

-driven artificial 

neuron [6-8], implementability and complexity are determined only by the threshold value. Keeping 

in mind these two types of complexity estimation for threshold functions, we will use two criteria of 

efficiency for test functions, namely: η/)(1 nLC =  and ∑ =
= n

j jwnLC
12 /)(  where )(nL  is the 

                                                 
4
 This result has been known in the threshold logics since late 50's or early 60's. As the times are remote, giving any      

   particular references is difficult. 

5
 For a monotonous function, the concise form coincides with the minimum form. 



 34 

length of the learning sequence in the number of bearing combinations. The less values of these 

criteria the more efficient the function will be in teaching. 

Let us start from a simple example considering two threshold functions: 
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Both the functions have the same number of the bearing combinations and 1)( += nnL . Since 

the threshold is the same for 1Y  and 2Y , both functions also have the same value of the first 

efficiency criteria 1C , nYCYC /11)()( 2111 +== . The only advantage of 2Y  is that there is an input 

with the weight 1−n . At the same time nYC /11)( 12 += , )1/(1)2/1()( 22 −+= nYC . Since 

)()( 2212 YCYC > , 2Y  is more preferable as a test function. There arises a question, if it possible to 

derive test functions with the highest efficiency for the both criteria. 

Let us consider Boolean functions that can be represented in Horner's scheme: 

...))(()( 43211 ∨∨∨= −−−− nnnnn xxxxxnH , 

(...)))(()( 43212 −−−− ∨∨= nnnnn xxxxxnH , 

and call them Horner's functions of the first and second type respectively. Note that according to De 

Morgan's law, inverted functions of the first type are functions of the second type relatively inverted 

variables, and vice versa, inverted functions of the second type are functions of the first type 

relatively inverted variables. 

Let )]([)]([ 0201 nFNnTN = , )]([)]([ 0102 nFNnTN =  be the numbers of vertices in the bearing 

sets of Horner's functions of n variables of the first and the second type. It is easy to see that 

)1()( 21 −∨= nHxnH n  and )1()( 12 −= nHxnH n . Therefore, 1)]1([)]([ 0101 +−= nFNnTN , 

)]1([)]([ 0101 −= nTNnFN  and 11)1()( +=+−= nnLnL . Hence, a Horner's function of n variables 

has the shortest bearing learning sequence. 

Statement 1: The first and the second type of Horner's functions of n variables are threshold 

functions with the same vectors of input weights },...,,{ 11 wwwW nn −=  differing only in their 

threshold values. 

It is easy to find, directly applying De Morgan’s theorem, that Horner's functions of the first and 

the second type are dual
6
, i.e. )()( 21 nHnH d= . 

                                                 
6
 Functions )(Xf  and )(Xϕ  are called dual, if )()( XXf ϕ= . 
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For any threshold function ∑ =
−= n
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)()( η , the following is true: 
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that proves the statement 1. 

Statement 2: Input weights of a threshold functions represented by Horner's scheme form the 

Fibonacci sequence. 

It follows directly from the minimum form for Horner's functions that 

2121 )1()( −− +=−== nnn wwnnw ηη  

where )(1 nη  and )(2 nη  are thresholds for Horner's functions of n variables of the first and the 

second type respectively. Solving the difference equation with the initial conditions 121 == ww , 

we get 
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At the first glance, Horner's functions look like functions of n variables with extreme parameters 

(sum of input weights, threshold, etc.). However, this is not so, as it is possible to see from simple 

examples. Already for 4 variables there is a threshold function 

)5322()( 4321432321 −+++=∨∨ xxxxSignxxxxxx                                  (22) 

with the sum of input weights more than that of Horner's functions.  From the function dual to (20), 

by deleting inversions of variables and multiplying it by 5x  the next function is derived 

)95322())(( 543215432132 −++++=∨∨∨ xxxxxSignxxxxxxx .                       (23) 

This function has the threshold more than that of the second type Horner's function of 5 variables. 

However, both functions (22) and (23) have bearing learning sequences of the length equal to n+3. 

Note that within practically interesting values of maximum input weights, thresholds, and sums of 

input weights (100-1000), Horner's functions are an excellent example of test functions. 

 Finally, the following Horner’s functions can be recommended as test functions with the 

shortest learning sequences:  
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)2121138532( 876543218 −+++++++= xxxxxxxxSignY , 

)343421138532( 9876543219 −++++++++= xxxxxxxxxSignY , 

)55553421138532( 1098765432110 −+++++++++= xxxxxxxxxxSignY , 

)8989553421138532( 111098765432111 −++++++++++= xxxxxxxxxxxSignY , 

)14414489553421138532( 12111098765432112 −+++++++++++= xxxxxxxxxxxxSignY , 

).233233         

14489553421138532(

13

12111098765432113

−
++++++++++++=

x

xxxxxxxxxxxxSignY
 

Table 3 contains bearing sets jT0  and jF0  for functions jY . In this table, Combinations of 

variable values },...,,{ 21 nxxx  corresponds to decimal equivalents of binary numbers 12

1
2 −

=∑ j

j jx .  

 

Table 3:  Bearing sets for Horner's functions of the first type 
 

n T0 F0 

8 85,86,88,96,128 63,79,83,84 

9 171,172,176,192,256 127,159,167,169,170 

10 341,342,344,352,384,512 255,319,335,339,340 

11 683,684,688,704,768,1024 511,639,671,679,681,682 

12 1365,1366,1368,1376,1408,1536,2048 1023,1279,1343,1359,1363,1364 

13 2731,2732,2736,2752,2816,3072,4096 2047,2559,2687,2719,2727,2729,2730 

 

5 Conclusion 

The proposed LTE has many attractive features. It is rather simple for hardware implementation 

in CMOS technology. Its 
β

-comparator has a very high sensitivity to current changes providing the 

possibility of getting the smallest voltage leap at the comparator output equal to 1V when the 

threshold of the realized function is 89 and to 325mV, if the threshold is 233. The implementability 

does not depend on sum of input weights and is determined only by the function threshold. Such an 

LTE can perform very complicated functions, for example, logical threshold functions of 12 

variables. Carried out experiments confirms this for functions of 10 variables. More over, during 

LTE learning all dispersions of technological and functional parameters of the LTE circuit are 

compensated.  

     For enhancement of functional abilities the new circuit of the LTE synapse has been proposed, 

which gives to LTE opportunity to have both excitatory and inhibitory inputs. The LTE with such 

synapses can be taught to arbitrary threshold function of some number of variables in the case when 

it is not known beforehand which inputs are inhibitory and which are excitatory. The on-chip 
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learning procedure, which allows teaching the neuron to arbitrary threshold function of 10 or less 

variables, has been also proposed. The solution is based on the well-known fact that any Boolean 

function of n variables can be represented as an isotonous function of 2n variables jx(  and )jx .  

The circuit in Fig.23 realizes this idea in the pure form. The function looks like 

∑ ∑∑ ∑
= == =

+=−+=
n

j

n

j

jjjj

n

j

n

j

jjjj xbxaRtTxvxwSigny
1 11 1

 )()(  

where, if  0≠ja , then 0=jb   and visa versa. 

 Ability to determine the type of logical variable inputs during the learning increases the number 

of realizable functions in 2n times as compared with the isotonous LTE implementation (n is a 

number of variables). 

    We believe that the proposed LTE and its learning procedure can be very useful in many 

important applications including development of real artificial neurons. Functional power of 

neurochips depends on not only the number of neurons, which can be placed on one VLSI, but also 

on functional possibilities of a single neuron. It is evident that extending functional possibilities of a 

neuron is the prior aim when creating new neurochips. Especially it is very important in the case of 

a neuron implementation as a digital/analog circuit. 

The main drawback of the proposed LTE is high requirements to stability of the supply voltage. 

This drawback looks to be peculiar to all circuits with high resolution, for example, digital-analog 

and analog-digital converters. It is natural to assume that rather slow changes of the supply voltage 

(with period not less then tens milliseconds) will be compensated during learning and refreshing. Its 

fast changes can cause the lost of the learned information. It would be reasonable to study the 

possibility of compensating the operational parameters LTE by circuit facilities. 
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