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Abstract: - This paper offers a new technique for designing fuzzy controllers as analog 

hardware devices on the base of CMOS implementation of multi-valued logical functions. 

This approach is based on using a summing amplifier with saturation as a building block 

that can be considered as a multi-threshold logical element.  The functional completeness in 

an arbitrary-valued logic of a summing amplifier with saturation is proven. This fact gives a 

theoretical background for an analog implementation of fuzzy devices. In contrast with the 

traditional software approach to fuzzy controller implementations based on explicit 

fuzzification, fuzzy inference, and defuzzification procedures, hardware implementations of 

fuzzy controllers as analog devices have advantages of higher speed, lower power 

consumption, smaller die area and more. Universal and proper design methods for such type 

of hardware are suggested. The paper illustrates design examples for real industrial fuzzy 

controllers and provides SPICE simulation results of their functioning. 

 

Key-Words: - Fuzzy Logic, Fuzzy Controller, Fuzzy rules, Fuzzy inference, Fuzzification 

and Defuzzification, Multi-Valued Logic, Multi-threshold Element, Functional 

Completeness, Summing Amplifier. 

1 Introduction 

Fuzzy logic control is a methodology bridging artificial intelligence and traditional 

control theory. This methodology is usually applied in the only cases when accuracy is not 

of high necessity or importance. On the other hand, as it is stated in [1], “Fuzzy Logic can 

address complex control problems, such as robotic arm movement, chemical or 

manufacturing process control, antiskids braking systems, or automobile transmission 

control with more precision and accuracy, in many cases, than traditional control techniques 

have… . Fuzzy Logic is a methodology for expressing operational laws of a system in 

linguistic terms instead of mathematical equations.”  
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Wide spread of the fuzzy control and high effectiveness of its applications in a great 

extend is determined by formalization opportunities of necessary behavior of a controller as 

a “fuzzy” (flexible) representation. This representation usually is formulated in the form of 

logical (fuzzy) rules under linguistic variables of a type “If A then B”.  

The Fuzzy Logic methodology [2, 3] comprises three phases: 

1. The Fuzzification is a transformation of analog (continuous) input variables to 

linguistic ones, e.g., transformation of temperature into the terms cool, warm, hot or 

transformation of speed into the terms negative big (NB), negative small (NS), zero (Z)”, 

positive small (PS), positive big (PB). Such transformation is realized by introduction of so-

called membership functions, which define both a range of value and a degree of 

membership. For linguistic variables it is important not only which membership function a 

variable belongs to, but also a relative degree (weight) to which it is a member. A variable 

can have a weighted membership in several membership functions at the same time.  

2. The Fuzzy inference maps input linguistic variables onto output linguistic variables 

on the base a system of fuzzy rules “IF… THEN …”-type. For instance: “IF the temperature 

is worm THEN the speed is Positive Small (PS)” or “IF the speed is Negative Big (NB) 

THEN force is ZERO”, etc. Since input linguistic variables are weighted, the output 

linguistic variables can be obtained weighted as well. Traditional fuzzy logic approach 

comprises Mamdani-type and Sugeno-type inference methods. The Mamdani-type method 

is more intuitive and assumes the output variables as a fuzzy set. Fuzzy rules in it contain a 

fuzzy precondition part (after IF) and a fuzzy consequence part (after THEN). The Sugeno-

type method expects the output variables to be singletons or dealing with consequents that 

are equations. So it is better suited for mathematical analysis, nonlinear system modeling 

and interpolation. 

3. In the defuzzification phase, the weighted values of output linguistic variables 

obtained as a result of fuzzy inference have to be transformed to analogue (continuous) 

variables. This procedure is also based on membership functions. Two major methods are 

used for defuzzification: 

– the maximum defuzzification method, wherein an output value is determined by the 

linguistic variable with the maximum weight; 

– the centroid calculation defuzzification method, wherein an output value is determined by 

the weighted influence of all the active output membership functions.  

 As a rule, or at least in a great part of applications, a fuzzy controller is a transformer of 

input analog signals into an analog output signal. A linguistic variable is a subjective 
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characteristic of an input analog variable, values of which are transformed on the base of 

given membership functions into a set of weighted values corresponding linguistic 

variables. This procedure is called a fuzzification and it contains as its composite part the 

analog-digital transformation. 

A set of combinations of weighted linguistic variables corresponds to each value 

combination of input analog variables. On the base of a system of fuzzy inference rules it is 

possible to receive the set of weighted output linguistic variables. Using these variables and 

their membership functions, with help of one of well known defuzzification methods it is 

possible to form values of the analog output variable. The defuzzification procedure also 

includes digital-analog transformation. 

At present the most wide-spread way of fuzzy logic control implementation is using the 

programmable fuzzy controllers, which are available on the market together with the means 

of computer aided programming (e.g. Motorola’s 8-bit 68HC11 and 16-bit 68HC12 

microcontrollers or specialized fuzzy processors of Siemens 80C517/80C535 families). 

However, in spite of the implementation evidence and fuzzy controllers’ accessibility this 

approach to controller implementation possesses some disadvantages, e.g. such as high cost 

and low throughput (that is especially important when fuzzy control in the control contour is 

used) etc.  

This work shows that for a sufficient wide set of applications fuzzy controllers can be 

implemented as rather simple CMOS devices, which can be used in embedded systems or as 

an IP core.  What is the basic idea of the proposal? 

A fuzzy controller is a deterministic device, for which one and only one value of the 

output analog variable corresponds to each value combination of the input analog variables. 

It means that the fuzzy controller should realize an analog function ),...,,( 21 nxxxfY = 1
.  

There are two important questions: 

1.  How to transit from a standard specification of a fuzzy logic function to the specification 

of corresponding analog function? 

2. How to transit from an analog function specification and/or from a standard specification 

of a fuzzy logic function to corresponding CMOS implementation? 

First of all, let us address to membership functions. In most cases [2 – 4], membership 

functions have a triangle or trapeze form (see Fig.1). 

 

                                                 
1
 It should be noticed that in suppressing majority of publications on fuzzy controllers, this function is given as 

a response surface and practically without exception this surface has a piecewise linear form. 
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Figure 1. Types of membership functions. 

 

In Fig.1 linguistic points (variables) A and B are cold, C is fresh, D and E are worm, F 

and G are hot. These points determine the connection of the linguistic variables with values 

of the analog variable T (T is temperature). Relatively to these points and similar points for 

other analog input variables we can compose a table of fuzzy rules connecting combinations 

of input linguistic variables with output linguistic variables. 

On the base of membership functions we can put into accordance to the input and 

output linguistic variables a set of integer numbers splitting by appropriate way all diapason 

of changing of corresponding analog variables. Then the table of fuzzy rules will to 

determine by obvious way the function of multi-valued logic, values of which define the 

digit representation of the output linguistic variable on chosen value combinations of multi-

valued input variables. 

In other words, according to our concept, for a broad class of fuzzy controller 

specifications it is possible to construct corresponding tables connecting input and output 

membership functions. Frequently the membership functions evenly divide the ranges of 

output variables’ variations. If it is not so, the membership functions can be brought to even 

scale by increasing the number of gradations or, as it will be shown later, by introducing a 

certain equalization procedure for logical levels. Therefore, specification tables represent 

nothing but tables determining a specific multi-valued logical function. And what is more, 

for a number of implementations it is possible to neglect weighting and determining input 

linguistic variables and simply to use continuous-valued variables. 

The above idea was in the focus of our research. We dealt with searching for simple 

basic multi-valued functions, which, from the one hand, would present a complete 

functional basis in the multi-valued logic, and from the other hand, could be efficiently 

implemented by CMOS technology. 
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2 Possibility of Fuzzy Controller CMOS Implementation 

2.1 Summing Amplifier as a Multi-Valued Logical Element 

Summing amplifier’s behavior, accurate to the members of the infinitesimal order that 

is determined by the amplifier’s gain factor in disconnected condition (Fig.2), is described 

as follows: 
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Figure 2. Summing amplifier: general designation (a); CMOS implementation using 

symmetrical invertors (b). 

 

Let us split the source voltage ddV  on 12 += km  voltage levels. Then replacing the 

input voltages 
2

dd
j

V
V −  by m-valued logical variables k

V

VV
x

dd

ddj

j ⋅
−⋅

=
2

 and the output 

voltage outV  by m-valued variable y and designating jjRR ω=/0  the system (1) can be 

represented as (2). Graphical view of (2) is shown in Fig.3 (b). 
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Figure 3. Summing amplifier’s behavior: within voltage coordinates (a); within multi-

valued variables coordinates (b). 
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Later on, we will call the functional element, whose behavior is determined by the 

system (2), a multi-valued threshold element. In the simplest case when 3 ,2 ,1  ,1 == jjω , we 

will call it a majority element and designate as ),,(
321

xxxmaj . 

 

2.2 Functional Completeness of the Threshold Element  

The basic operation (or a set of basic operations) is called functionally completed in 

arbitrary-valued logic, if any function of this logic can be represented as superposition of 

the basic operations. 

There are some known functionally complete sets of functions. It is clear, that for 

proving the functional completeness of a sertain new function it is sufficient to show that 

every function of the known functionally complete set can be represented as a superposition 

of the considered function. One of functionally complete functions in m-valued logic is the 

Webb’s function [8]: 

m
yxyxw

mod
]1),[max(),( += .                                                    (3) 

Therefore, for proving functional completeness of threshold operation in multi-valued 

logic it is sufficient to show how the Webb’s function can be represented through this 

operation [5 – 7].        

First, let us represent the function ),max( 21 xx  by threshold functions. To do this let us 

consider the function )(xfa , such as 
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The diagram of this function is shown in Fig.4 (a).  
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Figure 4. Diagrams of )(xfa  (a) and ),,( kaxmaj −−−  (b) functions. 

 

The ),,( kaxmaj −−−  function diagram is shown in Fig.4 (b). Actually, as far as ax <  

kkax −<−−  and kkaxmaj −=−−− ),,( . Note that for all values of x ,  

kakaxmajxf a ++−−−= ),,()(  

as it follows from Fig.4, hence 

],),,,([)( kakaxmajmajxf a −−−−= .                                            (5) 

Taking into consideration  =− ),,( cbamaj  ),,( cbamaj −−− , it follows from (5) that 

),),,,((),max( 22121 kxkxxmajmajxx −−−−= .                                       (6) 

Now let us consider the representation of the function mxy mod)1( += , 

1y0  ,0 m-x ≤≤≥  through threshold functions. First of all we designate 12 += km and 

change the beginning of coordinates so that the function will have a view  

kkxy k −++= + )12mod()1( , kx −≥ , kk +≤≤ y- . To implement this function on threshold 

elements let us turn to the sequence of pictures in Fig.5.  

It is easy to see that 

)(2)()1( 31)12mod( xxkkx k ϕϕ +=−++ +  

and obviously, this function can also be implemented on threshold elements as 

))0,),,1,((),0,),,1,((),0,1,(( kkkxmajmajkkkkxmajmajkxmajmajy −−−⋅−−−⋅= . 

Hence, the functional completeness of the summing amplifier in arbitrary-valued logic is 

shown. The proof procedure of functional completeness naturally does not give information 

about methods of effective synthesis. Some methods of circuit design in the proposed base 

will be developed later.  
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Figure 5. Implementation of the function kkxy k −++= + )12mod()1( . 

 

2.3 Fuzzy Devices as Multi-Valued and Analog Circuits 

Conventional implementation of fuzzy devices usually has the structure shown in Fig.6. 

Analog variables },...,,{ 21 nxxxX =  enter the fuzzy device input. Fuzzifier converts a set of 

analog variables jx  into sets of weighted linguistic (digital) variables },...,,{ 21 naaaA = .  
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Figure 6.  Conventional structure of a fuzzy device implementation. 

 

Fuzzy Inference block generates on the base of the fuzzy rules a set of weighted 

linguistic variables values },...,,{ 21 kbbbB = . 

Defuzzifier converts sets of weighted linguistic (digital) variables },...,,{ 21 kbbbB =  into a 

set of output analog variables },...,,{ 21 kyyyY = . 

As a rule, fuzzifier and defuzzifier include AD and DA (analog-digital and digital-

analog) converters and are implemented on both levels (hardware and software). Fuzzy 

inference is usually implemented on the level of microprocessor software. 

It is easy to see that each set of values of output analog variables unambiguously 

corresponds to some set of input analog variable values; hence a fuzzy device could be 

specified as a functional analog of a signal converter 
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)}(),...,(),({)( 21 XyXyXyXY k=                                                                  

and its output Y determines a system of  n-dimensional surfaces. In cases of sufficient 

simple membership functions (in known publications such functions are in majority), for 

fuzzy controller implementations as analog devices it is sufficient to provide a piece-wise 

linear approximation between a couples of points calculated as adjacent values of a multi-

valued logic function.  

Let 12 += km  linguistic variables ja  ( Aa j ∈ ) correspond to values of analog variable 

jx  ( Xx j ∈ ). Then basing on a system of fuzzy rules, we can specify a system of m-valued 

logic functions, as follows: 

)}(),...,(),({)( 21 AbAbAbAB k= .                                      (7) 

Note that most publications describing fuzzy controllers contain tables specifying fuzzy 

controllers’ behavior as (7) and a plenty of publications contain piece-wise linear 

approximations of the corresponding surfaces. 

The apparent conclusion can be made from the things mentioned above: if a fuzzy 

controller is represented as (7), it can be implemented as superposition of multi-valued 

threshold elements. In this case, owing to linear behavior of the threshold element in the 

zone between the saturation levels ((2) and Fig.3 (b)) natural linear approximation appears 

between the discrete points of specification. 

In the last subsection of this section some illustrations will be given to show that for a 

number of real applications the suggested approach can provides simple and efficient 

circuits of controllers. 

 

2.4 Fuzzy Controller Implementations as Circuits from Threshold Elements  

2.4.1 Example 1 

 

Let us consider the example, which is taken from [9, pp. 81 – 86]: “Design of a Rule-

Based Fuzzy Controller for the Pitch Axis of an Unmanned Research Vehicle”.  

The fuzzy control rules for the considered device depend on the error value 

outputrefe −=  and changing of error 
periodsampling

eneweold
ce

−= . Fuzzifier gives seven linguistic 

variables for each of input analog variables (NB – negative big; NM – negative middle; NS 

– negative small; ZO – zero; PS – positive small; PM – positive middle; PB – positive big). 
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The output has the same seven gradations. Corresponding 49 fuzzy rules are represented in 

Table 1. 

Table of Fuzzy Rules                       Table 1 

 e 

 N B NM N S Z O P S P M PB 

N B Z O P S PM P B P B P B PB 

NM N S Z O P S PM P B P B PB 

N S NM N S Z O P S P M P B PB 

Z O N B NM N S Z O P S P M PB 

P S N B N B NM N S Z O P S PM 

PM N B N B N B NM N S Z O P S 

ce 

P B N B N B N B N B NM N S ZO 

 

Let us split evenly the source voltage (e.g. 3.5V) onto seven logical levels 

corresponding to linguistic levels and enumerate them with integer numbers from -3 to +3. 

Then Table 2 will represent Table 1 as the function of seven-valued logic. 

It is seen from Table 2 that the function is symmetric with respect to “North-West – 

South-East” diagonal and its values can be calculated as cee − . This dependency is shown 

in Fig.7. 

The Seven-Valued Function   Table 2 

 e 

 -3 -2 -1 0 1 2 3 

-3 0 1 2 3 3 3 3 

-2 -1 0 1 2 3 3 3 

-1 -2 -1 0 1 2 3 3 

0 -3 -2 -1 0 1 2 3 

1 -3 -3 -2 -1 0 1 2 

2 -3 -3 -3 -2 -1 0 1 

ce 

3 -3 -3 -3 -3 -2 -1 0 

 

 

Output

e-ce

 1     2     3    4     5     6

 -6    -5  -4    -3   -2    -1
1

2

3

-1

-3

-2

 

Figure 7. Graphical representation of the function specified by Table 2. 
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It apparently follows from comparison of Fig.3 (b) and Fig.7 that in order to reproduce 

the function specified by Table 2 it is sufficient to have one two-input summing amplifier 

and one one-input amplifier that we will call inverter. 

Note that inversion of logic variables lying within kk +÷−  interval is the operation of 

diametric negation xx −= ; the operation inddout VVV −=  corresponds to it in the term of the 

summing amplifier’s output voltage. Thus CMOS circuit containing 12 transistors and 5 

resistors, which implements our function, is shown in Fig.8. 

 

1

S1

1

1

S2

Ve Vce

V   -Vdd e
Vout

 

Figure 8. Implementation of the fuzzy controller specified by Table 2. 

 

2.4.2 Example 2 
 

This example is taken from [9, pp. 168 – 172]: “Manipulator for Man-Robot 

Cooperation (Control Method of Manipulator/Vehicle System with Fuzzy Inference)”.  

In the considered example the experimental manipulator has two force/torque sensors. 

One of them is the operational force sensor Fh; the other is “the environmental force sensor” 

ω . Each of input and output variables of the manipulator controller is represented with 

three linguistic variables – S (small), M (middle) and B (big). The controller has five fuzzy 

rules, as it follows: 

If  S=ω  then   Output=B; 

If  B=ω  then   Output=S; 

If  M=ω  and SFh =  then Output=S;  

If  M=ω  and MFh =  then Output=M; 

If  M=ω  and BFh =  then Output=B; 

The controller Output is three-valued logic function specified in Table 3. 

 It can be simply proved by trivial substitution that )0,,2( hFmajOutput −= ω  and С
MOS implementation coincides with the circuit shown in Fig.8, if make substitutions 

ωVVVV ceFe h
==   ,  and change the weight of the input ωV  to 2.  
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The ternary function   Table 3 

  hF   

−1  0 +1 

−1 +1 +1 +1 

 0 −1  0 +1 ω 

+1 −1 −1 −1 

 

 

2.4.3 Example 3. Fuzzy Controller for Washing Machine 
 

This example is taken from Aptronix Incorporated (http://www.aptronix.com/fuzzynet). 

A. Controller specification 

Input variables: 

Dirtiness of clothes degree: Large (L), Medium (M), and Small (S); 

Type of dirtiness degree: Greasy (G), Medium (M), and Not Greasy (NG). 

Output variable is washing time (minutes): Very Long (VL), Long (L), Medium (M), 

Short (S), and Very Short (VS).  

Fuzzy rules are represented in Table 4.  

Matrix of linguistic variables        Table 4    

Dirtiness of clothes 
Wash. time 

S M L 

NG VS S M 

M M M L Type of dirt. 

G L L VL 

 

According to our approach the Table of linguistic variables (Table 4) can be 

transformed into the table of multi-valued logic variables (Table 5).  

Matrix of multi-valued variables      Table 5       

Dirtiness of clothes (Y) 
Wash. time  

−2 0 +2 

−2 −2 −1 0 

0 0 0 +1 
Type of dirt. 

(X) 
+2 +1 +1 +2 

 

 In this table the output variable Wash. time has 5 logical levels but input variables X and Y 

have only three. Because of the change range of output and input variables should be the 

same in the Table 5 logical levels of input variables X and Y are −2, 0, +2. 

 



 13 

B. Functional decomposition 

Let us represent the washing time matrix as a sum of two matrixes: 

000

000

001

211

100

011

211

100

012

                                      time   wash 21

−
+

+++
+

−−
=

+++
+

−−
ϕϕ

                                     (8)  

or )() .( 21 ϕϕ −−= Stimewash  were S is the function of summing amplifier with saturation. 

Let us take into consideration a function of one variable   

1  2  2)25.0()(3 +++=−⋅= YSYϕ .                                           (9) 

In (9) Y corresponds to the dirtiness of clothes and varies from –2 to +2 as follows 

|2   0    2| +−=Y . 

Now the following intermediate sum is introduced: 

2,1,1

1,0,0

0 ,1,1

25.0)(3

−−−
−

++
=−⋅− XYϕ .                                         (10) 

Here X corresponds to the type of dirtiness and varies also from –2 to 2 as follows 

2

0 

2

+

−
=X . 

From (8) and (10) it is easy to see that (10) is 1ϕ−  and       

)25.0)(() .( 23 ϕϕ −−⋅−= XYStimewash . 

Now let us introduce the function: 

2,2,2

2,2,2

2,2,0

)4(),(4

−−−
−−−
−−

=++= YXSYXϕ                                         (11) 

and form the second intermediate sum: 

24

0,0,0

0,0,0

0,0,1

1),(5.0 ϕϕ −=
+

=+⋅ YX .                                        (12) 

Finally  

. ]1)(5.0)4(5.0)25.0([

)],(5.015.0)([) (

3214

43

−⋅+++⋅+−
=⋅+−⋅−=

XSYXSYSS

YXXYStimewash ϕϕ
                        (13)     
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In Fig.9 the CMOS implementation of the expression (13) is presented. The circuit is 

implemented as the superposition of four multi-valued threshold elements. 

 

0.5
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Vout
S2

S3

1

1
1
2

1

Y

Y
X

X

PWR
0.5
0.5
0.5
1

 

Figure 9. CMOS implementation of fuzzy controller for washing machine. 

 

The result of the SPICE simulation of the circuit in Fig.9 is shown in Fig.10 in the form 

of response surface.  

 

Figure 10. Results of SPICE simulation for controller in Fig.9. 

 

In Fig.10 all variables are represented in voltages. The correspondence of logical values 

to voltages is shown in Table 6. It is easy to see that the controller output signal represented 

by the surface in Fig.10 has linear approximation between adjacent logical levels. 

 

Correspondence voltages to logical levels     Table 6 

-2     -1     0     1    2 

0V 0.875V 1.75V 2.625V 3.5V 
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3 Universal Method of Fuzzy Inference Rules Implementation  

It was shown in 2.2 and [5, 6] that a summing amplifier with saturation is a functionally 

complete element in any multi-valued logic (of an arbitrary value). Thus it may serve a 

basis for hardware implementation of fuzzy devices.  

The study subject is design techniques for analog CMOS circuits that implement fuzzy 

controller multi-valued functions. 

Without departing from the general character of the study, let us suppose that the logic 

has odd value  12( += km and )kxk j +≤≤− . Let’s also assume that },,,{ 21 nxxxX L=  is 

a set of input multi-valued variables and )( XFy =  is the output variable. Then for a 

function of multi-valued logic we may build an analog of the Shannon’s decomposition in 

the binary logic:   

)]\,(    then if[)( jj

k

k

jii xXxFyxXFy αα
α

=====
+

−=
U .                  (14) 

Equation (14) can be further expanded and thus enabling to build a fuzzy circuit by 

using the variables exclusion method. To this purpose, we need a sub-circuit implementing 

the function:  

   then       if )\,( ZXAZFyAZ ===                                     (15)  

where XZ ⊂ and A  is a value combination of the variable set Z .
2
 

Having a basic element (sub-circuit) realizing (15), we can implement a fuzzy device 

directly according to the system of fuzzy rules. However, note that equations (14) and (15) 

represent multi-valued functions in a piece-wise constant manner. An example of a 7-valued 

function is given in Fig.11 (a).  Taking into account fuzzification and defuzzification 

procedures in fuzzy logic, corresponding multi-valued logic function should has at least 

piece-wise linear approximation between adjacent logical levels. Fig.11 (b) gives an 

example of such a representation of the function with evenly distributed logical values of 

the input and the output in the range of corresponding voltages.  

 

                                                 
2
 It is possible to add else in (15) that can be defined by circuit requirements. 
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Figure 11. Example of a seven-valued function of one variable:  

piece-wise constant representation (a); peace-wise linear representation (b).  

 

3.1 Masking summing amplifier input 

Let us rewrite the definition (2) of the inverting summing amplifier with saturation in 

the following form: 

 















+⋅≤+−

−>+⋅>+−⋅−

−≤+⋅+

=⋅

∑

∑ ∑

∑

=

= =

=

       if                      

      if   

              if                      

);(

1

1 1

1

n

i

ii

n

i

n

i

iiii

n

i

ii

xkk

kxkx

kxk

XAS

βα

βαβα

βα

β                   (16) 

where },...,,{ 21 nA ααα=  is a set of weight coefficients, },...,,{ 21 nxxxX =  is a set of 

analog or multi-valued variables, β  is a constant symbolizing a threshold, k±  is a 

saturation value (in the case of m-valued logic, 12 += km ). 

Let us introduce a masking function )(xMα  such that 









≤+−
+<<−−
−≤+

=
xk

xxk

xk

xM

1     if            

11     if   )(

1                if            

)(

α
ααα
α

α                                    (17) 

where α  ( kk ≤≤− α ) is a fixed value of the variable x . It can be easily seen that when 

α=x , 0=)(ααM . Fig.12 illustrates an example of the function )(1 xM −  for 7=m . 

Taking into account that the source voltage ddV has the logical value equal to +k and the 

ground potential gndV has the logical value equal to –k, the mask-function can be easily 

implemented on the base of summing amplifier as 









>⋅
=
<⋅−

=
0  if   ) ;(

0  if                )(

 0  if  ) ;(

)(

αα
α
αα

α

gnd

dd

VkxS

kxS

VkxS

xM                                            (18) 
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where x ( ddgnd VxV ≤≤ ) is measured in voltages.   

 

−2 −1−3
−1

−2

−3

1
1

2

2

3

3

M-1(x)

x

 

Figure 12.  )(1 xM −  diagram for 7=m . 

 

Using the mask-function )(xMα  it is possible to implement the rule  

0  else  ),(    then  if ==== yYxFyx αα ,                               (19) 

which extracts the value of the function ),( YxF α=  in the point α=x , as the circuit from 

summing amplifiers shown in Fig.13. 

 

α

1

1

1

1

1

1
1
1M  (x)

α-M  (x)

y

F(x=α ,Y)

 

Figure 13. Implementation of the rule (19). 

 

This implementation can be written in analytical form as 

)},()];,());(([)];,();([{ YxFYxFxMSSYxFxMSSy ααα αα ====  .            (20) 

For example, in the case when 1−=α , 2),1( =−= YxF , and m = 7, the behavior of the 

circuit in Fig.13 can be represented as it is shown in Fig.14. 

Analyzing the implementation of the rule (19) it is possible to see that in it the condition 

α=x  is realized as the condition 0)( =xMα .  
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Figure 14. Example of implementing the rule (19). 

 

3.2 Mask-functions of other types  

To decrease the number of variables, which an m-valued logical function depends on, 

by one using the analog of Shannon’s decomposition (14) we need to implement m rules of 

the type (19) and to find m components k-kYxF +≤≤= αα   ),,(  of the decomposition. 

Sometimes the number of rules can be reduced, if the function ),( YxF doesn’t change on 

some interval of changing logical values of the variable x. A single rule can correspond to 

such interval of the variable x and the conditional part of this rule can have one of three 

views: βα ≤≤ x , β≤x , x≤α  where kk +≤<≤− βα . For the condition βα ≤≤ x  let 

us construct the following mask-function: 









−≤−

+<<−−−
+≥+

= +−

1    if      

11  if    )()(

1    if      

)( 11,

α
βα

β

βαβα

xk

xxMxM

xk

xM  .                           (21) 

It is easy to see (Fig.15) that on the interval βα ≤≤ x  this function takes the value 0. 

In the case when k−=α  or k=β , this mask-function will have one of the forms: 





+<−+
+≥+

=
+

− 1  if   )(

1  if                    
)(

1

, β
β

β
β xxMk

xk
xM k   or                                       (22) 





−≤−
<−−−

=+
1  if                   

1  if   )(M
)(

1-

, α
αα

α
xk

xkx
xM k                                              (23) 

and represent conditions β≤x or x≤α respectively. 

Mask-functions (21), (22), and (23) can be implemented on the base of summing 

amplifiers as  

)]();([)( 11, xMxMSxM +−= βαβα ,                                              (24) 

)](;[)( 1, xMVSxM gndk +− = ββ ,                                                    (25) 

]);([)( 1, ddk VxMSxM −= αα .                                                     (26)  
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Let us look how the masking can be performed for a wider scope of the variable 

changes, such as:  

0  else  )(),(    then  if =Φ=≤≤=≤≤ yYYxFyx βαβα .                (27) 

Using the mask-function )(, xM βα  it is possible to transform the rule (21) into the 

following form: 

0  else  )(),(    then0(x)  if , =Φ=≤≤== yYYxFyM βαβα .               (28) 

The rule (28) can be implemented with the circuit shown in Fig.13, if to change in it the 

inputs )(xMα  and ),( YxF α=  with the inputs )(, xM βα  and )(YΦ  respectively. 

Analytically this implementation is represented as 

 )}.()];());(([)];();([{ ,, YYxMSSYxMSSy ΦΦΦ= δλδλ                     (29) 

The sequence of pictures in Fig.15 illustrates the implementation of the rule  

if 12 +≤≤− x  then 2−=y  else  y = 0 

for the case of ( 9=m )-valued logic. 
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Figure 15. Example of mask-functions application. 

                           

3.3 An example of interval masking application 

For further explaining the matter discussed in 3.2, let us recall an example from [4, pp. 

123 – 128] “A Fuzzy Logic Force Controller for a Stepper Motor Robot”. 

The fuzzy controller implements the function of two linguistic variables: position error 

and force error, which will be marked x  and y  respectively.  The variables x  and y  each 
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have 7 linguistic values: NL, NM, NS, ZE, PS, PM, PL, and their membership functions are 

shown in Fig.16. 
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Figure 16.  Fuzzy sets for force error and position error inputs. 

 

The Inference Engine Rule Matrix for the output linguistic variable from the cited work 

looks as it is shown in Table 7. 

                                        Inference Engine Rule Matrix                               Table 7 

position error (x)  

NL NM NS ZE PS PM PL 

NL NM NL NL NL NL NL NM 

NM NS NM NM NM NM NM NS 

NS ZE NS NS NS NS NS ZE 

ZE ZE ZE ZE ZE ZE ZE ZE 

PS ZE PS PS PS PS PS ZE 

PM PS PM PM PM PM PM PS 

 

 

force 

error 

(y) 

 

PL PM PL PL PL PL PL PM 

 

Let us transform the Table 7 into the Table 8 taking into account that we are going to 

produce fuzzy inference calculating values of the corresponding multi-valued logic 

function.    

                                The Inference Engine Rule Matrix  

                                 as the multi-valued logic function               Table 8 

position error (x)  

-3 -2 -1 0 1 2 3 

-3 -2 -3 -3 -3 -3 -3 -2 

-2 -1 -2 -2 -2 -2 -2 -1 

-1 0 -1 -1 -1 -1 -1 0 

0 0 0 0 0 0 0 0 

1 0 1 1 1 1 1 0 

2 1 2 2 2 2 2 1 

 

 

force 

error 

(y) 

 

3 2 3 3 3 3 3 2 
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Table 8 comprises only two different columns defining two functions depending on the 

variable force error (Table 9). 

                              Two different functions of the force error        Table 9  

force error (y) 
 

-3 -2 -1 0 1 2 3 

)(1 yF  -2 -1 0 0 0 1 2 

)(2 yF  -3 -2 -1 0 1 2 3 

 

Fig.17 illustrates graphs of these functions. 
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Figure 17. Components of the function defined by Table 7 and  

decomposed relative to variable x. 

 

It is easy to see that the function )(1 yF looks like mask-function )(1,1 yM −  but has 

different slops of the lines. By analogy with (17), (18), (21), (24), Fig.15 (a), and Fig.15 (b), 

it is possible to construct the function )(1 yF in accordance with graphics in Fig.18.  
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Figure 18. Constructing of the function )(1 yF . 

 

As a result, the functions )(1 yF  and )(2 yF  can be implemented as  

yyFVySVySSyF ddgnd == )(       )];;();;([)( 22
3

2
3

13
2

2
3

2
3

23
2

31 .                   (30) 
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It can be seen from the Table 7 and Table 8 that the behavior of the controller's output in 

the decomposition by variable x has the form: 

   )(  else  )(    then if 12 yFOutputyFOutputPMxNM ==≤≤   or 

)(  else  )(    then22  if 12 yFOutputyFOutputx ==+≤≤− .               (31) 

It is possible to split the rule (31) into two rules and represent them as:  

0  else  )(    then0)(  if 222,- ===+ OutputyFOutputxM ,                      (32) 

)(  else  0    then0)(  if 122,- yFOutputOutputxM ==≠+ .                      (33) 

The rule (32) can be implemented in accordance with (29) and (30) and (24) as 









−=Φ
=−

=

+−+−

+−+−

+−+−

)}.()];();([)];();([{

)),(()(

)),();(()(

222,2722,26111

2,252,2

3342,2

yFyFxMSyFxMSS

xMSxM

xMxMSxM

 

It is easy to check that the rule (33) can be implemented in accordance with the 

structural scheme shown in Fig.13, in which the output amplifier has the weight equal 2 of 

the input )(1 yF : 

)}.(2)];();([)];();([{ 112,2812,29102 yFyFxMSyFxMSS +−+− −−=Φ  

Finally the output of the controller can be calculated as 

21 Φ+Φ=Output . 

For producing this summation it is possible to use summing amplifier 11S  

).;( 2111 Φ−Φ−= SOutput  

Fig.19 illustrates the structural scheme of the controller implementation with elements 

containing designations of input weights.  
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Figure 19. Structural diagram of the controller. 

 

The controller circuit has been constructed from three-stage push-pull CMOS 

operational amplifiers with 1-MegOhm resistors in the feedback (Fig.2 (b)). It’s functioning 
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has been checked with SPICE simulation (MSIM 8). MOSIS BSIM3v3.1, level 7 models of 

0.4µm transistors have been used. In this paper, all other SPICE simulation experiments 

with designed circuits of controllers will be executed under the same conditions.  

In the experiments with the controller presented in Fig.19, source voltage was 3.5V, 

input variable x changed linearly from 0V to 3.5V, input variable y changed discreetly in 

accordance with its logical values and kept constant value within one cycle of x changing. 

For the controller constructed from 3-stage elements results of SPICE simulation are 

shown in Fig.20. It is possible to see that the functioning of the controller is correct (logical 

values of the circuit output depend on the logical values of the input variables in accordance 

with the Table 2). 

 

 

Figure 20. SPICE simulation results for the controller constructed from  

3-stage summing amplifiers. 

 

4 Particular Methods of Implementing Fuzzy Inference  

 

 The universal method of implementing multi-valued logic functions suggested in the 

previous section can be always used but often can give inappropriate results due to its 

universality. For this reason some particular design methods for fuzzy inference part of 

controllers were developed. These methods utilize specific properties of certain multi-

valued logical function descriptions corresponding to sets of fuzzy inference rules. 

According to the approach described above an initial set of fuzzy rules is represented in 

the form of a matrix or matrices defining multi-valued logical functions.  Complex matrices 
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can not be directly implemented. They must be decomposed into component matrices with 

relatively simple configuration of elements allocation, for which rather simple 

implementations can be find.   The topologies of valuable elements inside of such 

component matrices can be specified as symmetrical, diagonal, matrixes with linear 

configurations of elements, with elements located along rows and columns, matrices 

containing single valuable element and others.  

The best way to introduce particular design methods is to show possible matrix 

decomposition into a set of implementable matrices on the base of real design example.  

Let us take the description of the rather complex fuzzy controller from the patent [10] of 

Toyota Motors Corporation.  The controller calculates a regeneration time decision 

coefficient R on the base on a differential pressure coefficient pK  and total fuel 

consumption fQ . The set of fuzzy rules in terms of linguistic variables is represented in 

Table 10.  Transformation of the input and output signals are performed in accordance with  

 

                            Fuzzy rules for regeneration time 

decision coefficient R                            Table 10 

pK   

NB NM NS ZO PS PM PB 

NB NB NM NS ZO PB PB 

NB NM NS  NS ZO PB PB 

NM NM NS ZO ZO PS PB 

NM NS ZO ZO PS PM PB 

NS ZO ZO PS PS PM PB 

ZO ZO PS PM PM PM PB 

fQ  

NB 

NM 

NS 

ZO 

PS 

PM 

PB PS PS PM PM PM PB PB 

 

 

Analysis of the membership functions [10] of linguistic variables representing input and 

output analog signals shows that the linguistic variables having maximum weight are evenly 

distributed within the change ranges of corresponding analog signals.  It means that without 

loosing the accuracy of representation, these linguistic variables can be replaced with 

logical values as it is shown in Table 11. In this table, signals fQ  and  pK  are changed with 

7-valued logic variables x and y respectively.  
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The 7-valued logical function   Table 11 

x\y -3   -2   -1    0    1    2    3   

-3 

-2 

-1 

0 

1 

2 

3 

-3   -3   -1   -1    0    3    3 

-3   -2   -1   -1    0    3    3 

-2   -2   -1    0    0    1    3 

-2   -1    0    0    1    2    3 

-1     0    0    1    1    2    3 

 0     0    1    2    2    2    3 

 1     1    2    2    2    3    3     

 

4.1 Extracting a Symmetrical Component Matrix 

Let the Table 11 of the controller is represented as initial matrix M, which, in its turn, 

can be represented as sum of two component matrixes (M1 and M2). Matrix M1 corresponds 

to a symmetrical component and M2 corresponds to nonsymmetrical residual component.  

0000101

0001000

1000000

1100000

2000000

2300100

3311000

3322110

3221100
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2110012

1100122

1001223

0012233
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3301123

3301233

                                                                                                          21
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Matrix M1 is symmetrical relative to the side diagonal. Its components can be 

represented as a function )(1 zf  of one variable 2/)( yxz += .  After performing the linear 

approximation between adjacent logical levels this function will has the form shown in 

Fig.21. 
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Figure 21. The function )(1 zf . 
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To implement the function )(1 zf  let us represent it as a sum of 5 subfunctions )(zjα  

shown in Fig.22. 
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Figure 22. Five components of the function )(1 zf . 

It is easy to see, that   

 ∑
=

=
5

1

1 )()(
j

j zzf α                                                       (34)  

and let us consider formation )(zjα  using summing amplifiers on the example of )(1 zα .  

For this let us address to Fig.23.  
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Figure 23. Representation of the function )(1 zα . 

 

The function )(1 zβ  in Fig.23 can be implemented as )()( 111 azkSz +⋅−=β . For 25.2−=z  

01 =β  then 11 25.2 ka ⋅= . Taken into account that 125.0/61 ==k , we receive 271 =a  and 

)2766(),(1 +⋅+⋅−= yxSyxβ , ),(),( 16
1

1 yxyx βδ ⋅= . Finally                       

 5.0),(5.0),(),( 16
1

11 −⋅=−= yxyxyx βδα                                (35) 

In the same way it is possible to find  
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5.0)2766(5.0),(),(

5.0)1566(5.0),(),(

5.0)366(5.0),(),(

1)633(1),(),(

6
1

56
1

5

6
1

46
1

4

6
1

36
1

3

3
1

23
1

2

+−⋅+⋅−=+=
+−⋅+⋅−=+=

+−⋅+⋅−=+=
−+⋅+⋅−=−=

yxSyxyx

yxSyxyx

yxSyxyx

yxSyxyx

βα
βα
βα
βα

                     (36) 

The value of )(1 zf  can be calculated in accordance with (34) on one summing 

amplifier. Finally taking into account mutual compensation of constants, we have 

)]},(),(),(),(2),([{),( 543216
1

1 yxyxyxyxyxSyxf βββββ +++⋅+⋅−= .         (37) 

Thus, the implementation of the function ),(1 yxf , which represents the matrix M1, 

consists of six summing amplifiers.  

 

4.2 Extracting a Matrix with Elements Separated by a line 

This method is applicable for realization of matrices composed from two types of 

elements which can be separated with a line. 

After extracting the symmetrical component the residual matrix is M2. This matrix has 

some elements of types a≤  and b≥ . This means that instead of values a and b of the 

elements it is possible to substitute any logical value less then a and more then b 

respectively. Let us split the matrix M2 in two matrices (M3 and M4) and try to implement 

the matrix M3. The matrix  M4 is a new residual matrix.  

 

 

Let us address to Fig.24. It is easy to see that elements of the matrix M3 with two 

different values can be separated with help of two parallel lines: 083 =+− yx  and 

183 =+− yx .  Introduce a new variable 

83 +−= yxw .                                                      (38)           

Value of the variable w  in the point with coordinates ),( yx  is proportional to the distance 

of this point from the line. In all points lying on and up of the line 0≤w , and in all points 

laying on and down of the dashed line ( 073 =+− yx ) 1≥w .  
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Figure 24. Separating valuable elements of the matrix M3. 

 

It is easy to see, that the matrix M3 representing the function ),(2 yxf can be 

implemented as  

}3)]83(3[{),(2 −−+−= yxSSyxf .                                          (39)  

In this implementation all valuable matrix elements are equal to “3”.  

 

4.3 Extracting a Matrix with Rectangular Configuration of Valuable Elements 

Let us introduce a Pyramid Function that is the function, which corresponds to a matrix 

with a single valuable element and represents rules of the type  

0),( else  ),(    then)(&)(  if ==== yxfkyxfbyax .                      (40) 

This function is shown in Fig.25. 

x

y

f(x,y)

 

Figure 25. A pyramid function. 

 

The Pyramid Function has some fixed value c  at the point ),( ba  so that at the rest of 

the space bordered by points neighboring to ),( ba  this function is zero and transition from 

c  to zero is linear. Neighborhood is defined by coordinate increments 1±=∆ x  and 

1±=∆ y . 
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Let's turn to Fig.26 to construct the pyramid function.  

 

-k k

k

-k

a

a+1a-1 x

Ma+1(x) -Ma-1(x)

 

Figure 26. Component functions of the pyramid in Fig.26.  

The figure shows two component mask-functions )(1 xM a+  and )(1 xM a−−  those are 

implemented for )12( +⋅ k -valued logic ( kxk +≤≤− ) as: 

)].1([)(

)],1([)(   

1

1

−+−⋅=−
−−⋅=

−

+

axkSxM

axkSxM

a

a
                                                  (41) 

Similar component functions are constructed for the variable y:  

)].1([)(

)],1([)(   

1

1

−+−⋅=−
−−⋅=

−

+

bykSyM

bykSyM

a

a
                                                  (42) 

Simple substitution yields that the function  

]2)()([)( 11 kxMxMSx aa −−= −+γ                                                 (43) 

has the form shown in Fig.27; it equals to “0” for ax =  and equals to “ k+ ” for all other 

integer argument values. 

x

a-1 a+1a

k

k-k

-k

γ (x)

 

Figure 27. Graph of the function )(xγ . 

In a similar manner, we can construct the following function of 2 variables: 

]4)()()()([),( 1111 kyMyMxMxMSyx bbaa −−+−= −+−+γ .                     (44) 
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Function ),( yxγ  equals to “0” for )(&)( byax ==  and equals to “+ k ” for all other 

points. 

Now it is easy to construct the pyramid of Fig.26 with height “ k ”: 

]),([),( kyxSyxf −= γ .                                             (45) 

Pyramid of an arbitrary height is obtained by simple input gain factor scaling of the next 

amplifier. The pyramid sign can be elementarily changed at the stage of component mask-

functions constructions. 

We anticipate some complications in the case when it is needed to receive good 

"sewing" pyramids with already implemented functions. The pyramid function ),( yxf  (45) 

of Fig.25 type has projections on flats x and y shown in Fig.28.  

 

y

f

b

ax =
5.0±= ax

1±= ax

x

f

a

by =
5.0±= by

1±= by

a) b)

 

Figure 28. Graph of the pyramid function by coordinate x (a) and by coordinate y (b). 

 

When “sewing” a pyramid function with other functions to get monotonous piece-linear 

approximation between adjacent logical values the view of the pyramid function by one of 

its coordinate can be changed to one of variants shown in Fig.29.  

 

x

f

a

by =
5.0±= by

1±= by

a)

x

f

a

by =
5.0±= by

1±= by

b)

x

f

a

by =
5.0±= by

1±= by

c)

 

Figure 29. Possible graphs of a pyramid function by one of coordinates:  

center trapeze (a), right trapeze (b), and left trapeze (c). 

 

To construct a pyramid function with projections onto flats x and y of the Fig.29 (a) type 

(center trapeze), it is sufficient to substitute in the functions (41) – (45) instead of original 

variables yx,  new variables 2/)( yxz += , 2/)( yxw −=  and instead of points a, b 
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points 2/)( bac += , 2/)( bad −=  respectively.  It means transition to the pyramid 

function shown in Fig.30, which is  

f(x,y)

y

x

z

w
 

Figure 30. A pyramid in coordinates 2/)( yxz +=  and 2/)( yxw −= . 

implemented by analogy with (41) – (45) as 

}.]2)1([)]1(S[                

)]1([)]1([[{),(

2
1

2
1

2
1

2
1

kkbayxkSbayxk

bayxkSbayxkSSSyxf

−−−−++−+−+−−
+−++−−+−−−+=

                (46) 

For implementing a function, which has the projection on one of its argument flats of 

the right trapeze or left trapeze type (Fig.30 (b) or Fig.30 (c)), let us introduce two 

intermediate functions )](,[ yx ξϕ  and )](,[ yx ξψ shown in Fig.31. 

 

xa-1 a

k

k-k

-k

ϕ (x,ξ(y))

ξ(y)=k

0< ξ(y)<k

ξ(y)=0

a)

x

a-1 a+1a

k

k-k

-k

ψ (x,ξ(y))

ξ(y)=k

0< ξ(y)<k

ξ(y)=0b)

 

Figure 31. Intermediate functions )](,[ yx ξϕ  (a) and )](,[ yx ξψ (b).  

 

It is easy to see that the function )](,[)](,[),( yxyxyxf ξψξϕ +=  has the right-hand 

trapeze projection on the flat x (Fig.29 (b)).  If the function )( yξ  has a triangle form, by = , 

and kb =)(ξ , the function ),( yxf  is a pyramid function. The way of constructing the 

function ),( yxf  with left-hand trapeze projection on the flat x (Fig.29 (c)) now is obvious. 
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It is not difficult to check that the functions ))(,( yx ξϕ  and ))(,( yx ξψ  can be implemented 

as 

)](2)([)](,[ 1 ykxMSyx a ϕξϕ −+= − ,                                  (47) 

)(2)](2)([)](,[ 1 ykykxMSyx a ϕϕξψ −+−+−= +  .                     (48) 

The pyramid function approach is not limited to rules with point condition (40) and may 

be extended to rules with interval condition of the type 

0),(  else  ),(   then)   and  (  if 2121 ==≤≤≤≤ yxfkyxfbybaxa .            (49) 

Interval conditions can be implemented by simple changing constants for mask-functions. It 

is easy to see that the rule (49) represents matrices with rectangular configurations of 

valuable elements those can be implemented as truncated square pyramids. 

Note that the function similar to (44) may be constructed for an arbitrary variables 

number. Pyramid implementation for two variables requires 6 amplifiers. Each additional 

variable introduction requires two additional amplifiers. 

 

4.4 Extracting a Matrix with Valuable Elements Laying on a Diagonal 

Let us split the Matrix M4 on two matrixes (M5 and M6) and try to implement the matrix 

M5. Matrix M6  is the next residual matrix. 

000   0   0   0    1 

00    0   0   0   0    0   

00    0   0   0   0    0   

00    0   0   0   0    0   

00    0   0   0   0    0   

000   0   10    0

00110   00

0   0   0   0   10   0

0   0   0   10   0   0

0   0   0   0   0   0   0

0   1 0   0   0   0   0

10   0   0   0   0   0

0   0   0   0   0   0   0

0   0   0   0   0   0   0

000   0   10    1 

00    0   10   0    0   

00    0   0   0   0    0   

01  0   0   0   0    0   
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00 0   0   10    0
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In its turn, the matrix M5 can be composed from two matrices  

0   0   0   0   0   0   0

0   0   0   0   0   0   0

0   0   3  0   0   0   0

0   0   0   0   0   0   0

0   0   0   0   0   0   0

0   0   0   0   0   0   0

0   0   0   0   0   0   0

3

1

0   0   0   0   30   0

0   0   0   30   0   0

0   0   30   0   0   0

0   3 0   0   0   0   0

30   0   0   0   0   0

0   0   0   0   0   0   0

0   0   0   0   0   0   0

3

1

0   0   0   0   10   0

0   0   0   10   0   0

0   0   0   0   0   0   0

0   1 0   0   0   0   0

10   0   0   0   0   0

0   0   0   0   0   0   0

0   0   0   0   0   0   0

                                                                            52515

-

MMM

+

+
+

+
+

+
=

+
+

+
+  

and represented as the sum of corresponding functions )],(),([),( 32313
1

3 yxfyxfyxf += . 
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In the matrix M51, elements with the value “+3” lay on the line 02 =−+ yx . This 

matrix can be described by the function of one variable ]2/)([31 yxzf += , which is defined 

by the rule 

.0)( else 3)(  then1 if 3231 === zfzfz  

The function )(31 zf can be constructed as it is shown in Fig.32.  

 

-1-2-3 -1-2-3

-1

-2

-3

-1

-2

-3

1

2 300

11

2

21 3

3
3

2

a) b)

z=(x+y)/2 z=(x+y)/2

β6 δ6

α6

α6 , f31β6 , δ6

f31

 

Figure 32. Functional representations of the matrixes M5. 

 

It is easy to see from this figure that  

],6)()([)(  ,3)()( 666631 ++=+= zzSzzzf δβαα  

).96()(   ),36()( 66 +−=−= zSzzSz δβ  

For good “sewing” the function 32f  with 31f  and the function 3f  with 1f  the function 

32f  has to be implemented as pyramid function of variables 2/)( yxz +=  and 

2/)( yxw −=  as it is shown in Fig.30. Substitution variables z and w in formula (46) 

instead of  2/)( yx + x  and  2/)( yx −   respectively,  1+=a , 1+=b , 3=k , and changing 

the sign of the function gives 

}3]6)()()()([{),( 72
1

72
1

62
1

62
1

32 +++++= wwzzSSwzf δβδβ  

where  )(   ),( 66 zz δβ  are already implemented and 

).36()(   ),36()( 77 +−=+= wSwwSw δβ  

Finally, the function implementation 

,1}9]6),(),(                

),(),([),(),({),(

72
1

72
1

62
1

62
1

663
1

3

++++
++++=

yxyx

yxyxSyxyxSyxf

δβ
δβδβ

                 (50) 

where 
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)333(   ),333(),(

),933(),(   ),333(),(

77

66

++−+−=
+−−=−+=

yxyxSyx

yxSyxyxSyx

δβ
δβ

  

corresponds to the matrix M5. 

 

4.5 Implementation of the Matrix M6 

Let us split the matrix M6 on two matrices (M7 and M8) and try to implement the matrix 

M7. The new residual matrix is M8, all elements of which are defined. 

0   0   0   0   0    0   1

0   0   0   0   0    0   0   

0   0   0   0   0    0   0   

0   0   0   0   0    0   0   

0   0   0   0   0    0   0   

0   0   0   0   1 0   0   

0   0   0   0   0    0   0   

0   0    0    0   0   0   0

0   0    0    0   0   0   0

0   0    0    0   0   0   0

0   0    0    0   0   0   0

0   0    0    0   0   0   0

0   0    0    0   0   0   0

11110   0   0

000   0    0    0    1

00    0   0    0    0    0   

00    0   0    0    0    0   

00    0   0    0    0    0   

00    0   0    0    0    0   

00 0   0    10    0

0 0 110   00
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The matrix M7 has one rectangular component and can be represented as the function 

),(4 yxf  that is defined by the rule 

0),(  else  1),(    then) 0(&) 3( if 44 ==≥−= yxfyxfyx . 

By analogy with constructing formulas (41) – (45) let us compose two auxiliary functions 

)(1 xγ  for the condition 3−=x  and )(1 yγ  for the condition 0≥y . These functions are 

represented in Fig.33 and can be constructed as 

]3)([)(   )],([)( 1131 +=−= −− yMSyxMSx γγ . 

x

γ1(x)

y

a) b)

-3   -2   -1 1    2    3 -3   -2   -1  1   2    3

γ1(y)

1

2

3

1

2

3

-1

-2
-3

-3

-1

-2

 

Figure 33. Two auxiliary functions:  )(1 xγ  for the condition  

3−=x  (a) and )(1 yγ  for the condition 0≥y  (b). 

 

Therefore 

].3)()([),( 131 ++−= −− yMxMSyxγ  
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Taking into account that for 3=k  

- )33()(   ),93()( 13 +=−−= −− ySyMxSxM  

it is not difficult to find 

1]3)33()93([),(
3
1

4 ++++−−= ySxSSyxf .                             (51) 

The residual matrix 8M  has only two nonzero elements with coordinates 

)3,3( −=+= yx  and )1,2( −=−= yx . Let us designate the functions, with help of which 

the controller function can be corrected in these points, as 5f  and 6f , respectively. 

Depending on coordinates of valuable element and conditions of good coupling the element 

with already implemented fragments different implementation methods can be used.  

The function ),(5 yxf  is equal to 0 everywhere except the point )3,3( −=+= yx , at 

which 1),(5 =yxf . For monotonic peace-wise linear coupling this function with the 

function ),(1 yxf   its projections on the flats x and y must have the form of Fig.29 (a) or (b).  

The function ),(5 yxf  can be implemented as pyramid function in accordance with (46) but 

the following approach, which is shown in Fig.34, gives better implementation.  

 

x

−Μ3(x)

y

a) b)

-3   -2   -1

1     2    3 -3   -2   -1

 1   2    3

−Μ−3(y)−3

1

2

3

1

2

3

-1

-2
-3 -3

-1

-2

 

Figure 34. Auxiliary functions:  )(3 xM−  (a) and  3)(3 −− yM  (b). 

 

Now it is not difficult to construct the function  

)}()](3)([{),( 3333
1

5 xMxMyMSyxf −−−−= −  

and finally the function 5f  is implemented as 

)93(]3)93()93([),(
3
1

3
1

5 +−+−+−+−−= xSxSySSyxf .                 (52) 

As experiments showed, the monotonic piece-wise linear approximation between the 

logical level in the point (-2,-1) and logical levels in the adjacent points of the functions  

),(1 yxf   and ),(4 yxf  will be obtained, if the pyramid function 6f   in the point (-2,-1) is 

implemented in accordance with the formula (46). 
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}.3]6)633()33(               

)1233()633([{),(

2
1

2
1

2
1

2
1

3
1

6

−−−+−+−
+−−−+++=

yxSyxS

yxSyxSSSyxf
 

After some transformations providing the possibility to save one summing amplifier this 

function looks as following 

.1]6)633()33(               

)1233()633([),(

2
1

2
1

2
1

2
1

3
1

6

+++−++−
++++−−−=

yxSyxS

yxSyxSSyxf
                           (53) 

 

4.6 Implementation of the Controller  

Correctness of the designed controller and its functioning has been checked with SPICE 

simulation (MSIM 8). In simulation experiments MOSIS BSIM3v3.1 level 7 models of 0.4µm 

transistors have been used.  

As building blocks for the controller circuit two types of summing amplifiers were used 

(ordinary and powerful).  They are built on the base of three-stage push-pull CMOS operational 

amplifier with 1.5-MegOhm resistor in the feedback. Examples of such summing amplifiers 

are shown in Fig.35. 

 

 
Figure 35.  Operational amplifier with feedback: ordinary (a), powerful (b).  

                                

Transistors in this figure are marked with two numbers, which designate transistor 

dimensions (width and length). 

 The controller schematic for experiments is represented in Fig.36. Two powerful 

elements PHS1 and PHS2 of the controller produce signals -y and -x respectively. Other 

elements are ordinary.  

Analytical description of the controller schematic can be derived on the base of the 

function implementations (35) – (37), (39), (50) – (53) and has the following form 

)],2766()1566(                   

)366()633()2766([),(

76
1

66
1

56
1

43
1

36
1

91

−++−+
+−+++++++=

yxSyxS

yxSyxSyxSSyxf
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Figure 36. The controller schematic for experiments. 

 
 

)3)2493((),( 892 −−+−= yxSSyxf ; 

;1}9]6)333()333()933(                

)333([)933()333({),(

132
1
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1
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1

102
1

151110123
1

3

+++++−++−++−−
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yxSyxSyxS
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1]3)33()93([),( 17183
1

4 16
++++−−= ySxSSyxf ;                            

)93(]3)93()93([),( 193
1

2019213
1

5 −−+−−−++−= xSySxSSyxf ;                  

;1]6)633()33(               

)1233()633([),(
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1
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1

222
1

232
1
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1

6

+++−++−
++++−−−=

yxSyxS

yxSyxSSyxf
 



 38 

)]3([),(),( 263
1

213
1

193
1

183
1

123
1

92728

6

1

++++++==∑
=

SSSSSSSSyxfyxF
j

j . 

Enumeration of summing amplifiers in this description corresponds to enumeration of 

elements in the controller circuit. The controller contains 28 amplifiers and 86 resistors. 

Resistor values have been calculated as jj wRR /0=  where jw  is logical weight of the j-th 

element input signal.  

In experiments, source voltage was 3.5V. Input variable x changed linearly from 0V to 

3.5V, input variable y changed discreetly and kept constant value within one cycle of x 

changing. The voltage range was evenly divided onto seven logical levels so that the logical 

levels “-3” and “+3” corresponded to voltages gndV  and ddV  respectively. 

Results of SPICE simulation of the controller schematic are represented in Fig.37.  

 
Figure 37. The response surface of the controller  

 

This figure has been constructed by using GNUplot and illustrates the response surface in 

the coordinates X, Y. Analyzing the surface it is possible to conclude that the functioning of 

the controller is correct because of logical values of the circuit output depend on the logical 

values of the input variables in accordance with the Table 11. Moreover, the controller 

output signal has monotonic piece-wise linear approximation between adjacent logical 

levels. Thus the designed controller can be used as an analog device, which has analog 

inputs and produces an analog output signal. 
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5 Transformation of Analog Signals into Multi-valued Logic Form  

In previous sections functions of multi-valued logic were specified by tables of fuzzy 

rules over linguistic variables. It was implicitly assumed that values of analog signals, 

which corresponded to linguistic variables, were evenly distributed in the range of voltages 

representing analog signals. Otherwise by artificial means the number of linguistic variables 

can be increased that leads to growing the implementation complexity.  

In this section a procedure of transforming input analog variables into multiple-valued 

logic variables with evenly distributed logical levels is suggested. This procedure in some 

sense is analogous to the procedure of fuzzification in fuzzy controllers. Because of using a 

fuzzy control description for implementation of controllers as multi-valued logical functions 

the same term “fuzzification” for the suggested procedure of logical levels equalization for 

input variables will be applied.  

The same procedure is supposed to be used when output multi-valued variables with 

evenly distributed logical levels demand backward transformation to an analog form with 

not evenly distributed voltages corresponding to logical levels. In this case the term 

“defuzzification procedure” will be applied.  

 

5.1 Fuzzification Procedures 

Let us examine more attentively the fuzzification procedure for the case of linear 

membership functions or membership functions, which sufficiently simply can be 

represented as piecewise-linear, and propose sufficiently simple universal method. Here the 

standard determination of a membership function is used. The membership function 

determines the weight of the corresponding linguistic variable b for each value of an analog 

variable X: 

10);,( ≤≤= bb wXbFw . 

The simplest example of membership functions is given in Fig.38. 

“The membership function is a graphical representation of the magnitude of 

participation of each input. It associates a weighting with each of the inputs that are 

processed, define functional overlap between inputs, and ultimately determines an output 

response. The rules use the input membership values as weighting factors to determine their 

influence on the fuzzy output sets of the final output conclusion. Once the functions are 

inferred, scaled, and combined, they are defuzzified into a crisp output which drives the 
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system. There are different memberships functions associated with each input and output 

response. Some features to note are: 

 

Figure 38. The simplest type of membership functions. 

SHAPE - triangular is common, but bell, trapezoidal, haversine and, exponential have been 

used (More complex functions are possible but require greater computing overhead to 

implement.);  

HEIGHT or magnitude (usually normalized to 1);  

WIDTH (of the base of function);  

SHOULDERING (locks height at maximum if an outer function. Shouldered functions 

evaluate as 1.0 past their center);  

CENTER points (center of the member function shape);  

OVERLAP (N&Z, Z&P, typically about 50% of width but can be less)”.
 3

 

 Fig.38 illustrates the features of the triangular membership function which is used in 

the fallowing example. 

The procedure of fuzzification and constructing corresponding diagram is examined on 

an example of the Container Crane fuzzy Controller, membership functions for which are 

given in Fig.39.
4
  

It is assumed, without disrupting the generality of reasoning, that with changing the 

angle within the limits ( oo 9090 +÷− ) and the distance in the limits (-10 ÷ +30) yards the 

corresponding analog voltages vary within the range (0÷3.5) V. The source voltage of the 

controller circuit is also 3.5V. 

                                                 
3
 Citation is taken from “Fuzzy Logic – an Introduction”, part 4, by Steven D. Kaehler,     

http://www.seattlerobotics.org/encoder/mar98/fuz/fl_part4.html  
4
 http://www.fuzzytech.com/e/e_a_pfd.html   
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Figure 39. Membership functions for the Container Crane Fuzzy Controller: 

                               of the variable “angle” (a) and of the variable “distance” (b).
 
 

 

Table 12 determines the function of fuzzification for the piecewise-linear membership 

functions of the variable angle shown in Fig.39 (a). Linearity of these membership 

functions gives the possibility to connect the points of logical values by straight lines. The 

corresponding fuzzification (equalization) function is given in Fig.40. 

 

             Angle membership functions                                                           Table 12 

linguistic 

variable 
neg_big neg_small zero pos_small pos_big 

angle 

voltage 
-90°÷-60° 

(0÷0.583)V 

-20° 

1.361V 

0° 

1.75V 

20° 

2.139V 

60°÷90° 

(2.917÷3.5)V  

logic values 

voltage 

-2 

0V 

-1 

0.875V 

0 

1.75V 

+1 

2.625V 

+2 

3.5V 

 

In this figure the variations of voltages from the average (equilibrium) point of summing 

amplifier are plotted along the axes.  

For implementation of the function )(1 inout VFV =  shown in Fig.40 three auxiliary 

functions should be introduced. These functions are represented in Fig.41. Their sum with 

saturation on the levels ± 1.75V determines the fuzzificated input function for the controller 

fuzzy inference part, which, as it has been already proved in previous sections, can be 

implemented as a multi-valued logic function. 
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-1.75V 1.75V-1V 1V

1.75V or

0.39V-0.39V

-1.167V 1.167V

0.875V or

-0.875V or  -1(neg_small)

-1.75V or  -2(neg_big)

+2(pos_big)

+1(pos_small)

0 (zero)

V     -1.75V

V   -1.75V in

out

 

Figure 40.  Piecewise-linear function for fuzzification of the variable “Angle”. 

 

-1.75V 1.75V-1V 1V

1.75V

0.389V-0.389V-1.167V 1.167V

0.875V

-0.875V

-1.75V

)(1 αϕ

)(2 αϕ

)(3 αϕ

 

Figure 41. Component functions for the function represented in Fig.40. 

 

In Fig.41 the angle α and values of functions )(αϕ j  are represented in positive and 

negative voltages. These component functions and the fuzzifier output function )(1 αF  can 

be implemented by the following way: 

)).19.2125.1()19.2125.1()5.4(S( 

))()()(()(

);19.2125.1()(

);19.2125.1()(

);5.4(5.0)(

2
1

3211

3

2

1

−+++
=−−−=

−−=
+−=

−=

ααα
αϕαϕαϕα

ααϕ
ααϕ
ααϕ

SSS

SF

S

S

S

                  (54) 

Now let us show how to construct and implement the fuzzification function for the input 

variable distance. As can be inferred from Fig.39 (b), the membership functions are 

characterized first by asymmetry of the measured distance ((-10 ÷ +30) yards) and second 
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by the explicit asymmetry of the linguistic variable positions along the distance axis. It 

assumed that the complete range of the measured distance corresponds to the complete 

range of the supply voltages (0V ÷ 3.5V) or (-1.75V ÷ +1.75V) in deviations from the 

equilibrium point of amplifier. For this case the fuzzification function is determined by 

Table 13. In this table the linguistic variable close corresponds to value “log. 0” and the 

linguistic variable zero corresponds to the value “log.-1”. The balance point of the amplifier 

input voltage corresponds to linguistic variable medium. 

 

Distance membership functions                                                                    Table 13 

linguistic 

variables 
neg_close zero close medium far 

distance 

voltage 

≤ -5  yards 

≤ 0.4375V 

0 yards 

0.875V 

3 yards 

1,1375V 

10 yards 

1.75V 

≥ 20 yards 

≥ 2.625V 

logic values 

voltage 

-2 

0V 

-1 

0.875V 

0 

1.75V 

+1 

2.625V 

+2 

3.5V 

 

 

Corresponding function )( inout VV  is given in Fig.42. For implementation of this function 

)(2 inout VFV =  it is necessary to realize four auxiliary functions, whose sum with saturation 

on the levels ±1.75V will give the desired result. The auxiliary functions are given in Fig.43. 

Their values and value of the variable d (distance) are represented in negative and positive 

voltages. 

 

-1.75V 1.75V-1V 1V

1.75V

0.875V-0.6175V

-1.3125V

0.875V

+2 (far)

+1 (medium)

-0.875V

0V

0 (close)

-1 (zero)-0.875V

-1.75V -2 (neg_close)

V   -1.75Vin

V    -1.75Vout

 

Figure 42.  Piecewise-linear fuzzification function for the variable distance. 

 

The ways of forming the component functions given in Fig.42 and the function 

)(2 dF are shown below:  
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-1.75V 1.75V-1V 1V

1.75V

0.875V-0.6175V

-1.3125V

0.875V

-0.875V

0V

-0.875V

-1.75V

-1.75V

1.75V

-1V 1V

1.75V

0.875V-0.6175V-1.3125V

0.875V

0V

-0.875V

-1.75V

0.4375V

-0.4375V

d d

-0.4375V

0.4375V

)(djψ )(djψ

)(1 dψ

)(2 dψ )(3 dψ

)(4 dψ

 

Figure 43. Component functions for the function represented in Fig.42. 
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5.2  Fuzzifier Implementations 

For the completion of the fuzzifier design it only remains to determine the values of the 

input resistances of summing amplifiers and to conduct SPICE simulation for checking 

correctness of the implementations (54) and (55). These implementations are represented 

graphically in Fig.44 (a) and Fig. 44 (b) respectively. Their schematics, which have been 

used for SPICE simulations, are shown in Fig.45 (a) and Fig.45 (b). 
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Figure 44. Fuzzifiers of the variable angle (a) and for variable distance (b). 

 

Summing amplifiers used in the schematics are constructed on the base of three-stage 

push-pull CMOS operational amplifier in accordance with Fig.35 (a).  
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Figure 45. Fuzzifier schematics the angle (a) and for the distance (b).  

 

Results of SPICE simulation of the fuzzifiers for variables “angle” and “distance” are 

shown in Fig.46 and Fig.47 respectively. 

 

Figure 46. Output of the fuzzifier shown in Fig.45 (a) and derived by SPICE simulation. 

 

 

Figure 47. Output of the fuzzifier shown in Fig.45 (b) and derived by SPICE simulation. 



 46 

It is easy to see that the simulation plots are exactly the same as it is required for 

fuzzification of the input variables angle (Fig.40) and distance (Fig.42).  This proves the 

correctness of the fuzzifier implementations.  

It should be noted that in the case of software implementation of the fuzzification and 

defuzzification functions, their component functions may be chosen not only piecewise 

linear but providing any reasonable approximations.  

6 Conclusions 

It was shown that all parts of fuzzy controllers can be effectively implemented on the 

base of summing amplifiers with saturation in accordance with the proposed methodology. 

This methodology is oriented to hardware implementation of fuzzy controllers as analog 

devices. In comparison with software implementation of the controllers, their hardware 

implementation have advantages of better response time and reliability, low power 

consumption, smaller die area etc.  It should be noticed that the methodology also admits 

software implementation of the controllers by means of simulation using the summation 

operation with restrictions.    

In all examples of controllers presented in the paper, the push-pull summing amplifier 

containing three CMOS invertors is used. The summing amplifier however can be of 

another type, e.g., the differential type or any other type of an operational amplifier. 

Some may object that summing amplifiers in all examples of controllers designed with 

help of suggested methodology contain resistors of large values and it is very difficult to 

implement these resistors in CMOS VLSI technology. Indeed it is correct. In our case p-

well resistors (1-10K Ohms/sq.) or pinch resistors (5-20K Ohms/sq.) can be used. These 

resistors are compatible with CMOS technology but occupy very large die area, possess bad 

accuracy, and have big temperature and voltage coefficients. By these reasons the 

possibility of creating a dynamical model of the summing amplifier with saturation using 

capacitors instead of resistors has been considered. This consideration gave positive results 

and will be published soon.  

The proposed methodology has been applied for designing several devices specified as 

fuzzy controllers, showed high efficiency and gave very economical implementations. 

Techniques of synthesizing fuzzy devices in the offered base should get further developing 

and problems of implementability under the conditions of real production should be 

resolved in the nearest future.  
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